Vacuum servo apparatus

Information

  • Patent Grant
  • 6334383
  • Patent Number
    6,334,383
  • Date Filed
    Thursday, April 15, 1999
    25 years ago
  • Date Issued
    Tuesday, January 1, 2002
    23 years ago
Abstract
A vacuum servo apparatus capable of regulating the output accompanying the activation of an actuator to the maximum output or less includes a housing, movable walls located within the housing, a power piston, an input member, a valve mechanism, an output rod, a reaction disc and an actuator. A rear member forming part of an input member is able to move forward by a predetermined stroke with respect to a front member forming part of the input member so that the input member can be moved backward by the reaction disc in accordance with the activation of the actuator to cut off communication between rear chambers and the atmosphere.
Description




FIELD OF THE INVENTION




The present invention generally relates to a brake booster. More particularly, the present invention pertains to a vacuum type servo system to be applied to an automobile.




BACKGROUND OF THE INVENTION




U.S. Pat. No. 5,483,866 discloses a vacuum type servo system that includes a housing in which is formed at least one pressure chamber, a movable wall disposed in the housing to move forward and backward with respect to the housing for partitioning the pressure chamber into a front chamber communicating with a vacuum source and a rear chamber for selectively communicating with the front chamber and the atmosphere, a power piston jointed to the movable wall, an input member arranged in the power piston to move forward and backward with respect to the power piston, and a valve plunger member arranged in the power piston for moving forward and backward integrally with the input member. An atmospheric valve seat is arranged in the valve plunger member and a vacuum valve seat is arranged in the power piston. A control valve is defined by an atmospheric seal portion capable of moving into and out of engagement with the atmospheric valve seat to cut off communication with the rear chamber and the atmosphere upon engaging the atmospheric valve seat and to establish communication of the rear chamber with the atmosphere upon being out of engagement with the atmospheric valve seat, and a vacuum seal portion capable of moving into and out of engagement with the vacuum valve seat to cut off communication between the front chamber and the rear chamber upon engagement with the vacuum valve seat and to establish communication of the rear chamber with the front chamber upon being out of engagement with the vacuum valve seat. An output member outputs to the outside the forward force of the power piston in accordance with the movement of the movable wall. A reaction member transmits member to the output member the forward force of the power piston and an input applied to the input, and applies a reaction of a magnitude corresponding to the output of the output member to move the input member backward. An actuator brings the valve plunger member forward to move the atmospheric valve seat away from the atmospheric seal portion to thereby establish communication between the rear chamber and the atmosphere.




In this known vacuum type servo system, the valve plunger member is moved by activating the actuator separately of the operation of the input member so that the atmospheric valve seat is moved away from the atmospheric seal portion to establish communication between the rear chamber and the atmosphere and accordingly a pressure difference between the front chamber and the rear chamber. When this pressure difference is established between the front chamber and the rear chamber by the activation of the actuator, forward forces are generated at the movable wall and the power piston, and the output member outputs the forward force of the power piston to the outside.




In this vacuum type servo system, however, the flow of atmospheric air into the rear chamber by the activation of the actuator continues until the rear chamber receives the atmospheric pressure so that the output of the vacuum type servo system to be outputted from the output member in accordance with the activation of the actuator reaches a maximum.




It is conceivable that this vacuum type servo system for generating an output by activation of the actuator independently of the operation of the input member can be applied to an automatic braking system that is designed to maintain the vehicle distance, for example, at a predetermined value.




This automatic braking system is typically designed so that when the distance between a running vehicle and a proceeding vehicle becomes shorter than a predetermined distance, for example, braking action in the vehicle is achieved by activating the system without any braking operation of the driver so that the vehicle distance may be kept at a predetermined value. The automatic braking action of this automatic braking system has a tendency not to require a high braking force.




When the aforementioned vacuum type servo system is applied to an automatic braking system such as described above, the actuator is activated when the vehicle distance becomes shorter than the predetermined value. The output is thus generated in the vacuum type servo system to effect the automatic braking operation without any braking operation of the driver, i.e., without any operation of the input member.




However, the braking force to be generated at this time is based on the maximum output that is established in the vacuum type servo system and this rather strong braking force may not be well suited for the automatic braking operation in the automatic braking system. In other words, the known vacuum type servo system described above is not well suited for braking systems which do not require the generation of the maximum output of the vacuum type servo system.




In light of the foregoing, a need exists for a vacuum type servo system that is capable of regulating the output accompanying the activation of an actuator to the maximum output or less than the maximum output.




A need also exists for a vacuum type servo system which is able to control the output accompanying the activation of the actuator within a range lower than the jumping output of the performance of an ordinary brake.




SUMMARY OF THE INVENTION




A vacuum type servo system according to one aspect of the invention includes: a housing having at least one pressure chamber formed therein; a movable wall so disposed in the housing as to move forward and backward with respect to the housing for partitioning the pressure chamber into a front chamber communicating with a vacuum source and a rear chamber selected to communicate with the front chamber and the atmosphere; a power piston jointed to the movable wall; an input member so arranged in the power piston as to move forward and backward with respect to the power piston; an atmospheric valve seat arranged in the power piston for moving forward and backward integrally with the input member; a vacuum valve seat arranged in the power piston; a control valve including an atmospheric seal portion capable of coming into and going out of abutment against the atmospheric valve seat for cutting off the communication with the rear chamber and the atmosphere when it comes into abutment against the atmospheric valve seat and for establishing the communication of the rear chamber with the atmosphere when it goes out of abutment against the atmospheric valve seat, and a vacuum seal portion capable of coming into and going out of abutment against the vacuum valve seat for cutting off t-e communication between the front chamber and the rear chamber when it comes into abutment against the vacuum valve seat and for establishing the communication of the rear chamber with the front chamber when it goes out of abutment against the vacuum valve seat; an output member for outputting the forward force of the power piston in accordance with the movement of the movable wall to the outside of the system; a reaction member for transmitting the forward force of the power piston and an input fed to the input member, to the output member and for applying a reaction of a magnitude corresponding to an output of the output member, to move the input member backward; and an actuator for bringing the atmospheric valve seat and the atmospheric seal portion away from each other to establish the communication between the rear chamber and the atmosphere, wherein the input member includes: a front member for coming into abutment against the reaction member; and a rear member capable of moving integrally with the atmospheric valve seat, so that when a predetermined input is fed to the input member, the rear member moves forward by a predetermined stroke with respect to the front member, and so that when the input member is moved backward by a reaction of the reaction member in accordance with the activation of the actuator, the atmospheric valve seat and the atmospheric seal portion can come into abutment against each other to cut off communication between the rear chamber and the atmosphere.




Preferably, the input member and the reaction member are in abutment against each other in an initial state where no input is applied to the input member. The input member preferably includes: a first joint mechanism for joining the front member and the rear member when the rear member moves forward by a predetermined stroke with respect to the front member, so that the front member and the rear member may integrally move forward; and a second joint mechanism for regulating the rearmost position of the rear member with respect to the front member and for jointing the front member and the rear member, when the rear member is at the rearmost position, so that the front member and the rear member may integrally move backward.




The second joint mechanism can be arranged in one of the front member and the rear member and includes: a recess extended longitudinally and shut off at least at its rear side end portion; and an engaging portion formed on the other and so inserted into the recess as to move longitudinally. A first bias member can be provided for biasing the rear member backward. Also, a second bias member can be arranged between the front member and the rear member for biasing the rear member backward with respect to the front member.




Preferably, either the front member or the rear member includes an engaging protrusion extended longitudinally whereas the other includes an assembly hole extended longitudinally for inserting the engaging protrusion slidably.




The vacuum type servo system can further include an elastically deformable engaging member that is deformed when the input member is moved backward by the reaction of the reaction member in accordance with the activation of the actuator for allowing the backward movement of the input member. The engaging member preferably engages the input member in accordance with the forward movement of the power piston with respect to the input member by the activation of the actuator, to move the input member and the atmospheric valve seat integrally with the power piston. The engaging member can engage the input member, when the actuator is activated at the inactive time of the input member to move the power piston forward with respect to the input member, so that in accordance with the activation of the actuator at the inactive time of the input member, the input member is moved backward by the reaction of the reaction member against a restoring force accompanying the elastic deformation of the engaging member, to bring the atmospheric valve seat and the atmospheric seal portion into abutment to thereby cut off communication between the rear chamber and the atmosphere.




The engaging member can be a key member engaging the power piston for moving longitudinally by a first predetermined stroke with respect to the power piston and with the input member for moving longitudinally by a second predetermined stroke with respect to the input member, wherein the housing includes a first opposed portion opposed to and able to abut against the rear face of the key member, wherein the power piston includes: a second opposed portion opposed to and enabled to abut against the front face of the key member; and a third opposed portion opposed to and enabled to abut against the rear face of the key member, and wherein the input member includes: a fourth opposed portion opposed to and enabled to abut against the front face of the key member; and a fifth opposed portion opposed to and enabled to abut against the rear face of the key member.




The vacuum type servo system can further include: a valve seat member arranged to move forward and backward with respect to the power piston independently of the movements of the input member and adapted to abut against the vacuum seal portion of the control valve for cutting off the communication between the front chamber and the rear chamber, wherein the rear member of the input member is integrally equipped with the atmospheric valve seat, and wherein the actuator moves the valve seat member backward to bring the valve seat member into abutment against the vacuum seal portion and moves the vacuum seal portion backward to bring the atmospheric seal portion apart from the atmospheric valve seat thereby to establish the communication between the rear chamber and the atmosphere.




The drive force of the actuator can be adjusted to adjust the output from the output member. The drive force of the actuator can also be adjusted to adjust the backward movement of the valve seat member with respect to the power piston. The actuator preferably includes a solenoid connected with an electric power source for attracting and moving the valve seat member backward when it receives the electric power, so that the output from the output member can be adjusted according to the attraction of the solenoid.




The valve seat member can be adjusted in its backward movement in accordance with the attraction of the solenoid and the vacuum type servo system can further include a third bias member arranged between the valve seat member and the power piston for biasing the valve seat member forward.




Another aspect of the invention involves a vacuum type servo system that includes: a housing having at least one pressure chamber formed therein; a movable wall so disposed in the housing as to move forward and backward with respect to the housing for partitioning the pressure chamber into a front chamber communicating with a vacuum source and a rear chamber selected to communicate with the front chamber and the atmosphere; a power piston jointed to the movable wall; an input member so arranged in the power piston as to move forward and backward with respect to the power piston; an atmospheric valve seat arranged in the power piston for moving forward and backward integrally with the input member; a vacuum valve seat arranged in the power piston; a control valve including an atmospheric seal portion capable of coming into and going out of abutment against the atmospheric valve seat for cutting off the communication with the rear chamber and the atmosphere when it comes into abutment against the atmospheric valve seat and for establishing the communication of the rear chamber with the atmosphere when it goes out of abutment against the atmospheric valve seat, and a vacuum seal portion capable of coming into and going out of abutment against the vacuum valve seat for cutting off the communication between the front chamber and the rear chamber when it comes into abutment against the vacuum valve seat and for establishing the communication of the rear chamber with the front chamber when it goes out of abutment against the vacuum valve seat; an output member for outputting the forward force of the power piston in accordance with the movement of the movable wall to the outside of the system; and a reaction member for transmitting the forward force of the power piston and an input fed to the input member, to the output member and for applying a reaction of a magnitude corresponding to an output of the output member, to move the input member backward, wherein the input member includes: a front member for coming into abutment against the reaction member; and a rear member capable of moving integrally with the atmospheric valve seat, so that when a predetermined input is fed to the input member, the rear member moves forward by a predetermined stroke with respect to the front member, and so that when the input member is moved backward by a reaction of the reaction member, the atmospheric valve seat and the atmospheric seal portion can come into abutment against each other to cut off the communication between the rear chamber and the atmosphere. The front member of the input member and the reaction member preferably abut in an initial state where no input is applied to the input member.




The present invention also provides a vacuum type servo system which includes: a housing having at least one pressure chamber formed therein; a movable wall disposed in the housing to be movable forward and backward with respect to the housing for partitioning the pressure chamber into a front chamber communicating with a negative pressure source and a rear chamber selected to communicate with the front chamber and the atmosphere; a power piston jointed to the movable wall; an input member arranged in the power piston to be movable forward and backward with respect to the power piston; an atmospheric valve seat arranged in the power piston to be movable forward and backward integrally with the input member; a vacuum valve seat arranged in the power piston; a control valve including: an atmospheric seal portion capable of coming into and going out of abutment against the atmospheric valve seat for cutting off the communication with the rear chamber and the atmosphere when it comes into abutment against the atmospheric valve seat and for establishing the communication of the rear chamber with the atmosphere when it moves out of abutment against the atmospheric valve seat; and a vacuum seal portion capable of coming into and going out of abutment against the vacuum valve seat for cutting off the communication between the front chamber and the rear chamber when it comes into abutment against the vacuum valve seat and for establishing the communication of the rear chamber with the front chamber when it goes out of abutment against the vacuum valve seat; an output member for outputting a forward force of the power piston in accordance with a movement of the movable wall to the an outside of the apparatus; and an actuator for bringing the atmospheric valve seat and the atmospheric seal portion away from each other to establish the communication between the rear chamber and the atmosphere, wherein a second predetermined input force is applied to the input member to be maintained at an inactive time of the actuator, so that an output force from the output member increases to a predetermined output force, and an output force generated by an activation of the actuator can be controlled from an output force, which is smaller than the predetermined output force.




Preferably, the vacuum type servo system also includes: a reaction member for transmitting a forward force of the power piston and an input force fed to the input member, to the output member and for applying a reaction force of a magnitude corresponding to an output force of the output member, to move the input member backward, and the atmospheric valve seat and the atmospheric seal portion can come into abutment against each other to cut off the communication between the rear chamber and the atmosphere when the input member is moved backward by a reaction force of the reaction member in accordance with the activation of the actuator.




When a predetermined input is fed to the input member, the rear member moves forward by a predetermined stroke with respect to the front member. When the input member is moved backward by a reaction of the reaction member in accordance with the activation of the actuator, the atmospheric valve seat and the atmospheric seal portion can come into abutment against each other to cut off the communication between the rear chamber and the atmosphere.




According to the present invention, the input member and the reaction member are in abutment against each other in an initial state where no input is applied to the input member. Also, the front member and the rear member are joined to each other by a first joint mechanism when the rear member moves forward by a predetermined stroke with respect to the front member, so that the front member and the rear member may integrally move forward, and the rearmost position of the rear member is regulated with respect to the front member whereas the front member and the rear member are jointed to each other by a second joint mechanism, when the rear member is at the rearmost position, so that the front member and the rear member may integrally move backward.




The front member can be longitudinally or axially moved with respect to the rear member by making the engaging portion longitudinally movable in the recess, and the backward movement of the rear member with respect to the front member is regulated by the abutment between the engaging portion and the rear side wall face of the recess. The rear member is preferably biased backward by a first bias member and the rear member is biased backward with respect to the front member by a second bias member.




The front member and the rear member are preferably engaged to move longitudinally relative to each other by inserting an engaging protrusion into an assembly hole. An engaging member is also adapted to be elastically deformed when the input member is moved backward by the reaction of the reaction member in accordance with the activation of the actuator, for allowing the backward movement of the input member. The engaging member engages the input member in accordance with the forward movement, as caused by the activation of the actuator, of the power piston with respect to the input member so that the input member and the atmospheric valve seat can move integrally with the power piston. The engaging member engages the input member, when the actuator is activated at the inactive time of the input member to move the power piston forward with respect to the input member. In accordance with the activation of the actuator at the inactive time of the input member, moreover, the input member is moved backward by the reaction of the reaction member against a restoring force accompanying the elastic deformation of the engaging member, to bring the atmospheric valve seat and the atmospheric seal portion into abutment thereby to cut off the communication between the rear chamber and the atmosphere. The engaging member is preferably a key member engaging the power piston for moving longitudinally by a first predetermined stroke with respect to the power piston and with the input member for moving longitudinally by a second predetermined stroke with respect to the input member. The housing includes a first opposed portion opposed to and enabled to abut against the rear face of the key member, wherein the power piston includes, a second opposed portion opposed to and enabled to abut against the front face of the key member; and a third opposed portion opposed to and enabled to abut against the rear face of the key member. The input member includes: a fourth opposed portion opposed to and enabled to abut against the front face of the key member; and a fifth opposed portion opposed to and enabled to abut against the rear face of the key member.




The actuator is adapted to move the valve seat member backward to bring the valve seat member into abutment against the vacuum seal portion and moves the vacuum seal portion backward to bring the atmospheric seal portion apart from the atmospheric valve seat thereby to establish the communication between the rear chamber and the atmosphere. The drive force of the actuator can be adjusted to adjust the output from the output member. The drive force of the actuator is adjusted to adjust the backward movement of the valve seat member with respect to the power piston, and the output from the output member can be adjusted according to the attraction of the solenoid.




The valve seat member is designed to be adjusted in its backward movement in accordance with the attraction of the solenoid and the valve seat member is biased forward by a third bias member arranged between the valve seal member and the power piston. When a predetermined input is fed to the input member, the rear member moves forward by a predetermined stroke with respect to the front member, and so that when the input member is moved backward by a reaction of the reaction member, the atmospheric valve seat and the atmospheric seal portion can come into abutment against each other to cut off communication between the rear chamber and the atmosphere.




According to the present invention, the front member of the input member and the reaction member abut in an initial state where no input is applied to the input member. A second predetermined input force is applied to the input member to be maintained at an inactive time of the actuator, so that an output force from the output member increases to a predetermined output force, and an output force generated by an activation of the actuator can be controlled from an output force which is smaller than the predetermined output force. The atmospheric valve seat and the atmospheric seal portion are adapted to come into abutment against each other to cut off communication between the rear chamber and the atmosphere when the input member is moved backward by a reaction force of the reaction member in accordance with the activation of the actuator.











BRIEF DESCRIPTION OF THE DRAWING FIGURES




Additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawing figures in which like elements are designated by like reference numerals and wherein:





FIG. 1

is a cross-sectional view of a vacuum type servo system according to the present invention;





FIG. 2

is an enlarged cross-sectional view of a valve system used in the vacuum type servo system of

FIG. 1

;





FIG. 3

is an enlarged cross-sectional view of a portion of an input member and a key member used in the vacuum type servo system of

FIG. 2

;





FIG. 4

is a side elevation view of a portion of a power piston used in the vacuum type servo system of

FIG. 2

;





FIG. 5

is a cross-sectional view of the power piston shown in

FIG. 4

;





FIG. 6

is an enlarged end view of the spring shown in

FIG. 3

;





FIG. 7

is a back elevation of the spring shown in

FIG. 6

;





FIG. 8

is a side elevation view of a portion of the input member and key member shown in

FIG. 3

;





FIG. 9

is a characteristic diagram of the vacuum type servo system of the present invention illustrating relative displacement between a slider valve and the power piston against an electric current flowing through a solenoid;





FIG. 10

is an input/output characteristic diagram of the vacuum type servo system of the present invention; and





FIG. 11

is a cross-sectional view of a portion of an input member which is equipped with a rubber member in place of the spring.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring initially to

FIG. 1

, the vehicular vacuum type servo system


10


of the present invention is provided with a housing


14


defined by a front shell


11


, a rear shell


12


and a partition member


13


between the two shells


11


,


12


for forming a front pressure chamber and a rear pressure chamber within the housing. A front movable wall


17


is movably disposed in the front pressure chamber of the housing


14


for movement in the longitudinal direction. The front movable wall


17


is composed of a front metal plate


15


and a front rubber diaphragm


16


. A rear movable wall


20


is movably disposed in the rear pressure chamber for movement in the longitudinal direction. The rear movable wall


20


is composed of a rear metal plate


18


and a rear rubber diaphragm


19


.




The center portion of the front plate


15


possesses a cylindrical portion


21


which is inserted in an airtight or hermetic manner for sliding movement in the center portion of the partition member


13


. The front diaphragm


16


possesses a bead portion at its inner circumferential edge that is hermetically fixed in an air tight manner on the outer circumference of the front end portion of the cylindrical portion


21


of the front plate


15


. The front diaphragm


16


also possesses a bead portion at its outer circumferential edge, and this bead portion is hermetically clamped in an air tight manner together with the outer circumferential edge of the partition member


13


between the outer circumferential portions of the two shells


11


,


12


.




The bead portion at the outer circumferential edge of the rear diaphragm


19


is hermetically clamped in an air tight manner between a folded portion formed on the radially inner side of the outer circumferential edge of the partition member


13


and the rear shell


12


. A power piston


22


is inserted in an air tight and slidable manner in the center portion of the rear shell


12


. The rear end of the cylindrical portion


21


of the front plate


15


and the inner circumferential edge portion of the rear plate


18


are fixed on the outer circumference of the front portion of the power piston


22


. The bead portion at the inner circumferential edge of the rear diaphragm


19


is also secured in an air tight manner to the outer circumference of the front portion of the power piston


22


.




As a result, the front pressure chamber in the housing


14


is partitioned into a first front chamber


23


and a first rear chamber


24


, and the rear pressure chamber in the housing


14


is partitioned into a second front chamber


25


and a second rear chamber


26


. The first front chamber


23


communicates with an engine intake manifold functioning as a negative pressure source


90


so that it is always kept under a negative pressure. The second front chamber


25


communicates with the first front chamber


23


through a port


21




a


formed in the cylindrical portion


21


of the front plate


15


and a channel


221


formed in the outer circumference of the front end portion of the power piston


22


. The second front chamber


25


is thus always kept under a negative pressure.




The first rear chamber


24


communicates with the second rear chamber


26


through a channel


16




a


formed in the inner circumference of the bead portion at the outer circumferential edge of the front diaphragm


16


, a port


13




a


formed in the partition member


13


, and a channel


19




a


formed in the outer circumference of the bead portion at the outer circumferential edge of the rear diaphragm


19


.




As shown in

FIGS. 1 and 2

, an input rod


27


is disposed in the power piston


22


for movement back and forth with respect to the power piston


22


. This input rod


27


is joined at its front end to an input member


28


by a ball joint and is joined at its rear end to a brake pedal


31


. The input member


28


is guided slidably in the longitudinal directions (i.e., the right and left directions in

FIG. 2

) by the power piston


22


.




As best seen from

FIGS. 2 and 3

, the input member


28


has a front member


281


and a rear member


282


. The rear member


282


is provided with a longitudinally extending assembly hole


282




a


that opens towards its front end face. The front member


281


is provided with an engaging protrusion


281




a


having an outer diameter substantially equal to the diameter of the assembly hole


282




a.


The engaging protrusion


281




a


is located within the assembly hole


282




a


and is adapted to slidably move in the longitudinal direction.




An elongated slit


281




b


or longitudinally extending recess is formed in the engaging protrusion


281




a.


This slit


281




b


is closed at its front and rear end portions. The rear member


282


is equipped with a radially extending pin


282




b


forming an engaging portion that extends from the outer circumferential portion of the assembly hole


282




a


through the rear member


282


.




The engaging protrusion


281




a


of the front member


281


is inserted into the assembly hole


282




a,


and the pin


282




b


is then arranged in the rear member


282


so that the pin can move in the longitudinal direction of the slit


281




b.


As a result, the rear member


282


can move longitudinally with respect to the front member


281


.




A rubber member


81


(or second bias means) is arranged between the rear end face of the front member


281


and the front end face of the rear member


282


. The second bias member


81


can be located within a recess formed in the rear end face of the engaging protrusion


281




a


as shown in

FIGS. 2 and 3

. In an initial state shown in

FIG. 3

, where no input force is applied to the input member


28


, the rubber member


81


urges the pin


282




b


into abutment against the rear wall face of the slit


281




b


by virtue of its elastic force and biases the rear member


282


backward with respect to the front member


281


so that the clearance between the rear end face of the engaging protrusion


281




a


and the bottom face of the assembly hole


282




a


is in the form of the distance C.




The second bias means


81


is provided for holding the front and rear members


281


,


282


at expanded positions in an assembling procedure and may have a light bias force. In this embodiment, the second bias mean is exemplified by the rubber member


81


for damping the shocks at the time of abutment between the two members


281


,


282


.




The power piston


22


is equipped with the key member


29


for regulating the foremost position and the rearmost position of the input member


28


with respect to the power piston


22


. The key member


29


is flexible and fabricated from an elastic member. As seen in

FIG. 3

, the key member


29


has a generally straight or flat cross-sectional configuration in the radial directions of the power piston


22


(i.e., in the vertical direction of FIG.


3


). The key member


29


is located in a radial hole


30


formed in the power piston


22


and is retained by the power piston


22


so that it is not able to fall out from the power piston


22


.




As shown in

FIGS. 4 and 5

, the key member


29


is integrally formed in one piece to include a flat plate portion


29




a


extending in the radial direction of the power piston


22


(i.e., in the vertical direction of FIGS.


4


and


5


), and a semicircular arcuate portion


29




b


connected to one end portion of the plate portion


29




a.


The plate portion


29




a


is provided with a slit


29




c


that extends radially with respect to the power piston


22


. This slit


29




c


extends from the inside of the arcuate portion


29




b


toward the open side of the arcuate portion


29




b


. The slit


29




c


divides the plate portion


29




a


into two spaced apart legs.




As seen in

FIG. 3

, the thickness of the key member


29


is smaller than the size of the radial hole


30


as measured in the axial or longitudinal extent. By virtue of the front face


29




f


of the plate portion


29




a,


the key member


29


is able to abut against a front wall


223


(or a second opposed portion) that opposes the front face


29




f.


The front wall


223


forms a part of the circumferential wall surrounding or defining the radial hole


30


. By virtue of a rear face


29




d


of the plate portion


29




a,


the key member


29


is able to abut against a rear wall


224


which is opposed to the rear face


29




d.


The rear wall


224


forms a part of the circumferential wall defining or surrounding the radial hole


30


. By virtue of a rear face


29




e


of the arcuate portion


29




b


, the key member


29


is able to abut against an engaging portion


222


(or a third opposed portion) which opposes the rear face


29




e


and is arranged on the outer circumferential portion of the power piston


22


.




The difference between the size of the radial hole


30


in the longitudinal or axial direction (i.e., in the horizontal direction of

FIG. 3

) and the thickness of the key member


29


in the axial or longitudinal direction is greater than the difference between the axial distance of the front wall


223


of the radial hole


30


from the engaging portion


222


and the axial thickness of the key member


29


, namely the distance A in FIG.


3


. As a result, the key member


29


can move in the axial or longitudinal direction by the distance A (i.e., a first predetermined stroke) with respect to the power piston


22


as indicated in FIG.


3


.




By virtue of the rear face


29




e


of the arcuate portion


29




b


, as positioned on the outer circumferential side of the power piston


22


, the key member


29


is able to abut against the rear shell


12


(or a first opposed portion) through a damper member


32


which is shown in FIG.


2


. The rearmost position of the power piston


22


with respect to the housing


14


is the position at which the front wall


223


of the radial hole


30


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the rear shell


12


.




The input member


28


is assembled in the slit


29




c


of the key member


29


so that the extending direction of the slit


29




c


and the axial direction of the input member


28


are perpendicular to each other, and the plate portion


29




a


is interposed between an outward flange portion


33


(or a fourth opposed portion) formed on the outer circumference of the front member


281


of the input member


28


and the front end face


282




c


(or a fifth opposed portion) of the rear member


282


of the input member


28


. As a result, the key member


29


movably engages the input member


28


in the longitudinal or axial direction by a distance (or a second predetermined stroke) represented by the difference between the distance of the outward flange


33


from the front end face


282




c


and the axial thickness of the key member


29


.




A first rearmost position of the input member


28


with respect to the power piston


22


is the position at which the rear face of the outward flange


33


abuts against the front face


29




f


of the plate portion


29




a


of the key member


29


and the back face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the engaging portion


222


of the power piston


22


. On the other hand, the foremost position of the input member


28


with respect to the power piston


22


is the position at which the front end face


282




c


of the rear member


282


abuts against the rear face


29




d


of the plate portion


29




a


of the key member


29


and the front face


29




f


of the plate portion


29




a


of the key member


29


abuts against the front wall


223


of the radial hole


30


.




A valve mechanism


35


is disposed in the power piston


22


for changing between, according to the longitudinal or axial position of the input member


28


with respect to the power piston


22


, an output decreasing state in which the second rear chamber


26


is caused to communicate with the first front chamber


23


but is shut off from the atmosphere, an output keeping state in which the second rear chamber


26


is shut off from the first front chamber


23


and the atmosphere, and an output increasing state in which the second rear chamber


26


is shut off from the first front chamber


23


but is in communication with the atmosphere.




As best seen in

FIG. 2

, the valve mechanism


35


includes a generally annular atmospheric valve seat


28




a


formed integrally with the rear member


282


of the input member


28


and directed rearward, a generally annular vacuum valve seat


22




a


which is formed integrally with the power piston


22


and directed rearward, and a control valve


36


. The control valve


36


is integrally provided with a generally annular atmospheric seal portion


36




a


that is opposed to the atmospheric valve seat


28




a


and able to move into and out of abutment against the atmospheric valve seat


28




a,


and a generally annular vacuum seal portion


36




b


that is opposed to the vacuum valve seat


22




a


and able to move into and out of abutment against the vacuum valve seat


22




a.






The control valve


36


is mainly constructed of a movable portion


36




c


integrally provided with the atmospheric seal portion


36




a


and the vacuum seal portion


36




b,


a stationary portion


36




d


fixed in an airtight manner on the power piston


22


by a retainer


37


, and a valve spring


36




e


for biasing the movable portion


36




c


in the forward direction.




A vacuum passage


38


and an air passage


39


are formed in the power piston


22


. The vacuum passage


38


is adapted to provide communication between the valve mechanism


35


and the first front chamber


23


, and the air passage


39


is adapted to provide communication between the valve mechanism


35


and the second rear chamber


26


. The space in the power piston


22


and on the inner circumferential side of the stationary portion


36




d


of the control valve


36


is vented to the atmosphere through the rear opening of the power piston


22


.




In the valve mechanism


35


, when the atmospheric valve seat


28




a


abuts against the atmospheric seal portion


36




a,


the second rear chamber


26


is shut off from the atmosphere. When the atmospheric valve seat


28




a


is spaced apart from the atmospheric seal portion


36




a,


the second rear chamber


26


is in communication with the atmosphere. When the vacuum valve seat


22




a


abuts against the vacuum seal portion


36




b,


communication between the first front chamber


23


and the second rear chamber


26


is cut off. When the vacuum valve seat


22




a


is spaced apart from the vacuum seal portion


36




b,


communication between the first front chamber


23


and the second rear chamber


26


is established.




A spring


41


(i.e., a first bias member) is interposed between a retainer


40


retained on the input rod


27


and the retainer


37


. This spring


41


biases the input rod


27


and accordingly the input member


28


in the backward or rearward direction to bring the atmospheric valve seat


28




a


into abutment against the atmospheric seal portion


36




a


and hold the vacuum seal member


36




b


in a position spaced by a distance D from the vacuum valve seat


22




a


when the brake pedal


31


is not depressed, that is in an initial state shown in FIG.


3


.




In the power piston


22


and on the inner circumferential side of the vacuum valve seat


22




a,


a slider valve


42


(i.e., a valve seat member) having a generally stepped cylindrical shape is arranged movably in the longitudinal or axial direction with respect to the power piston


22


. The slider valve


42


is adapted to be brought into and out of abutment against the vacuum seal portion


36




b


of the control valve


36


by an auxiliary vacuum valve seat


42




a


which is formed on a generally annular rear end portion of the slider valve


42


so that communication between the first front chamber


23


and the second rear chamber


26


is cut off when the auxiliary vacuum valve seat


42




a


and the vacuum seal portion


36




b


come into abutment against each other.




The slider valve


42


is equipped with a seal member


80


on its outer circumferential portion. The slider valve


42


abuts hermetically in an air tight manner against the inner circumferential portion of the power piston


22


through the seal member


80


, with the slider valve


42


being slidable with respect to the inner circumferential portion of the power piston


22


.




A spring


43


(i.e., a third bias member) is arranged between the slider valve


42


and the power piston


22


. This spring


43


is disposed in the air passage


39


which extends radially (i.e., vertically in

FIG. 3

) in the power piston


22


to bias the slider valve


42


forward with respect to the power piston


22


.




As shown in

FIGS. 6-8

, the spring


43


is shaped as a generally flat plate that is curved and is arranged in the air passage


39


of the power piston


22


. The distance between the front face and the rear face of the spring


43


is defined by the distance B shown in FIG.


3


.




The spring


43


has engaging protrusions


43




c


at its rear face and engages at its front open end portion


43




a


with an engaging portion


42




b


formed on the outer circumferential portion of the slider valve


42


. The spring


43


also abuts at its rear face against the circumferential wall of the air passage


39


and engages at its rear open end portion


43




b


with the open circumferential edge portion of the air passage


39


of the power piston


22


on the side of the valve mechanism


35


. The engaging protrusion


43




c


is assembled with an engaging groove


22




b


which is formed in the outer circumferential portion of the power piston


22


so that the spring


43


is fixed on the power piston


22


.




As seen in

FIG. 2

, an actuator


45


is disposed in the front portion of the power piston


22


. This actuator


45


is adapted to move the slider valve


42


backward against the biasing force of the spring


43


. This actuator


45


is constructed to include a solenoid coil


46


, a yoke


47


made of a magnetic material, and a yoke/reaction member accommodating member


48


made of a magnetic material.




The solenoid coil


46


, the yoke


47


and the yoke/reaction member accommodating member


48


are fixed on the power piston


22


, and the plunger


49


abuts at its rear face against the front end face of the slider valve


42


. The solenoid coil


46


is electrically connected through a lead wire


46




a


with an electronic control unit


50


outside of the housing


14


. The electric control unit


50


is electrically controlled by an electric power source


91


.




When the solenoid coil


46


is not energized (i.e., during an inactive state of the actuator


45


), the slider valve


42


is biased by the spring


43


to abut at its front end face against the plunger


49


. The front end face of the plunger


49


is held at the position shown in

FIG. 2

in which it is fixed with respect to the yoke/reaction member accommodating member


48


and in which it is in abutment against a guide member


51


for slidably guiding the front portion of the input member


28


. The auxiliary vacuum valve seat


42




a


of the slider valve


42


is positioned in front of the vacuum valve seat


22




a


of the power piston


22


by a distance G as shown in FIG.


3


.




When the solenoid coil


46


is energized (i.e., in an active state of the actuator


45


), an electromagnetic force is generated between the yoke


47


and the plunger


49


, and the plunger


49


is moved backward. In accordance with this backward movement of the plunger


49


, the slider valve


42


is moved backward against the biasing force of the spring


43


.




The maximum backward stroke of the slider valve


42


corresponds to the distance E in

FIG. 3

between the yoke


47


and the plunger


49


. In the backward moved state of the slider valve


42


, the auxiliary vacuum valve seat


42




a


of the slider valve


42


is positioned rearward of the vacuum valve seat


22




a


of the power piston


22


.




A disk type reaction disc


52


made of rubber is disposed in the yoke/reaction member accommodating member


48


and in front of the guide member


51


. The rear end portion of an output rod


53


is slidably disposed ahead of the reaction disc


52


. The rear end portion of the output rod


53


is hermetically inserted in an airtight and slidable manner through the center portion of the front shell


11


of the housing


14


.




As is known in the art, the reaction disc


52


transmits to the output rod


53


a force for moving the power piston


22


forward and a force for moving the input member


28


forward, and applies such a reaction force of a magnitude corresponding to the output of the output rod


53


to the input member


28


as to move the input member


28


backward.




A return spring


54


is disposed in the center portion of the first front chamber


23


. This return spring


54


is adapted to move the power piston


22


and the two movable walls


17


,


20


coupled to the power piston


22


in the backward or rearward direction with respect to the housing


14


.




The output rod


53


is operationally joined to the piston of a master cylinder


58


. This master cylinder


58


is equipped with a reservoir tank


55


and is connected through liquid pressure conduits to an actuator unit


56


for the ABS (or anti-lock brake system), the TRC (or traction control) and the braking/steering controls.




Wheel cylinders


57


arranged at individual wheels are individually connected through liquid pressure conduits to the actuator unit


56


. A liquid pressure sensor


92


is arranged in the liquid pressure conduit between the master cylinder


58


and the actuator unit


56


. The liquid pressure sensor


92


detects the pressure in the liquid pressure conduits and accordingly in the master cylinder


58


.




In the initial state shown in

FIG. 3

, a clearance of a distance F is established between the stepped portion on the inner circumferential side of the slider valve


42


and the front face of the front side flange portion


33


of the input member


28


, while the rear face of the reaction disc


52


abuts the front end face of the front member of the input member


28


. The individual clearances in

FIG. 3

are set to G+D+A<E<F, E<B, A<C, D<C, and C<A+D.





FIG. 9

is a characteristic diagram of the vacuum type servo system


10


of this embodiment and plots relative displacement between the slider valve


42


and the power piston


22


against the electric current i flowing through the solenoid


46


. When electric current flows through the solenoid


46


, the plunger


49


and accordingly the slider valve


42


is moved backward against the biasing force of the spring


43


.




An electric current i


1


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


1


with respect to the power piston


22


against the biasing force of the spring


43


. An electric current i


2


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


2


with respect to the power piston


22


against the biasing force of the spring


43


. An electric current i


3


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


3


with respect to the power piston


22


against the biasing force of the spring


43


.




On the other hand, an electric current i


4


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


4


with respect to the power piston


22


against the biasing force of the spring


43


, and an electric current i


5


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


5


with respect to the power piston


22


against the biasing force of the spring


43


. Further, an electric current i


6


for the solenoid


46


is required to move the plunger


49


and the slider valve


42


backward by a distance S


6


with respect to the power piston


22


against the biasing force of the spring


43


.




In accordance with an increase in the electric current to be fed to the solenoid


46


and accordingly an increase in the attraction of the solenoid


46


, the backward movement of the plunger


49


and the slider valve


42


with respect to the power piston


22


increases. The relative movement of the plunger


49


and the slider valve


42


to the power piston


22


depends upon the electric current fed to the solenoid


46


and accordingly upon the attraction of the solenoid


46


. On the other hand, the relationship between the movement of the slider valve


42


and the individual clearances is set to (S


1


−G)<C.




Having described the various features and characteristics associated with the present invention, the operation will now be described. In the state shown in

FIGS. 1-3

, the brake pedal


31


is not depressed, and the actuator


45


is not activated. Then, during an output lowering state, the valve mechanism


35


causes the second rear chamber


26


to communicate with the first front chamber


23


while cutting off the second rear chamber


26


from the atmosphere. In this state, the atmospheric valve seat


28




a


abuts against the atmospheric seal portion


36




a,


and the vacuum valve seat


22




a


and the auxiliary vacuum valve seat


42




a


of the slider valve


42


are disengaged from the vacuum seal portion


36




b


so that the pressures in the first rear chamber


24


and the second rear chamber


26


are lowered to the same level as that of the pressure in the first front chamber


23


.




As a result, the forward force does not act on the two movable walls


17


,


20


and the power piston


22


. The power piston


22


and the two movable walls


17


,


20


joined to the power piston


22


are held by the return spring


54


at the rearmost position with respect to the housing


14


. In this position, the front wall


223


of the radial hole


30


of the power piston


22


abuts against the front face


29




f


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the rear shell


12


.





FIG. 10

is a characteristic diagram of the vacuum type servo system


10


of the present invention in which the output is plotted on the ordinate and the input is plotted on the abscissa. When the driver depresses the brake pedal


31


with an input Fi


1


for an ordinary braking operation, the input rod


27


is moved forward with respect to the power piston


22


.




Because the forward movement of the front member


281


of the input member


28


with respect to the power piston


22


is regulated by the reaction disc


52


, the rear member


282


of the input member


28


is exclusively moved forward integrally with the input rod


27


by the forward movement of the input rod


27


so that the rear member


282


moves forward with respect to the front member


281


while compressing the rubber member


81


. This forward movement of the rear member


282


with respect to the front member


281


is continued until the clearance C between the front member


281


and the rear member


282


disappears, that is until the bottom face of the assembly hole


282




a


comes into abutment against the open peripheral edge portion of the recess of the engaging projection


281




a.






By virtue of the movement of the rear member


282


of the input member


28


, the movable portion


36




c


of the control valve


36


is biased forward by the valve spring


36




e


so that it moves forward integrally with the rear member


282


, and the vacuum seal portion


36




b


of the control valve


36


comes into abutment with the vacuum valve seat


22




a


of the power piston


22


to cut off communication between the vacuum passage


38


and the air passage


39


to thereby shut off the second rear chamber


26


from the first front chamber


23


. In short, the valve mechanism


35


is changed from the output lowering state to the output maintaining or keeping state.




At the time when the vacuum valve seat


22




a


and the vacuum seal portion


36




b


are in engagement with one another, the input member


28


has moved forward by the distance D with respect to the power piston


22


so that a clearance of the distance (C−D) is left between the bottom face of the assembly hole


282




a


of the rear member


282


and the rear end face of the front member


281


.




When the input rod


27


and the rear member


282


are further moved forward by a distance of a α(<(C−D)), the atmospheric valve seat


28




a


of the rear member


282


is moved apart from the atmospheric seal member


36




a


of the control valve


36


to vent the air passage


39


to the atmosphere through the clearance between the atmospheric valve seat


28




a


and the atmospheric sea! portion


36




a.


The second rear chamber


26


is thus vented to the atmosphere to change the valve mechanism


35


to the output raising state. At this time, the clearance between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to the distance α.




When the valve mechanism


35


changes to the output raising state, atmospheric air flows into the second rear chamber


26


, and flows from this second rear chamber


26


into the first rear chamber


24


to raise the pressure in the two rear chambers


24


,


26


. A forward moving force is thus generated at the first movable wall


17


by the pressure difference between the first front chamber


23


and the first rear chamber


24


. Also, a forward moving force is generated at the second movable wall


20


by the pressure difference between the second front chamber


25


and the second rear chamber


26


, and a forward moving force is generated at the power piston


22


by the pressure difference between the first front chamber


23


and the second rear chamber


26


.




These forward moving forces are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integral respective forward movements with respect to the housing


14


to start the action of the master cylinder


58


.




At this time, the power piston


22


moves forward with respect to the input member


28


too so that the atmospheric seal portion


36




a


of the control valve


36


comes close the atmospheric valve seat


28




a.


On the other hand, the reaction disc


52


is compressed and deformed to move into the guide member


51


by the power piston


22


and the output rod


53


. The reaction disk


52


transmits the forward moving force of the power piston


22


and the forward moving force of the input member


28


to the output rod


53


and applies a reaction force, corresponding to the output of the output rod


53


, to the input member


28


to thereby move the input member


28


backward with respect to the power piston


22


.




At this time, a clearance of a distance (C−D−α) is present between the front member


281


and the rear member


282


of the input member


28


. The front member


281


of the input member


28


is moved backward, when applied with the reaction force from the reaction disc


52


, by the distance (C−D−α) with respect to the power piston


22


so that the bottom face of the assembly hole


282




a


of the rear member


282


comes into abutment against the open circumferential edge portion of the recess of the engaging protrusion


281




a


of the front member


281


to thereby regulate the relative movement between the front member


281


and the rear member


282


.




When the front member


281


is further moved backward by the reaction force from the reaction disc


52


, the rear member


282


and the front member


281


are integrally moved backward because the bottom face of the assembly hole


282




a


of the rear member


282


is in abutment against the open circumferential edge portion of the recess of the engaging protrusion


281




a


of the front member


281


.




When the power piston


22


moves forward with respect to the input member


28


and when the input member


28


receives the reaction force from the reaction disc


52


to move backward with respect to the power piston


22


, the atmospheric seal portion


36




a


of the control valve


36


comes into abutment against the atmospheric valve seat


28




a


to cut off communication between the air passage


39


and the atmosphere to thereby interrupt the flow of atmospheric air into the two rear chambers


24


,


26


(i.e., the valve mechanism


35


is changed to the output maintaining or keeping state).




The backward movement of the input member


28


with respect to the power piston


22


after the abutment of the front member


281


with the rear member


282


is substantially equal to the spacing a between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a,


and the extrusion of the reaction disc


52


towards the guide member


51


after the abutment between the front member


281


and the rear member


282


is substantially equal to the value α. Therefore, the total of the extrusions of the reaction disc


52


is substantially equal to the distance (C−D)




At this time, the input as applied from the brake pedal


31


to the input member


28


takes the value Fi


1


as a second predetermined input force indicated in

FIG. 10

, and the output to be applied from the output rod


53


to the master cylinder


58


takes the value Fo


1


as a predetermined output force as also indicated in FIG.


10


. In other words, for the constant input value Fi


1


, there occurs a transfer, increase, or “jumping” of the output value from


0


to Fo


1


.




The output Fo


1


accompanying the “jumping” (or the jumping output) depends upon the extrusion or movement of the reaction disc


52


to the guide member


51


and is generally equal to the distance (C−D), that is the difference between the spacing C in the initial state between the front member


281


and the rear member


282


of the input member


28


and the spacing D in the initial state between the vacuum valve seat


22




a


and the vacuum seal portion


36




b.






At this time, in the input member


28


, the bottom face of the assembly hole


282




a


of the rear remember


262


is still in abutment against the open circumferential edge portion of the recess of the engaging protrusion


281




a


of the front member


281


so that the input member


28


is shortened by the distance C in its longitudinal or axial length.




If the input to be applied from the brake pedal


31


to the input member


28


, when the output Fo


1


is generated so that the valve mechanism


35


is in the output keeping state, is increased to a value less than a value Fi


2


as seen in

FIG. 10

, the rear member


282


and the front member


281


integrally move forward with respect to the power piston


22


. That is, the input member


28


moves forward with respect to the power piston


22


so that the atmospheric valve seat


28




a


once again moves away from the atmospheric seal portion


36




a


of the control valve


36


(i.e., the valve mechanism


35


changes to the output raising state). As a result, atmospheric air flows into the two rear chambers


24


,


26


to raise the pressure in the rear chambers


24


,


26


, and the forward moving forces of the movable walls


17


,


20


and the power piston


22


are increased so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


further move forward with respect to the housing


14


.




On the other hand, when the power piston


22


moves forward with respect to the input member


28


and when the reaction disc


52


applies the reaction force to the input member


28


in accordance with the forward movement of the power piston


22


to move the front member


281


and the rear member


282


integrally (i.e., the input member


28


moves backward), the atmospheric seal portion


36




a


of the control valve


36


comes close to the atmospheric valve seat


28




a.


Before long, the atmospheric valve seat


28




a


engages or abuts against the atmospheric seal portion


36




a


of the control valve


36


to interrupt the flow of atmospheric air into the two rear chambers


24


,


26


(i.e., the valve mechanism


35


is changed to the output keeping state), thereby interrupting the increased forward moving forces of the two movable walls


17


,


20


and the power piston


22


.




If the input to be applied from the brake pedal


31


to the input member


28


is reduced to a value larger than the value Fi


1


in

FIG. 10

when the valve mechanism


35


is in the output keeping state, the input member


28


is moved backward with respect to the power piston


22


. In accordance with this backward movement of the input member


28


, the movable portion


36




c


of the control valve


36


is moved backward with respect to the power piston


22


so that the vacuum seal portion


36




b


moves away from the vacuum valve seat


22




a


(i.e., the valve mechanism


35


is changed to the output lowering state).




When the vacuum valve seat


22




a


is spaced apart from the vacuum seal portion


36




b,


the vacuum passage


38


communicates with the air passage


39


through the clearance between the vacuum valve seat


22




a


and the vacuum seal portion


36




b


and the clearance between the auxiliary vacuum valve seat


42




a


and the vacuum seal portion


36




b


so that the two rear chambers


24


,


26


communicate with the first front chamber


23


to release the atmospheric air in the two rear chambers


24


,


26


to the vacuum source through the first front chamber


23


to thereby lower the pressure in the two rear chambers


24


,


26


.




As a result, the forward moving forces of the two movable walls


17


,


20


and the power piston


22


decrease so that the movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved backward with respect to the housing


14


. At this time, the power piston


22


is also moved backward with respect to the input member


28


so that the vacuum valve seat


22




a


comes close to the vacuum seal portion


36




b


of the control valve


36


. Before long, the vacuum valve seat


22




a


comes into abutment against the vacuum seal portion


36




b


to interrupt the flow of atmospheric air from the two rear chambers


24


,


26


to the first front chamber


23


(i.e., the valve mechanism


35


is changed to the output keeping state) to thereby interrupt the decreases in the forward moving forces of the two movable walls


17


,


20


and the power piston


22


.




The input value Fi


2


in

FIG. 10

indicates the value at which the two rear chambers


24


,


26


are under atmospheric pressure. Within the range of input values from Fi


1


to Fi


2


, the change in the output to be delivered from the output rod


53


to the master cylinder


58


is larger than that of the input to be applied to the input member


28


. The ratio of the output to the input is equal to that of the area of the rear face of the reaction disc


52


to the abutting area between the rear face of the reaction disc


52


and the front end face of the input member


28


.




In

FIG. 10

, the output is at a value Fo


2


for the input value Fi


2


. When the input is further increased from the value Fi


2


, the output increases by the increase in the input. Here, as shown in

FIG. 10

, the change in the power per unit length of the ordinate is larger than that in the power per unit length of the abscissa. If the change in the power per unit length of the ordinate and the change in the power per unit length of the abscissa are equally drawn, the line plotting the correlation between the input and the output when the input is higher than the value Fi


2


would possess a gradient of 45 degrees.




When the brake pedal


31


is depressed so that the input member


28


, the movable walls


17


,


20


, the power piston


22


and the output rod


53


move forward with respect to the housing


14


, the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is spaced apart from the rear shell


12


. When the valve mechanism


35


is in the output keeping stage, the distance between the rear face


29




e


of the arcuate portion


29




b


of the key member


29


and the engaging portion


222


of the power piston


22


is equal to (A+D), so that the input member


28


can move backward by the distance (A+D) from the power piston


22


with respect to the first rearmost position.




If the driver releases the depressing operation by gradually reducing the input to the brake pedal


31


so as to release the ordinary braking operation when the vacuum type servo system


10


outputs an output Fo


3


for an input Fi


3


so that the valve mechanism


35


is in the output keeping state, the front member


281


and the rear member


282


of the input member


28


are integrally moved backward by the reaction force applied from the reaction disc


52


and the biasing force of the spring


41


.




When this backward movement of the input member


28


reaches the distance (A+D), the input member


28


is moved backward to the first rearmost position with respect to the power piston


22


, that is the position at which the rear face of the front flange portion


33


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the engaging portion


222


of the power piston


22


.




As a result, the movable portion


36




c


of the control valve


36


is moved backward with respect to the power piston


22


so that the vacuum seal portion


36




b


is moved away from the vacuum valve seat


22




a


by the distance (A+D) (i.e., the valve mechanism


35


is changed to the output lowering state). As a result, the atmosphere in the two rear chambers


24


,


26


is released through the first front chamber


23


by the vacuum source so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved backward with respect to the housing


14


in accordance with the reduction in the pressure of the two rear chambers


24


,


26


.




At this time, the input to the brake pedal


31


and accordingly the input member


28


is gradually reduced to move the input member


28


gradually backward so that the power piston


22


and the input member


28


move backward at substantially the same speeds. In accordance with the backward movement of the power piston


22


, the input member


28


is moved backward substantially integrally with the power piston


22


while maintaining the first rearmost position with respect to the power piston


22


.




By virtue of the backward movements of the input member


28


, the two movable walls


17


,


20


, the power piston


22


and the output rod


53


with respect to the housing


14


, the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is brought into abutment against the rear shell


12


to interrupt the backward movement of the front member


281


of the input member


28


with respect to the housing


14


.




In contrast, the backward movement of the rear member


282


of the input member


28


with respect to the front member


281


continues until the pin


282




b


of the rear member


282


comes into abutment against the rear wall face of the slit


281




b


of the front member


281


. The backward movements of the two movable walls


17


,


20


, the power piston


22


and the output rod


53


with respect to the housing


14


continues to the rearmost position of the power piston


22


with respect to the housing


14


, that is the position at which the front wall


223


of the radial hole


30


of the power piston


22


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the rear shell


12


.




As a result, the vacuum valve seat


22




a


of the power piston


22


comes close to the vacuum seal portion


36




b


of the control valve


36


to establish the inactive state in which a small clearance is left between the vacuum valve seat


22




a


and the vacuum seal portion


36




b.






Because of the small clearance between the vacuum valve seat


22




a


and the vacuum seal portion


36




b,


the forward movement of the input member


28


that is required for the valve mechanism


35


to change at the next action time from the output lowering state through the output keeping state to the output raising state is small so that the play at the time of depressing the brake pedal


31


can be reduced to improve the responsiveness.




Here, the reaction disc


52


is returned to the state shown in

FIG. 2

by its own elasticity because the force to be transmitted between the power piston


22


and the output rod


53


is lowered or removed.




If the driver releases the depressing operation by quickly reducing the input to the brake pedal


31


to release the ordinary braking operation when the vacuum type servo system


10


outputs an output Fo


3


for an input Fi


3


so that the valve mechanism


35


is in the output keeping state, the input member


28


is at first moved backward by the reaction force from the reaction disc


52


and by the biasing force of the spring


41


through the input rod


27


to the first rearmost position with respect to the power piston


22


. That is, the input member


28


is moved to the position at which the rear face of the front flange portion


33


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the engaging portion


222


of the power piston


22


.




As a result, the vacuum valve seat


22




a


and the vacuum seal portion


36




b


are spaced apart by the distance (A+D), and the atmospheric air in the two rear chambers


24


,


26


is released through the first front chamber


23


by the vacuum source so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved backward with respect to the housing


14


in accordance with the reduction in the pressure of the two rear chambers


24


,


26


.




At this time, the input to the brake pedal


31


and accordingly the input member


28


is quickly lowered so that the backward movement of the input member


28


is effected more quickly than that of the power piston


22


. As a result, the input member


28


is moved far backward from the state of the first rearmost position by the reaction force of the reaction disc


52


and the biasing force of the spring


41


while warping or bending the plate portion


29




a


of the key member


29


backward on the engaging portion


222


of the power piston


22


more than the arcuate portion


29




b


of the key member


29


.




As a result, the input member


28


is moved backward quite far from the first rearmost position so that the vacuum valve seat


22




a


and the vacuum seal portion


36




b


are spaced apart more than the distance (A+D). This spacing between the vacuum valve seat


22




a


and the vacuum seal portion


36




b


is thus increased to release the atmospheric air in the two rear chamber


24


,


26


promptly through the first front chamber


23


by the vacuum source so that the input member


28


, the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are quickly moved backward with respect to the housing


14


in response to the prompt pressure drop in the two rear chambers


24


,


26


.




By virtue of the backward movements of the input member


28


, the two movable walls


17


,


20


, the power piston


22


and the output rod


53


with respect to the housing


14


, the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is brought into abutment against the rear shell


12


to interrupt the backward movement of the front member


281


of the input member


28


with respect to the housing


14


.




In contrast, the backward movement of the rear member


282


of the input member


28


with respect to the front member


281


is continued until the pin


282




b


of the rear member


282


comes into abutment against the rear wall face of the slit


281




b


in the front member


281


. The backward movements of the two movable walls


17


,


20


, the power piston


22


and the output rod


53


with respect to the housing


14


are continued to the rearmost position of the power piston


22


with respect to the housing


14


, that is the position at which the front wall


223


of the radial hole


30


of the power piston


22


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the rear shell


12


. The input member


28


is moved forward integrally with the front member


281


and the rear member


282


by the restoring force of the plate portion


29




a


of the key member


29


.




In accordance with the return of the plate portion


29




a


of the key member


29


to the initial state and the backward movements of the two movable walls


17


,


20


, the power piston


22


and the output rod


53


, the front face


29




c


of the plate portion


29




a


and the front wall


223


of the radial hole


30


of the power piston


22


come into abutment so that the power piston


22


and accordingly the two movable walls


17


,


20


and the output rod


53


are restored to their initial positions. As a result, the vacuum valve seat


22




a


of the power piston


22


and the vacuum seal portion


36




b


of the control valve


36


come close to each other to establish the inactive state in which a small clearance is left between the vacuum valve seat


22




a


and the vacuum seal portion


36




b.






If the backward warpage or bending of the plate portion


29




a


of the key member


29


with respect to the arcuate portion


29




b


of the key member


29


increases at the time of further backward movement of the input member


26


from the first rearmost position, the rear face


29




d


of the plate portion


29




a


comes into abutment against the rear wall


224


of the radial hole


30


of the power piston


22


. When the plate portion


29




a


abuts against the rear wall


224


, it cannot warp or bend backward any further with respect to the arcuate portion


29




b


so that the backward movement of the input member


28


is regulated.




Specifically, the position at which the rear face


29




e


of the arcuate portion


29




b


of the key member


29


abuts against the engaging portion


222


of the power piston


22


, at which the rear face of the front flange portion


33


abuts against the front face


29




c


of the plate portion


29




a


of the key member


29


, and at which the rear face


29




d


of the plate portion


29




a


abuts against the rear wall


224


of the radial hole


30


of the power piston


22


, is located at a second rearmost position of the input member


28


with respect to the power piston


22


.




The slider valve


42


is arranged independently of the input member


28


so that it exerts no action on the input member


28


when this input member


28


moves forward. Similarly, the spring


43


which biases the slider valve


42


forward does not exert any action on the input member


28


.




In accordance with the present invention, the input force enabling elastic deformation of the rubber member


81


corresponds to a first predetermined input force.




The vehicle can be equipped with a vehicle distance sensor for detecting that the distance between the vehicle and the preceding vehicle. If the vehicle distance sensor detects, while the vehicle is running, that the distance to the preceding vehicle is shorter than a predetermined value, for example, the electronic control unit


50


causes an automatic braking operation to activate the actuator


45


on the basis of the detected result of the vehicle distance sensor. In this situation, the brake pedal


31


, the input rod


27


and the input member


28


are not operated by the driver and the actuator


45


is activated without any input.




When the electronic control unit


50


energizes the solenoid coil


46


with the electric current i


1


on the basis of the detection result of the vehicle distance sensor, an electromagnetic attraction force is established between the plunger


49


and the yoke


47


so that the plunger


49


is moved backward by the distance S


1


(>D+G) with respect to the power piston


22


against the biasing force of the spring


43


through the slider valve


42


. In accordance with this backward movement of the plunger


49


, the slider valve


42


is also moved backward by the distance S


1


with respect to the power piston


22


.




By virtue of the backward movement of the slider valve


42


, the auxiliary vacuum valve seat


42




a


of the slider valve


42


is brought into abutment against the vacuum seal portion


36




b


of the control valve


36


to cut off communication between the vacuum passage


38


and the air passage


39


to thereby cut off communication between the first front chamber


23


and the second rear chamber


26


. Moreover, the slider valve


42


moves the movable portion


36




c


of the control valve


36


backward against the biasing force of the valve spring


36




e


to move the atmospheric valve seat


28




a


out of engagement with the atmospheric seal portion


36




a.






The spacing at this time between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to (S


1


−D−G). In addition, this spacing (S


1


−D−G) between the atmospheric valve seat


28


and the atmospheric seal portion


36




a


is larger than the distance A.




As a result, atmospheric air flows into the two rear chambers


24


,


26


through the clearance between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


and through the air passage


39


to raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


move forward with respect to the housing


14


. In accordance with the forward movement of the power piston


22


, the slider valve


42


is biased forward by the power piston


22


through the spring


43


so that the slider valve


42


is moved integrally with the power piston


22


when it moves backward by the distance S


1


from the initial state with respect to the power piston


22


while the auxiliary vacuum valve seat


42




a


is in abutment against the vacuum seal portion


36




b.






Because the spacing (S


1


−D−G) between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is larger than the distance A between the rear face


29




e


of the arcuate portion


29




b


of the key member


29


and the engaging portion


222


of the power piston


22


, the power piston


22


moves forward with respect to the housing


14


, the input member


28


and the key member


29


so that the engaging portion


222


of the power piston


22


comes into abutment against the rear face


29




e


of the arcuate portion


29




b


of the key member


29


.




When the power piston


22


moves forward by the distance A with respect to the housing


14


, the input member


28


and the key member


29


so that the engaging portion


222


comes into abutment against the rear face


29




e


of the key member


29


, the atmospheric seal portion


36




a


of the control valve


36


comes close to the atmospheric valve seat


28




a


of the input member


28


as the power piston


22


moves forward. Because the spacing (S


1


−D−G) between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is larger than the distance A between the rear face


29




e


of the arcuate portion


29




b


of the key member


29


and the engaging portion


222


of the power piston


22


, as described above, the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


are still spaced apart by the distance (S


1


−D−G−A)




By this forward movement of the power piston


22


with respect to the input member


28


, on the other hand, a clearance of distance A is established between the front end face of the front member


281


and the rear face of the reaction disc


52


. As a result, atmospheric air continuously flows into the second rear chamber


26


and further into the first rear chamber


24


to increase the pressure differential between the two front chambers


23


,


25


and the two rear chambers


24


,


26


so that the two movable walls


17


,


20


and the power piston


22


move further forward. As a result of the further forward movement of the power piston


22


after the abutment between the engaging portion


222


of the power piston


22


and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


, the front face


29




c


of the plate portion


29




a


of the key member


29


and the rear face of the outward flange portion


33


of the front member


281


of the input member


28


are kept in abutment against each other so that the front member


281


is moved forward integrally with the power piston


22


through the key member


29


.




Because the rear wall face of the slit


281




b


of the front member


281


and the pin


282




b


of the rear member


282


are in abutment against each other, the rear member


282


is moved forward integrally with the front member


281


against the biasing force of the spring


41


in accordance with the forward movement of the front member


281


. In short, the input member


28


is moved forward integrally with the power piston


22


, and the input rod


27


is also moved forward by the forward movement of the input member


28


.




Because the power piston


22


and the input member


28


move forward integrally with each other, the atmospheric valve seat


28




a


formed on the input member


28


and the atmospheric seal portion


36




a


of the control valve


36


, as moved forward integrally with the power piston


22


, are kept out of abutment. On the other hand, the clearance between the reaction disc


52


and the front member


281


is kept at the distance A.




The forward moving forces of the two movable walls


17


,


20


and the power piston


22


are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integrated forward movements with respect to the housing


14


to thereby start the operation of the master cylinder


58


.




At this time, the reaction disc


52


extrudes or is deformed into the guide member


51


to reduce the clearance distance A between the rear face of the center portion of the guide member


51


and the front end face of the front member


281


of the input member


28


, with the reaction disc


52


abutting against the front end face of the input member


28


so that the reaction force corresponding to the output of the output rod


53


is applied to move the input member


28


backward with respect to the power piston


22


.




Here, the rear face of the outward flange portion


33


of the input member


28


is in abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is in abutment with the engaging portion


222


of the power piston


22


. As a result, the reaction disc


52


moves the front member


281


of the input member


28


backward with respect to the power piston


22


and the rear member


282


while elastically deforming the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


of the key member


29


backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the front member


281


of the input member


28


backward. In short, the reaction disc


52


moves the front member


281


backward against the restoring force of the plate portion


29




a


of the key member


29


. The reaction force from the reaction disc


52


at this time is sufficiently high in comparison with the restoring force of the key member


29


.




When the front member


281


receives the reaction force from the reaction disc


52


, the front member


281


compresses and deforms the rubber member


81


between itself and the rear member


282


, and is moved backward with respect to the rear member


282


while eliminating the engagement between the pin


282




b


and the rear wall face of the slit


282




a


so that the pin


282




b


is able to move forward in the slit


282




a


with respect to the front member


281


.




The backward movement of the front member


281


with respect to the rear member


282


eliminates engagement between the front member


281


and the rear member


282


as to restrict the rearmost position of the rear member


282


with respect to the front member


281


so that the rear member


282


can move backward with respect to the front member


281


. The rear member


282


is moved backward to the rearmost position with respect to the front member


281


by the restoring force of the rubber member


81


and the biasing force of the spring


41


. The front member


281


thus receives the reaction force from the reaction disc


52


so that the front member


281


and the rear member


282


are substantially integrally moved backward with respect to the power piston


22


.




The input member


28


is fed with the reaction force from the reaction disc


52


to move backward by the distance (S


1


−D−G−A) while deforming the key member


29


. Before long, the atmospheric seal portion


36




a


of the control valve


36


comes again into abutment with the atmospheric valve seat


28




a


to interrupt the flow of atmospheric air into the two rear chambers


24


,


26


. The valve mechanism


35


is thus changed to the power keeping state.




At this time, the input applied from the brake pedal


31


to the input member


28


is 0 as shown in

FIG. 10

, and the output applied from the output rod


53


to the master cylinder


58


is Fo


4


, as also shown in FIG.


10


.




In addition, the extrusion or deformation of the reaction disc


52


towards the guide member


51


at this time is equal to the distance (S


1


−D−G). The extrusion or deformation of the reaction disc


52


towards the guide member


51


at the time when the output Fo


1


for the input Fi


1


during the ordinary braking operation is equal to the distance (C−D). Because the relationship (S


1


−G)<C is set, as has been described above, the extrusion or deformation of the reaction disc


52


towards the guide member


51


in the individual states have a relation of (SI−D−G)<(C−D). In short, the output corresponding to the extrusion or deformation (C−D) of the reaction disc


52


is Fo


1


, and the output corresponding to the extrusion or deformation (SI−D−G) of the reaction disc


52


is Fo


4


, so that these individual outputs have a relationship of Fo


4


<Fo


1


.




If the electric current to the solenoid


46


increases from i


1


to i


2


when the output Fo


4


is produced to bring the valve mechanism


35


into the output keeping state, the plunger


49


and accordingly the slider valve


42


is further moved backward by the distance (S


2


−S


1


) with respect to power piston


22


. When the slider valve


42


moves backward, the movable portion


36




c


of the control valve


36


is moved backward while maintaining the abutting state between the auxiliary vacuum valve seat


42




a


of the slider valve


42


and the vacuum seal portion


36




b


of the control valve


36


, and so the atmospheric valve seat


28




a


is brought away from the atmospheric seal portion


36




a


of the control valve


36


.




The spacing at this time between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to the distance (S


2


−S


1


). As a result, atmospheric air flows into the two rear chambers


24


,


26


to raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved forward with respect to the housing


14


.




The forward moving forces of the two movable walls


17


,


20


and the power piston


22


are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integrated forward movements with respect to the housing


14


to thereby start the action of the master cylinder


58


.




At this time, the reaction disc


52


deforms into the guide member


51


to reduce the clearance between the rear face of its center portion and the front end face of the input member


28


, and abuts against the front end face of the input member


28


so that the reaction force corresponding to the output of the output rod


53


is applied to move the input member


28


backward with respect to the power piston


22


. Also, the rear face of the outward flange portion


33


of the input member


28


is in abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is in abutment against the engaging portion


222


of the power piston


22


. As a result, the reaction disc


52


moves the input member


28


backward while elastically deforming the key member


29


. The reaction force from the reaction disc


52


at this time is sufficiently high in comparison with the restoring force of the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


further backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the input member


28


backward. The reaction disc


52


thus moves the input member


28


backward against the biasing or restoring force of the key member


29


.




In accordance with the forward movement of the power piston


22


, the atmospheric seal portion


36




a


of the control valve


36


is moved forward with respect to the atmospheric valve seat


28




a,


and the input member


28


is fed with the reaction from the reaction disc


52


to move backward. Before long, the atmospheric seal portion


36




a


of the control valve


36


again comes into abutment with the atmospheric valve seat


28




a


to interrupt the flow of atmospheric air into the two rear chambers


24


,


26


. The valve mechanism


35


is thus changed to the output keeping or maintaining state.




At this time, the input as applied from the brake pedal


31


to the input member


28


is 0 as shown in

FIG. 10

, and the output applied from the output rod


53


to the master cylinder


58


is Fo


5


as also shown in FIG.


10


. From the state of the output Fo


4


for the input 0, the electric current to the solenoid


46


is changed from i


1


to i


2


so that the output is increased from Fo


4


to Fo


5


.




If the electric current to the solenoid


46


is increased from i


2


to i


3


when the output Fo


5


is produced to bring the valve mechanism


35


into the output keeping state, the plunger


49


and accordingly the slider valve


42


is moved further backward by the distance (S


3


−S


2


) with respect to power piston


22


. When the slider valve


42


moves backward, the movable portion


36




c


of the control valve


36


is moved backward while maintaining the abutting state between the auxiliary vacuum valve seat


42




a


of the slider valve


42


and the vacuum seal portion


36




b


of the control valve


36


so that the atmospheric valve seat


28




a


is moved away from the atmospheric seal portion


36




a


of the control valve


36


.




The spacing at this time between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to the distance (S


3


−S


2


). As a result, atmospheric air flows into the two rear chambers


24


,


26


to raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved forward with respect to the housing


14


.




The forward moving forces of the two movable walls


17


,


20


and the power piston


22


are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integrated forward movements with respect to the housing


14


to thereby start the action of the master cylinder


58


.




At this time, the reaction disc


52


goes into or deforms into the guide member


51


to reduce the clearance between the rear face of its center portion and the front end face of the input member


28


, and abuts against the front end face of the input member


28


so that the reaction corresponding to the output of the output rod


53


is applied to move the input member


28


backward with respect to the power piston


22


. The rear face of the outward flange portion


33


of the input member


28


is in abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is in abutment against the engaging portion


222


of the power piston


22


. As a result, the reaction disc


52


moves the input member


28


backward while elastically deforming the key member


29


. The reaction from the reaction disc


52


at this time is sufficiently high in comparison with the restoring force of the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


of the key member


29


further backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the input member


28


backward. The reaction disc


52


thus moves the input member


28


backward against the biasing force of the key member


29


.




When the key member


29


is elastically deformed by the reaction force received through the input member


28


from the reaction disc


52


, however, the rear face


29




d


of the plate portion


29




a


of the key member


29


comes into abutment against the rear wall face


224


of the radial hole


30


of the power piston


22


. When the rear face


29




d


of the plate portion


29




a


abuts against the rear wall face


224


of the radial hole


30


, the plate portion


29




a


can no longer warp or bend backward with respect to the arcuate portion


29




b


. Thus, the input member


28


takes the second rearmost position with respect to the power piston


22


so that the backward movement of the input member


28


is regulated by the key member


29


.




Because the backward movement of the input member


28


with respect to the power piston


22


is regulated, the spaced state of the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a,


that is the output raising state of the valve mechanism


35


, is continued so that atmospheric air continuously flows into the two rear chambers


24


,


26


. As a result, the two movable walls


17


,


20


and the power piston


22


continue their forward movements until the two rear chambers


24


,


26


reach atmospheric pressure so that the output is continuously produced from the output rod


53


.




When the two rear chambers


24


,


26


reach atmospheric pressure, atmospheric air no longer flows into the two rear chambers


24


,


26


to interrupt the forward movements of the two movable walls


17


,


20


and the power piston


22


and accordingly the forward movement of the output rod


53


.




At this time, the input as applied from the brake pedal


31


to the input member


28


is 0 as shown in

FIG. 10

, and the output applied from the output rod


53


to the master cylinder


58


is Fo


6


as also shown in FIG.


10


. From the state of the output Fo


5


for the input at 0, the electric current to the solenoid


46


is changed from i


2


to i


3


so that the output is increased from Fo


5


to Fo


6


. The output Fo


6


to be generated by the vacuum type servo system


10


is the maximum output in the automatic braking operation.




The output at the automatic braking time in the vacuum type servo system


10


depends on not only the electric current fed to the solenoid


46


but also the restoring force accompanying the elastic deformation of the key member


29


. Specifically, the output during the automatic braking time is raised if the restoring force of the key member


29


is raised and is lowered if the restoring force of the key member


29


is lowered. The output value during automatic braking is within the range from 0 to the output value Fo


6


indicating that the two rear chambers


24


,


26


have reached atmospheric pressure.




If the condition for deenergizing the solenoid coil


46


holds, that is the vehicle distance sensor detects that the distance to the proceeding vehicle has been restored to a predetermined value while the vacuum type servo system


10


is generating the output Fo


6


in the output keeping state of the valve mechanism


35


, the electronic control unit


50


deenergizes the solenoid coil


46


on the basis of the detection result of the vehicle distance sensor.




As a result, the slider valve


42


and the plunger


49


are returned by the spring


43


to the position shown in FIG.


2


. As the plunger


49


and the slider valve


42


are restored their initial positions, the auxiliary vacuum valve seat


42




a


of the slider valve


42


moves away from the vacuum seal portion


36




b


so that communication between the first front chamber


23


and the second rear chamber


26


is established through the vacuum passage


38


, the clearance between the vacuum valve seat


22




a


and the vacuum seal portion


36




b,


the clearance between the auxiliary vacuum valve seat


42




a


and the vacuum seal portion


36




b


and the air passage


39


.




As a result, the atmosphere in the two rear chambers


24


,


26


flows through the first rear chamber


23


into the vacuum source to reduce the pressure difference between the two front chambers


23


,


25


and the two rear chambers


24


,


26


. Because the pressure difference between the two front chambers


23


,


25


and the two rear chambers


24


,


26


is thus reduced, the two movable walls


17


,


20


and the power piston


22


are biased backward to their initial positions by the return spring


54


.




In accordance with the backward movement of the power piston


22


, the key member


29


, the input member


28


and the input rod


27


are integrally moved backward with the power piston


22


by the biasing force of the spring


41


. The backward movements of the power piston


22


and the input member


28


are effected while the valve mechanism


35


maintains the output lowering state so that the initial state shown in

FIG. 2

is finally restored by way of the restoration of the key member


29


and by way of such forward movements of the input member


28


and the input rod


27


with respect to the power piston


22


as accompany the restorations of the key member


29


.




When the driver depresses the brake pedal


31


quickly with the input Fi


3


for an emergency braking operation, for example, the input member


28


is moved forward with respect to the power piston


22


so that the valve mechanism


35


is changed from the output lowering state through the output keeping state into the output raising state, as has been described above in connection with the ordinary braking operation. Then, atmospheric air flows into the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their forward movements with respect to the housing


14


. Before long, the input Fi


3


to the input member


28


and the reaction force from the reaction disc


52


are balanced so that the valve mechanism


35


assumes the output keeping state to produce the output Fo


3


.




The distance between the rear face


29




e


of the arcuate portion


29




b


of the key member


29


for the valve mechanism


35


in the output keeping state and the engaging portion


222


of the power piston


22


is equal to (A+D). In respect of the first rearmost position, more specifically, the input member


28


is able to move backward by the distance (A+D) with respect to the power piston


22


.




On the other hand, the reaction disc


52


extrudes or deforms into the guide member


51


and abuts against the front end face of the front member


281


of the input member


28


. In addition, the rubber member


81


is compressed by the front member


281


and the rear member


282


, and the open circumferential edge portion of the recess of the front member


281


and the bottom face of the assembly hole


282




a


of the front member


281


are in abutment against each other.




When the depression of the brake pedal


31


in terms of the input Fi


3


is detected as the quick braking operation by a depression rate detecting means associated with the brake pedal


31


for detecting the rate of depression of the brake pedal, the solenoid coil


46


is energized with the electric current i


4


by the electronic control unit


50


for the quick braking operation from the state in which the valve mechanism


35


is in the output keeping state.




As a result, the electromagnetic attraction is established between the plunger


49


and the yoke


47


so that the plunger


49


is moved backward by the distance S


4


with respect to the power piston


22


. In accordance with this backward movement of the plunger


49


, the slider valve


42


is also moved backward by the distance S


4


with respect to the power piston


22


. By virtue of the backward movement of the slider valve


42


, the auxiliary vacuum valve seat


42




a


of the slider valve


42


is brought into abutment against the vacuum seal portion


36




b


of the control valve


36


to cut off communication between the first front chamber


23


and the second rear chamber


26


. Moreover, the slider valve


42


moves the movable portion


36




c


of the control valve


36


backward against the biasing force of the valve spring


36




e


to move the vacuum valve seat


22




a


away from the vacuum seal portion


36




b


and the atmospheric valve seat


28




a


away from the atmospheric seal portion


36




a


by the distance (S


4


−G).




Thus, the vacuum seal portion


36




b


of the control valve


36


is moved away from the vacuum valve seat


22




a


of the power piston


22


. Because the auxiliary vacuum valve seat


42




a


of the slider valve


42


is in abutment against the vacuum seal portion


36




b,


however, the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


of the control valve


36


are brought away from each other while cutting off communication between the two rear chambers


24


,


26


and the two front chambers


23


,


25


.




As a result, atmospheric air further flows into the two rear chambers


24


,


26


to further raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


move forward with respect to the housing


14


. In accordance with the forward movement of the power piston


22


, the slider valve


42


is biased forward by the power piston


22


through the spring


43


so that it is moved forward integrally with the power piston


22


when it moves backward by the distance S


4


from the initial state with respect to the power piston


22


while the auxiliary vacuum valve seat


42




a


is in abutment against the vacuum seal portion


36




b.






When the power piston


22


moves forward with respect to the input member


28


and the key member


29


, the atmospheric seal portion


36




a


of the control valve


36


comes close to the atmospheric valve seat


28




a,


and the engaging portion


222


of the power piston


22


comes close to the rear face


25




e


of the arcuate portion


29




b


of the key member


29


. On the other hand, the reaction disc


52


moves or deforms further into the guide member


53


to apply the reaction to the front member


281


of the input member


28


to thereby move the front member


281


backward.




As the front member


281


is moved backward with respect to the power piston


22


by the reaction force from the reaction disc


52


, the open circumferential edge portion of the recess of the front member


281


and the bottom face of the assembly hole


282




a


of the front member


281


come into abutment against each other so that the rear member


282


is also moved backward integrally with the front member


281


with respect to the power piston


22


. The input member


28


is thus moved backward while being longitudinally shortened by the distance C with respect to the power piston


22


by the reaction force from the reaction disc


52


.




Because the distance (S


4


−G) is larger at this time than the distance (A+D), the rear face


29




e


of the arcuate portion


29




b


of the key member


29


comes into abutment against the engaging portion


222


of the power piston


22


at the time of the forward movement of the power piston


22


with respect to the input member


28


and the key member


29


and the backward movement of the input member


28


by the reaction disc


52


, before the abutment of the atmospheric valve seat


28




a


against the atmospheric seal portion


36




a.






As a result, the rear face of the outward flange portion


33


of the input member


28


comes into abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


comes into abutment against the engaging portion


222


of the power piston


22


. The reaction disc


52


thus moves the input member


28


backward while elastically deforming the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the input member


28


backward. The reaction disc


52


thus moves the input member


28


backward against the restoring force of the plate portion


29




a


of the key member


29


. The reaction force from the reaction disc


52


at this time is sufficiently high in comparison with the restoring force of the key member


29


.




In accordance with the forward movement of the power piston


22


, the atmospheric seal portion


36




a


is moved forward with respect to the atmospheric valve seat


28




a,


and the input member


28


receives the reaction force from the reaction disc


52


to move backward. Before long, the atmospheric seal portion


36




a


of the control valve


36


again comes into abutment against the atmospheric valve seat


28




a


to interrupt the flow of atmospheric air into the two rear chambers


24


,


26


. The valve mechanism


35


is thus changed to the output keeping state.




The longitudinal position of the input member


28


with respect to the power piston


22


when the valve mechanism


35


is in the output keeping state is shifted backward by the distance (S


4


−G) with respect to the longitudinal position when the valve mechanism


35


is in the output keeping state for the input Fi


3


in the ordinary braking operation, and the intrusion or deformation of the reaction disc


52


into the guide member


51


is larger than that for the ordinary braking operation.




At this time, the input, as applied from the brake pedal


31


to the input member


28


, is Fi


3


, as shown in

FIG. 10

, and the output to be applied from the output rod


53


to the master cylinder


58


is at Fo


7


, as shown in FIG.


10


. In other words, the output Fo


7


higher than the output Fo


3


is generated for the input Fi


3


corresponding to the output Fo


3


in the ordinary braking operation.




If the electric current fed to the solenoid


46


increases from i


4


to i


5


when the output Fo


7


is produced to bring the valve mechanism


35


into the output keeping state, the slider valve


42


is further moved backward by the distance (S


5


−S


4


) with respect to power piston


22


. When the slider valve


42


moves backward, the movable portion


36




c


of the control valve


36


is moved backward while keeping the abutting state between the auxiliary vacuum valve seat


42




a


of the slider valve


42


and the vacuum seal portion


36




b


of the control valve


36


so that the atmospheric valve seat


28




a


is moved away from the atmospheric seal portion


36




a


of the control valve


36


.




The spacing at this time between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to the distance (S


5


−S


4


). As a result, atmospheric air flows into the two rear chambers


24


,


26


to raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved forward with respect to the housing


14


.




The forward moving forces of the two movable walls


17


,


20


and the power piston


22


are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integrated forward movements with respect to the housing


14


to thereby start the operation of the master cylinder


58


.




At this time, the reaction disc


52


moves into or is deformed into the guide member


51


to reduce the clearance between the rear face of its center portion and the front end face of the input member


28


, with the reaction disc


52


abutting against the front end face of the input member


28


so that the reaction corresponding to the output of the output rod


53


is applied to move the input member


28


backward with respect to the power piston


22


. The reaction force from the reaction disc


52


at this time is sufficiently high in comparison with the restoring force of the key member


29


.




At this time, the rear face of the outward flange portion


33


of the input member


28


is in abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is in abutment against the engaging portion


222


of the power piston


22


. As a result, the reaction disc


52


moves the input member


28


backward while elastically deforming the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


further backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the input member


28


backward. In short, the reaction disc


52


moves the input member


28


backward against the biasing force or the restoring force of the key member


29


.




In accordance with the forward movement of the power piston


22


, the atmospheric seal portion


36




a


of the control valve


36


is moved forward with respect to the atmospheric valve seat


28




a,


and the input member


28


receives the reaction from the reaction disc


52


to move backward. Before long, the atmospheric seal portion


36




a


of the control valve


36


again comes into abutment against the atmospheric valve seat


28




a


to interrupt the flow of atmospheric air into the two rear chambers


24


,


26


. The valve mechanism


35


is thus changed to the output keeping state.




At this time, the input as applied from the brake pedal


31


to the input member


28


is Fi


3


as shown in

FIG. 10

, and the output to be applied from the output rod


53


to the master cylinder


58


is Fo


8


as shown in FIG.


10


. Specifically, from the state of the output Fo


7


for the input at Fi


3


, the electric current to the solenoid


46


is changed from i


4


to i


5


so that the output is increased from Fo


1


to Fo


8


. In other words, the output Fo


8


higher than the output Fo


3


is generated for the input Fi


3


corresponding to the output Fo


3


in the ordinary braking operation.




If the electric current fed to the solenoid


46


increases from i


5


to i


6


when the output Fo


8


is produced to bring the valve mechanism


35


into the output keeping state, the plunger


49


and accordingly the slider valve


42


is further moved backward by the distance (S


6


−S


5


) with respect to power piston


22


. When the slider valve


42


moves backward, the movable portion


36




c


of the control valve


36


is moved backward while maintaining the abutting state between the auxiliary vacuum valve seat


42




a


of the slider valve


42


and the vacuum seal portion


36




b


of the control valve


36


so that the atmospheric valve seat


28




a


is moved away from the atmospheric seal portion


36




a


of the control valve


36


.




The spacing at this time between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


is equal to the distance (S


6


−S


5


). As a result, atmospheric air flows into the two rear chambers


24


,


26


to raise the pressure in the two rear chambers


24


,


26


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved forward with respect to the housing


14


.




The forward moving forces of the two movable walls


17


,


20


and the power piston


22


are transmitted from the power piston


22


through the yoke/reaction member accommodating member


48


of the actuator


45


, the guide member


51


and the reaction disc


52


to the output rod


53


so that the two movable walls


17


,


20


, the power piston


22


and the output rod


53


start their integrated forward movements with respect to the housing


14


to thereby start the operation of the master cylinder


58


.




At this time, the reaction disc


52


goes into or deforms into the guide member


51


to reduce the clearance between the rear face of its center portion and the front end face of the input member


28


, and abuts against the front end face of the input member


28


so that the reaction corresponding to the output of the output rod


53


is applied to move the input member


28


backward with respect to the power piston


22


.




At this time, the rear face of the outward flange portion


33


of the input member


28


is in abutment against the front face


29




c


of the plate portion


29




a


of the key member


29


, and the rear face


29




e


of the arcuate portion


29




b


of the key member


29


is in abutment against the engaging portion


222


of the power piston


22


. As a result, the reaction disc


52


moves the input member


28


backward while elastically deforming the key member


29


.




The reaction disc


52


warps or bends the plate portion


29




a


further backward on the engaging portion


222


of the power piston


22


with respect to the arcuate portion


29




b


of the key member


29


and moves the input member


28


backward. The reaction disc


52


thus moves the input member


28


backward against the biasing force of the key member


29


.




When the key member


29


is elastically deformed by the reaction force received through the input member


28


from the reaction disc


52


, however, the rear face


29




d


of the plate portion


29




a


of the key member


29


comes into abutment against the rear wall face


224


of the radial hole


30


of the power piston


22


. When the rear face


29




d


of the plate portion


29




a


abuts against the rear wall face


224


of the radial hole


30


, the plate portion


29




a


can no longer warp or bend backward with respect to the arcuate portion


29




b


. As a result, the backward movement of the input member


28


is regulated by the key member


29


.




Because the backward movement of the input member


28


with respect to the power piston


22


is regulated, the spaced state of the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a,


that is the output raising state of the valve mechanism


35


, is continued so that atmospheric air continuously flows into the two rear chambers


24


,


26


. As a result, the two movable walls


17


,


20


and the power piston


22


continue their forward movements until the two rear chambers


24


,


26


reach atmospheric pressure so that the output is continuously produced from the output rod


53


.




When the two rear chambers


24


,


26


reach atmospheric pressure, atmospheric air no longer flows into the two rear chambers


24


,


26


to interrupt the forward movements of the two movable walls


17


,


20


and the power piston


22


and accordingly the forward movement of the output rod


53


.




At this time, the input as applied from the brake pedal


31


to the input member


28


is Fi


3


as shown in

FIG. 10

, and the output to be applied from the output rod


53


to the master cylinder


58


is Fo


9


as also shown in FIG.


10


. Thus, from the state of the output Fo


8


for the input Fi


3


, the electric current to the solenoid


46


is changed from i


5


to i


6


so that the output is increased from Fo


8


to Fo


9


. In other words, the output Fo


9


higher than the output Fo


3


is generated for the input Fi


3


corresponding to the output Fo


3


in the ordinary braking operation. The output Fo


9


to be generated by the vacuum type servo system


10


is the maximum output for the input Fi


3


in the quick braking operation.




In the state where the solenoid coil


46


is energized with the electric current i


6


so that the vacuum type servo system


10


generates the output Fo


9


and so that the valve mechanism


35


is in the output keeping state, for example, no braking operation is required in which the driver releases the depression of the brake pedal


31


. Then, the input rod


27


and accordingly the input member


28


are moved backward with respect to the power piston


22


by the reaction force from the reaction disc


52


and by the spring


41


as when the depression of the brake pedal


31


is released in the ordinary braking operation.




By virtue of this backward movement of the input member


28


, the auxiliary vacuum valve seat


42




a


of the slider valve


42


is moved away from the vacuum seal portion


36




b


of the control valve


36


so that the valve mechanism


35


is changed to the output lowering state to lower the pressure in the two rear chambers


24


,


26


to thereby reduce the output. As a result, the input member


28


, the two movable walls


17


,


20


, the power piston


22


and the output rod


53


are moved backward with respect to the housing


14


until the inactive state shown in

FIGS. 1-3

is finally restored.




The electronic control unit


50


deenergizes the solenoid coi


1




46


when the condition for this deenergization holds. As a result, the slider valve


42


and the plunger


49


are returned to the positions shown in

FIG. 2

by the coil spring


43


.




The actuator


45


can be controlled by the electronic control unit


50


on the basis of the detection result of the liquid pressure sensor


51


that indicates the liquid pressure of the master cylinder


58


. Accordingly, the output of the vacuum type servo system


10


to the master cylinder


58


may be a desired pressure or output.




According to the vacuum type servo system


10


of the present invention, when the automatic braking operation is carried out from the state of zero output to the output Fo


4


, for example, this output Fo


4


can be made lower than the maximum output Fo


6


in the automatic braking operation and further than the output Fo


2


in the “jumping” operation. In short, it is possible to control the output force generated by the actuation of the actuator


45


from Fo


4


that is smaller than Fo


1


as a jumping force, and to set an output value which can better match the automatic braking operation.




In the initial state in which the front end face of the input member


28


abuts against the rear face of the reaction disc


52


, moreover, the rear member


282


can be moved forward with respect to the front member


281


by applying the input Fi


1


(or a predetermined input) to the brake pedal


31


and accordingly the input member


28


, so that the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a


can be brought away from each other to ensure the “jumping” operation of the vacuum type servo system


10


.




Moreover, the front member


281


and the rear member


282


can be longitudinally moved relative to each other by inserting the engaging protrusion


281




a


slidably into the assembly hole


282




a.


At the same time, the front member


281


and the rear member


282


are always in a coaxial engagement so that the input from the brake pedal


31


and the input rod


27


can be reliably transmitted to the reaction disc


52


.




Moreover, the front member


281


and the rear member


282


are so engaged by the slit


281




b


and the pin


282




b


as to move longitudinally relative to each other and to regulate the rearmost position of the rear member


282


with respect to the front member


281


. Also, the front member


281


and the rear member


282


are so engaged by the rear end face of the engaging protrusion


281




a


and the bottom face of the assembly hole


282




a


as to regulate the foremost position of the rear member


282


with respect to the front member


281


so that the relative movements between the front member


281


and the rear member


282


can be made accurate. This makes it possible to accurately establish the spacing between the atmospheric valve seat


28




a


and the atmospheric seal portion


36




a,


thus more accurately establishing the output of the vacuum type servo system


10


.




By providing the rubber member


81


, moreover, it is possible to suppress the chattering between the front member


281


and the rear member


282


. Also, the spring


41


helps to ensure the movement of the rear member


282


to the rearmost position with respect to the front member


281


especially in the automatic braking operation.




By adjusting the electric current fed to the solenoid


46


of the actuator


45


, it is possible to adjust the attraction to be established at the solenoid


46


, that is the drive force of the actuator


45


. By making the drive force of the actuator


45


adjustable, it is possible to adjust the longitudinal movement of the slider valve


42


and accordingly the output to be established from the output rod


53


in accordance with the action of the actuator


45


to thereby establish an output better matching the situations.




By arranging the spring


43


in the air passage


39


, it is possible to make effective use of the space in the power piston


22


, thereby helping to reduce the size of the power piston


22


.




According to the present invention, it is possible to regulate the atmospheric pressure in the two rear chambers


24


,


26


by causing the valve mechanism


35


to maintain the output keeping state by forward movement of the power piston


22


with respect to the input member


28


and by backward movement of the input member


28


by the reaction disk


52


with respect to the power piston


22


at the action time of the actuator


45


in the state of no operation to the brake pedal


31


and to the input member


28


(i.e., the automatic braking time). It is also possible to easily set the output during automatic braking by setting the restoring force of the key member


29


to suppress the backward movement of the input member


28


by the reaction disc


52


with respect to the power piston


22


.




It is also possible to make the vacuum type servo system


10


of a simple construction by constructing an engaging member of the key member


29


to be elastically deformed when the reaction disc


52


moves the input member


28


backward in accordance with the action of the actuator


45


to allow the backward movement of the input member


28


.




When the input to the brake pedal


31


and the input member


28


in the ordinary braking operation is quickly lowered, it is possible to effect a quicker output reduction and return of the vacuum type servo system


10


.




By suitably adjusting the electric current fed to the solenoid


46


, it is possible to make exhibit desirable input/output characteristics according to the action of the actuator


45


of the vacuum type servo system


10


.




Also, by making the key member


29


bias the input member


28


forward when the reaction disc


52


moves the input member


28


backward according to the action of the actuator


45


, it is possible to make the vacuum type servo system


10


of a simple construction.




It is also advantageously possible to set the movement of the slider valve


42


and accordingly the plunger


49


by suitably setting the biasing force of the key member


29


. It is also possible to reduce the size of the vacuum type servo system


10


by reducing the movement of the slider valve


42


or the plunger


49


.




The present invention also makes it possible to provide a vacuum type servo system


10


which can regulate the output accompanying the action of the actuator


45


to the maximum output or less.




In the present invention, the rubber member


81


is arranged as the second bias member. However, the invention is not limited to this construction, but similar effects can also be achieved from a vacuum type servo system in which a spring


82


is arranged in place of the rubber member


81


, for example, as shown in FIG.


11


.




In the present invention, the spring


43


is formed as a generally flat sheet that is curved. However, the invention is not limited in this regard as the spring


43


may be any device which is capable of biasing the slider valve


42


forward.




Although the spring


43


is described above as being arranged in the air passage


30


, other constructions such as positioning the spring


43


in the radial hole


39


are possible.




The key member


29


is described above as being composed of the plate portion


29




a


and the arcuate portion


29




b


. However, other shapes for the key member that can bias the input member


28


forward when the input member


28


is moved backward by the reaction disc


52


in accordance with the action of the actuator


45


are possible.




As described above, the vacuum type servo system


10


of the present invention possesses a tandem type construction. However, the invention is not limited in this regard as the vacuum type servo system having a single type construction, for example, is also possible.




The quick braking operation has been described above in the context that the actuator


45


is not activated before the valve mechanism


35


is in the output keeping or maintaining state. However, similar advantageous effects can also be achieved from a vacuum type servo system in which the actuator


45


is activated substantially simultaneously with the depression of the brake pedal


31


, for example.




In addition, while the vacuum type servo system


10


is described as being applied to the vehicle distance controlling and quick brake assisting brake system, the invention is applicable to other constructions. Similar effects can be achieved if the vacuum type servo system is applied to a brake system which requires no generation of a maximum output in the vacuum type servo system.




By virtue of the present invention, it is advantageously possible to regulate the rear chamber pressure insofar as it reaches atmospheric pressure at the time of activating the actuator. It is further possible to construct the vacuum servo apparatus in which the output to be generated according to the activation of the actuator while no input is applied to the input member is lower than that to be generated when a predetermined input is applied to the input member. It is, therefore, possible to provide a vacuum servo apparatus which can regulate the output accompanying the activation of the actuator to the maximum amount or a value less than the maximum amount.




The output to be generated according to the activation of the actuator while no input is applied to the input member can be made lower than that to be generated when a predetermined input is applied to the input member. It is also possible to make accurate relative movements of the front member and the rear member. This makes it possible to generate in a stable manner the spacing between the atmospheric valve seat and the atmospheric seal portion and produce a stable output of the vacuum type servo system.




The present invention also provides a better mode for the second joint mechanism. Also, the present invention allows the rear member to be reliably moved to the rearmost position with respect to the front member. It is also possible in accordance with the present invention to suppress the chattering between the front member and the rear member.




By virtue of the present invention, the input applied to the input member can be reliably transmitted to the reaction member. Also, the output to be generated according to the activation of the actuator can be easily set by suitably setting the restoring force of the engaging member. According to the present invention, a better engaging mode is presented for the input member of the engaging member.




The present invention also allows the output generated according to the activation of the actuator to be easily set when the actuator is activated especially while no input is applied to the input member. In addition, the vacuum type servo system can be made of a simple construction by making the engaging member of the key member. Also, the present invention presents a better mode for the actuator.




The present invention is further advantageous in that the output to be generated from the output member in accordance with the activation of the actuator can be adjusted to an output better matching a given situation. Also, a better mode is presented for the actuation of the valve seat member by the actuator and a better action mode of the valve seat member is presented by the solenoid.




The present invention makes it possible to reduce the size of the vacuum type servo system. It is possible to construct the vacuum servo apparatus which is equipped with the actuator for providing communication between the rear chamber and the atmosphere by spacing the atmospheric valve seat and the atmospheric seal portion so that the output to be generated according to the activation of the actuator while no input is applied to the input member is made smaller than the output to be outputted when a predetermined input is applied to the input member. This makes it possible to provide a vacuum servo apparatus which can regulate the output accompanying the activation of the actuator to the maximum output or less.




The output to be generated according to the activation of the actuator while no input is applied to the input member can be made smaller than the output to be outputted when the predetermined input is applied to the input member. Also, by virtue of the present invention, it is possible to construct the vacuum servo apparatus in which the output to be generated according to the activation of the actuator while no input is applied to the input member is lower than that to be generated when a predetermined input is applied to the input member. Further, it is possible to regulate the rear chamber from reaching atmospheric pressure at the time of activating the actuator.




The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.



Claims
  • 1. A vacuum servo apparatus comprising:a housing having at least one pressure chamber formed therein; a movable wall disposed in said housing to be movable forward and backward with respect to said housing and partitioning said pressure chamber into a front chamber communicating with a negative pressure source and a rear chamber selectively communicated with said front chamber and the atmosphere; a power piston joined to said movable wall; an input member arranged in said power piston to be movable forward and backward with respect to said power piston, said input member including a front member and a rear member separated by a clearance and movable with respect to one another to cancel said clearance; an atmospheric valve seat arranged in said power piston to be movable forward and backward integrally with said rear member of said input member; a vacuum valve seat arranged in said power piston; a control valve including: an atmospheric seal portion adapted to move into and out of abutment against said atmospheric valve seat for cutting off communication of said rear chamber with the atmosphere when the atmospheric seal portion comes into abutment against said atmospheric valve seat and for establishing communication of said rear chamber with the atmosphere when the atmospheric seal portion moves out of abutment against said atmospheric valve seat; and a vacuum seal portion adapted to move into and out of abutment against said vacuum valve seat for cutting off communication between said front chamber and said rear chamber when the vacuum seal portion comes into abutment against said vacuum valve seat and for establishing communication of said rear chamber with said front chamber when the vacuum seal portion moves out of abutment against said vacuum valve seat; an output member for outputting to outside the apparatus a forward force of said power piston in accordance with a movement of said movable wall; and an actuator for moving said atmospheric valve seat and said atmospheric seal portion away from each other to establish communication between said rear chamber and the atmosphere, wherein a predetermined input force applied to said input member during inactivation of said actuator produces an output force from said output member that increases to a predetermined output force, and an output force generated during activation of said actuator is controlled to be smaller than said predetermined output force.
  • 2. A vacuum servo apparatus according to claim 1, further comprising:a reaction member for transmitting a forward force of said power piston and an input force fed to said input member, to said output member and for applying a reaction force of a magnitude corresponding to an output force of said output member, to move said input member backward, and said atmospheric valve seat and said atmospheric seal portion can come into abutment against each other to cut off the communication between said rear chamber and the atmosphere when said input member is moved backward by a reaction force of said reaction member in accordance with the activation of said actuator.
  • 3. A vacuum servo apparatus comprising:a housing in which is provided at least one pressure chamber; a movable wall disposed in the housing and partitioning said pressure chamber into a front chamber communicating with a negative pressure source and a rear chamber selectively communicated with said front chamber and the atmosphere; a power piston joined to said movable wall to produce a forward force; an input member arranged in said power piston for forward and backward movement with respect to the power piston and adapted to be connected to a brake pedal; a valve mechanism for selectively establishing a first state in which the rear chamber is in communication with the front chamber and is prevented from communicating with the atmosphere and a second state in which the rear chamber is prevented from communicating with the front chamber and is in communication with the atmosphere to create a pressure differential between the rear chamber and the front chamber which moves the movable wall; an output member for outputting to outside the apparatus a forward force of said power piston in accordance with movement of said movable wall; and an electrically operable actuator for bringing said valve mechanism into said second state during operation of the actuator, the apparatus producing a jumping output during operation of the actuator that is less than the jumping output produced during inactivation of the actuator when a force is applied to the input member as a result of operation of the brake pedal.
  • 4. The vacuum servo apparatus according to claim 3, wherein the input member includes a front member and a rear member that are separated from one another by a clearance, the rear member moving forward relative to the front member to cancel said clearance during inactivation of the actuator when a force is applied to the input member as a result of operation of the brake pedal, and said front member moving backward during operation of the actuator.
  • 5. The vacuum servo apparatus according to claim 4, including a reaction member for transmitting the forward force of said power piston and an input force applied to said input member to said output member and for applying a reaction force of a magnitude corresponding to an output force of said output member to move said input member backward.
  • 6. The vacuum servo apparatus according to claim 4, wherein one of the front and rear members includes a longitudinally extending hole that is closed at one end and the other of the front and rear members includes a longitudinally extending engaging protrusion that fits within the longitudinally extending hole.
  • 7. A vacuum servo apparatus comprising:an operational member for receiving an input force; a first output force generator operatively associated with said operational member for generating a first jumping output in response to operation of said operational member; and a second output force generator operable independently of operation of said operational member for generating a second jumping output that is less than the first jumping output.
  • 8. The vacuum servo apparatus according to claim 7, wherein the first output force generator includes an input rod connected to the operational member for forward and backward movement, an input member connected to the input rod, an output rod for outputting the first and second jumping forces, and a reaction member for applying a reaction force of the output rod to move the input member backward, the input member including a front member and a rear member, with a clearance being provided between the front and rear members, said rear member moving forward during operation of said operating member to cancel said clearance and said front member moving backward during operation of said second output force generator.
  • 9. The vacuum servo apparatus according to claim 8, wherein one of the front and rear members includes a longitudinally extending hole that is closed at one end and the other of the front and rear members includes a longitudinally extending engaging protrusion that fits within the longitudinally extending hole.
  • 10. The vacuum servo apparatus according to claim 7, wherein the first output force generator also includes a housing in which is provided at least one pressure chamber, a movable wall disposed in the housing and partitioning the pressure chamber into a front chamber communicating with a negative pressure source and a rear chamber selectively communicated with the front chamber and the atmosphere, a power piston joined to the movable wall to produce a forward force, and a valve mechanism for selectively establishing a first state in which the rear chamber is in communication with the front chamber and is prevented from communicating with the atmosphere and a second state in which the rear chamber is prevented from communicating with the front chamber and is in communication with the atmosphere to create a pressure differential between the rear chamber and the front chamber which moves the movable wall.
  • 11. The vacuum servo apparatus according to claim 7, wherein the second output force generator includes an electrically operable actuator.
  • 12. A vacuum servo apparatus comprising:a housing having at least one pressure chamber formed therein; a movable wall disposed in the housing to be movable forward and backward with respect to said housing and partitioning said pressure chamber into a front chamber communicating with a negative pressure source and a rear chamber selectively communicated with said front chamber and the atmosphere; a power piston joined to said movable wall; an input member arranged in said power piston to be movable forward and backward with respect to said power piston; an atmospheric valve seat arranged in said power piston to be movable forward and backward integrally with said input member; a vacuum valve seat arranged in said power piston; a control valve including: an atmospheric seal portion adapted to move into and out of abutment against said atmospheric valve seat for cutting off communication between said rear chamber and the atmosphere when the atmospheric seal portion comes into abutment against said atmospheric valve seat and for establishing communication of said rear chamber with the atmosphere when the atmospheric seal portion moves out of abutment against said atmospheric valve seat; and a vacuum seal portion adapted to move into and out of abutment against said vacuum valve seat for cutting off communication between said front chamber and said rear chamber when the vacuum seal portion comes into abutment against said vacuum valve seat and for establishing communication of said rear chamber with said front chamber when the vacuum seal portion moves out of abutment against said vacuum valve seat; an output member for outputting to outside the apparatus a forward force of said power piston in accordance with a movement of said movable wall; a reaction member for transmitting the forward force of said power piston and an input force fed to said input member to said output member and for applying a reaction force of a magnitude corresponding to an output force of said output member to move said input member backward; and an actuator for bringing said atmospheric valve seat and said atmospheric seal portion away from each other to establish communication between said rear chamber and the atmosphere, wherein said input member includes: a front member for coming into abutment against said reaction member; and a rear member separated from said front member by a clearance and capable of moving integrally with said atmospheric valve seat, so that when a first predetermined input force is fed to said input member, said rear member moves forward by predetermined stroke with respect to said front member so as to cancel said clearance, and so that when said front member and said rear member are integrally moved backward by a reaction of said reaction member in accordance with the activation of said actuator, said atmospheric valve seat and said atmospheric seal portion can come into abutment against each other to cut off the communication between said rear chamber and the atmosphere.
  • 13. A vacuum servo apparatus according to claim 12, wherein said input member and said reaction member are in abutment against each other in an initial state where no input force is applied to said input member.
  • 14. A vacuum servo apparatus according to claim 12, wherein said front member is joined to said rear member by a pin provided on one of the front and rear members that is fitted into an elongated slit in the other of the front and rear members so that when said rear member moves forward by the predetermined stroke with respect to said front member said front member and said rear member may integrally move forward.
  • 15. A vacuum servo apparatus according to claim 14, including a longitudinally extending recess arranged in one of said front member and said rear member that is closed off at least at one side end portion thereof and an engaging portion formed on the other of said front and rear members and inserted into said recess to move longitudinally.
  • 16. A vacuum servo apparatus according to claim 12, further comprising:a first bias member for biasing said rear member backward.
  • 17. A vacuum servo apparatus according to claim 12, further comprising:a second bias member arranged between said front member and said rear member for biasing said rear member backward with respect to said front member.
  • 18. A vacuum servo apparatus according to claim 12, wherein one of said front member and said rear member includes a longitudinally extending engaging protrusion and the other of said front member and said rear member includes a longitudinally extending assembly hole that slidably receives said engaging protrusion.
  • 19. A vacuum servo apparatus according to claim 12, further comprising: an engaging member elastically deformed when said input member is moved backward by the reaction force of said reaction member in accordance with the activation of said actuator for allowing the backward movement of said input member.
  • 20. A vacuum servo apparatus according to claim 19, wherein said engaging member engages with said input member in accordance with the forward movement of said power piston with respect to said input member by the activation of said actuator to enable said input member and said atmospheric valve seat to move integrally with said power piston.
  • 21. A vacuum servo apparatus according to claim 19, wherein said engaging member engages with said input member when said actuator is activated during inactivation of said input member to move said power piston forward with respect to said input member, so that said input member is moved backward by the reaction force of said reaction member against a restoring force accompanying an elastic deformation of said engaging member in accordance with the activation of said actuator during inactivation of said input member, which enables to bring said atmospheric valve seat and said atmospheric seal portion into abutment thereby to cut off communication between said rear chamber and the atmosphere.
  • 22. A vacuum servo apparatus according to claim 19,wherein said engaging member is a key member engaging with said power piston for moving longitudinally by a first predetermined stroke with respect to said power piston and with said input member for moving longitudinally by a second predetermined stroke with respect to said input member, wherein said housing includes a first opposed portion opposed to and adapted to abut against a rear face of said key member, wherein said power piston includes: a second opposed portion opposed to and adapted to abut against a front face of said key member; and a third opposed portion opposed to and adapted to abut against the rear face of said key member, and wherein said input member includes: a fourth opposed portion opposed to and adapted to abut against the front face of said key member; and a fifth opposed portion opposed to and adapted to abut against the rear face of said key member.
  • 23. A vacuum servo apparatus according to claim 12, further comprising:a valve seat member arranged to move forward and backward with respect to said power piston independently of the movements of said input member and adapted to abut against said vacuum seal portion of said control valve for cutting off the communication between said front chamber and said rear chamber, wherein said rear member of said input member is integrally equipped with said atmospheric valve seat, and wherein said actuator moves said valve seat member backward to bring said valve seat member into abutment against said vacuum seal portion and moves said vacuum seal portion backward to bring said atmospheric seal portion apart from said atmospheric valve seat thereby to establish the communication between said rear chamber and the atmosphere.
  • 24. A vacuum servo apparatus according to claim 23, wherein a drive force of said actuator is adjustable to adjust the output force from said output member.
  • 25. A vacuum servo apparatus according to claim 24, wherein the drive force of said actuator is adjustable to adjust a backward movement of said valve seat member with respect to said power piston.
  • 26. A vacuum servo apparatus according to claim 23,wherein said actuator includes a solenoid connected with an electric power source for attracting and moving said valve seat member backward when said solenoid receives an electric power, so that the output force from said output member can be adjusted according to an attraction force of said solenoid.
  • 27. A vacuum servo apparatus according to claim 26,wherein said valve seat member is adjusted in the backward movement thereof in accordance with the attraction force of said solenoid.
  • 28. A vacuum servo apparatus according to claim 23, further comprising:a third bias member arranged between said valve seat member and said power piston for biasing said valve seat member forward.
Priority Claims (1)
Number Date Country Kind
10-104739 Apr 1998 JP
Parent Case Info

This application is based on and claims priority under 35 U.S.C. §119 with respect to Japanese Application No. 10(1998)-104739 filed on Apr. 15, 1998, the entire content of which is incorporated herein by reference.

US Referenced Citations (8)
Number Name Date Kind
3110031 Price Nov 1963 A
5181769 Schiel et al. Jan 1993 A
5483866 Schlüter Jan 1996 A
5605088 Balz et al. Feb 1997 A
5683147 Tsubouchi et al. Nov 1997 A
5845556 Tsubouchi et al. Dec 1998 A
5857399 Tsubouchi et al. Jan 1999 A
6065388 Tsubouchi et al. May 2000 A
Foreign Referenced Citations (3)
Number Date Country
1 655 429 Nov 1971 DE
39 09 924 Sep 1990 DE
195 41 534 May 1997 DE
Non-Patent Literature Citations (1)
Entry
Karlheinz Bill et al., “Smart Booster-New Key Element for Brake Systems with Enhanced Function Potential”, 1995 SAE International Congress and Exposition, Detroit, MI, Feb. 27-Mar. 2, 1995, pp. 27-33.