This invention relates to a method and apparatus for storing an article. In particular, the invention relates to a method and apparatus for storing an article of medical equipment, such as a flexible medical endoscope, in a state of high level disinfection following processing (cleaning and disinfection) thereof. However, it is envisaged that the method and apparatus of the present invention may find use in the storage of a wide range of articles, such as museum artefacts, botanical samples, or indeed any other articles for which storage in a reduced oxygen atmosphere would be beneficial.
The term “disinfection” is used herein in preference to the term “sterility” since the latter implies the complete absence of pathogenic organisms, which in practice is rarely, if ever, achievable. It is to be appreciated however that the ultimate aim of disinfecting medical equipment is indeed to get as close to absolute sterility as is practicable. The terms “vacuum”, “evacuation”, “evacuate” and “evacuated” as used herein should be understood in their everyday sense to mean a partial vacuum such as can readily be achieved with standard commercial or laboratory equipment.
The present invention has been developed particularly for use in connection with the storage of flexible medical endoscopes in a state of high level disinfection following processing (cleaning and disinfection), and therefore will be described herein with particular emphasis on this application. It is envisaged however, that the method of the present invention may be utilised for the storage of substantially all types of medical, surgical, dental and veterinary equipment, apparatus, and instruments, and indeed in other applications outside the medical field, such as museum artefacts, botanical samples, or any other articles where storage in an evacuated container or a reduced oxygen atmosphere may be desirable.
After use in an endoscopic procedure, flexible medical endoscopes are usually subjected to “processing”, consisting of rigorous manual cleaning followed by placing the endoscope in an Automated Endoscope Re-processor (AER) which effects a further cleaning and disinfecting procedure to bring the endoscope to High Level Disinfection Status (HLDS). The endoscope must then be stored in a clean environment. Under normal storage conditions, the degree of disinfection of the endoscope can only be maintained at an acceptable level for a relatively short period, usually about 3 hours. This is due to the multiplication of residual pathogens which may remain on the endoscope after disinfection, or which may be present in the atmosphere. If the endoscope is not used in a further endoscopic procedure within this time, then further processing will be necessary prior to its next use.
Frequent and repeated processing is undesirable, since it reduces the availability of the endoscope for endoscopic procedures, whilst increasing the operating costs, due to the need for cleaning and disinfectant materials and the operation of cleaning equipment. Furthermore, repeated processing reduces the lifetime of the endoscope due to wear and tear.
In view of the above, attempts have been made to prolong the length of time for which a processed endoscope can be stored in a viable HLDS condition. One approach which has proved successful to some degree is to store the endoscope in an evacuated chamber, such as a vacuum storage pouch or bag. This deprives aerobic micro-organisms within the chamber of the oxygen they require in order to multiply, though since total evacuation of the chamber cannot practically be achieved, it is not possible totally to prevent the growth of aerobic micro-organisms. Nevertheless, the length of time for which a processed endoscope can be stored in a viable HLDS condition can be appreciably extended by such methods. Methods and apparatus involving the prolonged storage of an endoscope in an evacuated chamber are disclosed in the Applicant's own International Patent Publications Nos. WO 2007/049076, WO 2010/046617 and WO 2012/035313.
In a clinical environment, the quality of the partial vacuum achieved will generally be restricted to a low to medium vacuum (100 kPa to 1 kPa) by the limitations of the standard commercial or laboratory evacuation equipment utilised, as well as the physical properties of the evacuation chamber. In view of these constraints, the integrity of the seal by which the evacuation chamber is closed becomes a major factor in determining the extent to which the viable storage time of an endoscope can be prolonged. This is of particular concern when utilising standard vacuum storage bags of flexible pouch construction, as the zip seals on such bags tend to fail or leak after a period of time, thus compromising the high level disinfection status of the endoscope.
The present invention seeks to address the above issue by providing a vacuum storage system incorporating a fail-safe arrangement such that the vacuum within the storage chamber is maintained even if the integrity of the seal if compromised.
According to a first aspect of the present invention there is provided a vacuum storage system for storing an article, comprising:
The article to be stored may be an article of medical equipment, such as a flexible medical endoscope.
The inner chamber may itself be a flexible pouch or bag. However, it is much preferred that the inner chamber comprises a tray and a lid, preferably of generally rigid construction. The one-way valve is preferably formed in the lid.
A gasket seal is preferably provided between the tray and the lid. The gasket seal is preferably housed in the lid and arranged to extend around the perimeter of the tray, when the lid and tray are engaged. Upon evacuation of the system, the lid is urged onto the tray, thus compressing the gasket seal to seal the inner chamber.
The interior of the tray may be desirably be shaped or sculpted so as securely to house the article to be stored. This may be take the form of upstanding elements arranged to embrace and protect an article, or parts of an article, such as the coils of a flexible medical endoscope.
The outer chamber preferably comprises a flexible pouch or bag, having an opening to enable insertion of the inner chamber. The opening is preferably provided with a zip seal and/or an adhesive seal. An evacuation valve, adapted for connection to a suction device, is provided in one wall of the pouch. The evacuation valve may itself be a one-way valve.
In use, evacuation of the outer chamber pouch causes the one-way valve in the tray lid to open, thus enabling evacuation of the inner chamber. Evacuation of the outer chamber pouch also causes the pouch to urge the lid onto the tray, thus causing compression of the gasket seal, and so sealing the inner chamber.
The inner and outer chamber are preferably both transparent, to enable the contents of the vacuum storage system to be conveniently viewed.
In order further to enhance the efficiency of the storage system according to the first aspect of the present invention, an oxygen scavenging agent may optionally be provided within the inner chamber, as further to reduce the oxygen content of the atmosphere in which the article is stored.
According to a second aspect of the present invention there is provided a method of storing an article utilising a vacuum storage system as hereinbefore described, comprising the steps of:
In order further to enhance the efficiency of the storage method according to the second aspect of the present invention, the method may optionally include an additional step of providing an oxygen scavenging agent within the inner chamber, as further to reduce the oxygen content of the atmosphere in which the article is stored.
In order that the present invention may be more clearly understood, a preferred embodiment thereof will now be described in detail, though only by way of example, with reference to the accompanying drawings in which:
Referring first to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
A method, according to a preferred embodiment of the second aspect of the present invention, of storing a flexible medical endoscope in the vacuum storage system 40, according to a preferred embodiment of the first aspect of the present invention, will now be described with reference to
A flexible medical endoscope (not shown) is placed in the tray 10, as shown in
The inner chamber 20 is then inserted into the pouch 16, constituting the outer chamber of the vacuum storage system 40, as shown in
The evacuation valve 21 is then connected to a suction device (not shown) for evacuation of the outer chamber 30. Activation of the suction device evacuates the outer chamber 30, and the reduction in pressure in the outer chamber 30 causes the one-way valve 13 in the lid 12 to open, thus also resulting in evacuation of the inner chamber 20. The reduction in pressure also causes the pouch 16 to collapse around the inner chamber 20, thus urging the lid 12 onto the tray 10, and compressing the gasket seal 24, so as to seal the inner chamber 20.
The suction device is then deactivated and disconnected, and the evacuation valve 21 closed. Deactivation of the suction device also causes the one-way valve 13 to close, thus fully sealing the inner chamber 20. The vacuum storage system 40 of the present invention thus incorporates a fail-safe mechanism in that, even if the vacuum in the outer chamber 30 is compromised due to leaking of the seals 18, 19 or the valve 21, the inner chamber 20 will remain in an evacuated state due to the one-way valve 13 remaining in a closed position, and the compressed gasket seal 24. The endoscope within the inner chamber 20 can thus be stored in a viable HLDS condition for considerably longer than with conventional storage systems.
Number | Date | Country | Kind |
---|---|---|---|
1217216.9 | Sep 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2013/052456 | 9/19/2013 | WO | 00 |