The invention relates to storing perishable foods and goods and, more particularly, to a modular vacuum storage apparatus and method for storing, dispensing, preserving and shipping perishable items.
Removing heat from perishable foods and goods prior to storing or shipping them is a well-known technique with proven efficacy. Perishable goods are now stored or shipped routinely in all parts of the world. These measures can be enhanced by modifying and monitoring not only temperature, but also vacuum, humidity and gas mix levels in the surrounding food storage environment.
U.S. Pat. No. 5,946,919, issued to McKinney, et al., for FOOD CONSERVATOR SYSTEM on Sep. 7, 1999, discloses a single vacuum compartment appropriate for storing baked goods, in which a negative pressure of 10″ Hg is maintained and wherein a humidity level of “at least about” 60% relative humidity is maintained. The environment of the compartment is feedback-controlled by a microprocessor. The microprocessor can control vacuum, relative humidity, temperature, the amount of ozone introduced into the compartment to retard bacterial growth, as well as, out-gassing time cycles. A menu allows a user to input data used to control the microprocessor, and permit optimization of the compartment environment for the particular foodstuffs presently being stored.
McKINNEY, et al., can include an ozone ultraviolet generator, a humidifier unit, and/or an activated charcoal chamber. Generating ozone and ultraviolet radiation helps retard or kill mold spores and other undesired components that may be present. The inclusion of an activated charcoal chamber helps further combat odors and removes carbon dioxide by-products.
The enclosure or compartment of McKINNEY, et al., however, has no mechanism for separating foodstuff or for accessing certain perishable items without accessing all of them. This is a serious drawback, as the vacuum is released when the front door is opened. Moreover, the temperature of all remaining perishable items is affected by the door opening in order to access other items or insert them into the container. Likewise, humidity is affected by such actions.
It would be advantageous to provide a perishable food and goods storage system capable of maintaining multiple compartments at predetermined vacuum, temperature, humidity and gas mix levels.
It would also be advantageous to provide a storage system that could accommodate a plurality of perishable foodstuff.
It would further be advantageous to provide a storage system that has a number of individually movable, modular drawers, each drawer being capable of holding different items.
It would still further be advantageous to provide a storage system with individual, movable, modular drawers with a single environmental control unit for the entire system.
It would still be further advantageous to provide a storage and dispensing system that uses one-way valve (or similar functioning mechanism) containers and/or bags to store, preserve and dispense items.
It would still be further advantageous to provide a system that automatically creates, maintains and releases various environments in respective storage units by modifying parameters such as: temperature, humidity, vacuum and gas mix levels and combinations thereof.
It would also be advantageous to program the apparatus to automatically turn off a particular operating system during peak usage to conserve electricity or for operation during specific time periods and intervals.
In accordance with the present invention, there is provided an apparatus for storing, preserving and dispensing perishable and degradable food, goods and materials for residential, commercial, and industrial applications. A rigid housing is provided, in which at least one modular unit is disposed. Physically removed from the modular unit is a vacuum pump for creating a partial vacuum environment. Optionally provided are operating systems to create, monitor, and maintain: temperature, humidity, and gas mix levels in the storage unit.
In the preferred embodiment, the modular unit is a slidable drawer. Moreover, more than one drawer can be provided, each drawer stacked above one another and all of the drawers being operatively connected to the vacuum pump and optionally to the temperature and humidity control device and the gas sourcing system.
The modular units can be either storage or processing units. The processing unit is designed to create a partial vacuum in one-way valve or similar functioning bags and containers placed into the unit.
The apparatus housings include closed and open frames and/or rack systems to hold single or multiple modular units. The modular units are standardized in size and coupling in order to allow the units to be moved from one housing to another. When a unit is removed from a closed housing another unit can replace it, or a cover can be placed into the housing opening to seal it. The removed modular units can be connected to portable operating systems and can be disposed side-by-side, like books on a shelf; or vertically stacked, like drawers in a dresser.
Furthermore, an apparatus can consist of a combination of processing and/or storage units and a closed housing can provide said units with or without a range of temperature.
A complete understanding of the present invention may be obtained by reference to the accompanying drawings, when considered in conjunction with the subsequent detailed description in which:
The invention can substantially extend the shelf-life, freshness and quality of a wide range of perishable and degradable items by controlling and/or eliminating their exposure to oxidation, moisture, insects, spoilage bacteria and other organic and non-organic chemical reactions that degrade items and accelerate ripening and decay.
The invention features a modular apparatus for storing, preserving and dispensing perishable and degradable food and goods. A rigid housing is provided, in which at least one modular unit is disposed. Physically removed from the modular unit is a vacuum pump for creating a partial vacuum; a temperature control unit for creating and maintaining a range of temperature (for closed housings); a humidity control unit for maintaining or modifying the humidity level; and a gas sourcing system for introducing and modifying the gas mix levels in each modular unit.
The apparatus offers a combination of unit environment settings applicable to preserve a wide range of perishable items. Multiple, independent and sealable drawers each have unique, preset storage environments depending upon use requirements. Each storage unit is engineered to store and preserve a particular type of perishable or degradable item. For example, food groups can consist of, but are not limited to: (1) breads and pastries; (2) dry goods (e.g., cereals, grains, herbs, coffee, etc.; (3) fruit; (4) vegetables; (5) meats; and (6) cheeses.
The container processing unit is a modular unit designed to create a partial vacuum in one-way valve bags 34 and containers 30 (or variations thereof) to preserve the contents therein yet still store perishable items, as shown in
When a processing unit is closed and sealed with a container inside, a sufficient preset partial vacuum is created within the processing unit, to in turn, create a partial vacuum environment within each respective container placed into the processing unit. When the processing unit is opened, the partial vacuum therein is automatically released; however, each processed container maintains its unique storage environment. The containers can then be inventoried either in the processing unit in a storage unit, or in other storage areas (e.g., the refrigerator, pantry, etc.).
The method for storing, preserving, and dispensing perishable and degradable food and goods consists of the following steps. The operator places the items to be preserved or stored into a one-way valve (or similar functioning mechanism) container or bag (or variation thereof) and then closes and seals the container or bag. The operator then places the bag or container into the processing unit and then closes and seals the processing unit. The processing unit then creates a sufficient vacuum environment within the unit, to in turn, create a partial vacuum within each one-way valve container or bag in the processing unit. When the processing unit is opened and the partial vacuum is released, each bag or container retains its unique storage environment until the bag or container is opened. Single or multiple bags and containers can be processed simultaneously. This method is applicable to any compartment or space that can create a vacuum or partial vacuum.
The inventive apparatus is scalable. In the preferred embodiment the apparatus consists of single or multiple independent, sealable processing and/or storage units that operate mechanically as drawers. Each unit is affixed into an insulated housing in which a temperature control system circulates air around the respective unit. In alternate embodiments, each unit can be removed from its respective housing, while retaining its sealed environment, and can stand alone, be placed in another housing or can be connected to portable humidity, vacuum and gas operating systems.
The units can be vertically or horizontally attached to other units using interlocking mechanisms. The appartus' components, housings, modular units, and operating systems can be standardized and interchangeable.
Each processing and storage unit consists of preset and independent environments that are controlled, monitored and maintained by a centralized, preset programmable, microprocessing unit (CPU). The CPU communicates with the operating systems and the sensors and controls in each respective modular unit to create unique partial vacuum storage environments that may be modified by humidity, gas sourcing and temperature systems.
Operating systems are located outside of the respective storage unit environment. Each operating system connects to the CPU and the respective storage unit. The operating systems consist of a commonly shared vacuum pump and optionally a combination of any of the following: temperature control system (in the closed housing), relative humidity system, and gas sourcing system. The operating systems can also include ozone, filtration systems (e.g., activated charcoal) and any other systems to minimize odor and control bacterial growth.
Referring now to
Referring now to
A hinged door 22 can optionally be provided to seal the housing 18 holding the storage unit 16 to maintain the temperature for the housing and unit, which is shown in
Storage unit 16 can also include a removable or hinged top 24 (shown in
Referring now to
Also integral with housing 18 is a vacuum pump 36, electrically operated under control of a microprocessor 38 and display panel 20. A hot/cold temperature control subsystem 40 is disposed at the rear of housing 18 and, again, operated under control of a microprocessor 38 and display panel 20. A humidity line 44 is attached to each respective drawer 12, 14 when seated in housing 18 to create and maintain the desired level or range of humidity therein.
Temperature, vacuum, gas mix and humidity sensors 50 are provided for each storage unit 12, 14 supported by housing 18. The bank of sensors 50 is electrically connected to microprocessor 38. In the preferred embodiment, sensors 50 are also connected to suitable valves and couplings that mate with respective sockets 50a on the rear portions of drawers 12, 14. Other configurations of sockets, sensors, valves and couplings can also be devised, depending upon the preferences and goals of the manufacturer.
Since other modifications and changes can vary to fit particular operating requirements and environments and will be apparent to those skilled in the art, the invention is not considered limited to the example chosen for purposes of disclosure, and covers all changes and modifications which do not constitute departures from the true spirit and scope of this invention.
Having thus described the invention, what is desired to be protected by Letters Patent is presented in the subsequently appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1404400 | Moon | Jan 1922 | A |
1594512 | Der Lippe-Lipski | Aug 1926 | A |
2388746 | Knapp | Nov 1945 | A |
2425816 | Maxson | Aug 1947 | A |
2823833 | Bauerlein | Feb 1958 | A |
2894845 | Stoddard | Jul 1959 | A |
3116610 | Whitmore | Jan 1964 | A |
3216214 | Gasbarro | Nov 1965 | A |
4222276 | DeRogatis | Sep 1980 | A |
4331690 | Bradshaw | May 1982 | A |
4557118 | Pink | Dec 1985 | A |
4841661 | Moore | Jun 1989 | A |
4909014 | Kobayashi | Mar 1990 | A |
5046332 | Hermann | Sep 1991 | A |
5095717 | Germi | Mar 1992 | A |
5136853 | Girardon | Aug 1992 | A |
5142970 | ErkenBrack | Sep 1992 | A |
5157940 | Bertu | Oct 1992 | A |
5195427 | Germano | Mar 1993 | A |
5271240 | Detrick | Dec 1993 | A |
5332095 | Wu | Jul 1994 | A |
5347918 | Chen | Sep 1994 | A |
5390809 | Lin | Feb 1995 | A |
5398811 | Latella | Mar 1995 | A |
5450963 | Carson | Sep 1995 | A |
5494165 | Detrick | Feb 1996 | A |
5522216 | Park | Jun 1996 | A |
5605047 | Park | Feb 1997 | A |
5628404 | Hendrix | May 1997 | A |
5651470 | Wu | Jul 1997 | A |
5806575 | Tsay | Sep 1998 | A |
5873217 | Smith | Feb 1999 | A |
D413258 | Voller | Aug 1999 | S |
5946919 | McKinney | Sep 1999 | A |
5964255 | Schmidt | Oct 1999 | A |
5971613 | Bell | Oct 1999 | A |
5996800 | Pratt | Dec 1999 | A |
6039182 | Light | Mar 2000 | A |
6059457 | Sprehe | May 2000 | A |
6090422 | Taragan | Jul 2000 | A |
6148875 | Breen | Nov 2000 | A |
6224528 | Bell | May 2001 | B1 |
6264054 | Miyake | Jul 2001 | B1 |
6484512 | Anderson | Nov 2002 | B1 |
6510946 | Gutierrez | Jan 2003 | B2 |
6598517 | McCausland | Jul 2003 | B1 |
6604634 | Su | Aug 2003 | B2 |
6619493 | Yang | Sep 2003 | B2 |
6637939 | Huffer | Oct 2003 | B2 |
6874938 | Price | Apr 2005 | B2 |
6904761 | Rafalovic | Jun 2005 | B2 |
6932509 | Shah | Aug 2005 | B2 |
6971418 | De Costa | Dec 2005 | B2 |
7048136 | Havens | May 2006 | B2 |
20010045096 | Tatter | Nov 2001 | A1 |
20020057938 | Gueret | May 2002 | A1 |
20030024278 | Berkey | Feb 2003 | A1 |
20070234754 | Pimputkar et al. | Oct 2007 | A1 |
20080006041 | Nakata | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
19858254 | Jun 2000 | DE |
202004011287 | Sep 2004 | DE |
0405680 | Jan 1991 | EP |
0440296 | Aug 1991 | EP |
0545246 | Jun 1993 | EP |
2000-2479 | Jan 2000 | JP |
2001-013837 | Jan 2001 | JP |
2004085004 | Mar 2004 | JP |
9013779 | Nov 1990 | WO |
9631746 | Oct 1996 | WO |
0171263 | Sep 2001 | WO |
2005057103 | Jun 2005 | WO |
Entry |
---|
Final Office Action mailed Feb. 2, 2011, in U.S. Appl. No. 12/026,870. |
European Search Report and Examination mailed Feb. 20, 2012 in EP 06 72 0029. |
Number | Date | Country | |
---|---|---|---|
20150037477 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
60555991 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13771174 | Feb 2013 | US |
Child | 14520439 | US | |
Parent | 12985381 | Jan 2011 | US |
Child | 13771174 | US | |
Parent | 11939076 | Nov 2007 | US |
Child | 12985381 | US | |
Parent | 11048141 | Feb 2005 | US |
Child | 11939076 | US |