The principles and embodiments of the presently claimed invention relate to steerable, light-weight, low-profile suction bases for upright cleaning apparatuses.
Upright cleaning apparatuses using air suction have been known in the art, and various modifications have been made over time to the size, shape, method of suction, and attachments for such devices. However, the size, shape, and weight of the base portion of such upright cleaning apparatuses have been a notable limitation on their overall utility. The suction base units have tended to be large, bulky components of upright vacuums that were difficult to fit under and maneuver around furniture. The design of previous suction bases have sometimes required large electrical motors to provide suction and drive a rotating brush roll, that places much weight in the suction base itself. Such design issues have limited the forms of the vacuum cleaner base and bodies, and added to the overall complexity of designs. The embodiments of the presently claimed invention overcome these problems and limitations by eliminating the restrictive placement of the internal components, while incorporating a swivel joint between the suction base and upright main body of the cleaning apparatus.
The principles and embodiments of the presently claimed invention relate to reducing the size and weight of an upright cleaning apparatus suction base, while improving the overall maneuverability of the cleaning apparatus by locating a smaller, lighter electrical motor in an advantageous location that allows the use of a straight air path and swivel joint in the base.
The principles and embodiments also relate to eliminating the full-size suction base body and providing a reduced width and profile design, while broadening how various electrical and structural features are implemented within the cleaning device suction base.
An embodiment of the invention may comprise a light-weight suction base unit for an upright cleaning apparatus that comprises a suction base body, a left base support operatively associated with the suction base body, such that there is a gap between a portion of the left base support and a portion of the suction base body, a right base support operatively associated with the suction base body, such that there is a gap between a portion of the left base support and a portion of the suction base body; a brush roll cavity body operatively associated with the suction base body to form a brush roll cavity having a brush roll cavity intake and a brush roll cavity discharge opening, a rotary hose bracket, a straight suction conduit having a hose inlet operatively associated and in fluid communication with the brush roll cavity, and a hose outlet operatively associated and in fluid communication with the rotary hose bracket, a rotary swivel coupling operatively associated with the rotary hose bracket, and a main body junction conduit providing a fluid communication to an upright main housing.
An embodiment of the invention may further comprise a swivel joint housing operatively associated with the rotary hose bracket and rotary swivel coupling that provides a rotatable junction between the suction base unit and an upright main housing operatively associated with the rotary swivel coupling to cause the suction base unit to turn left or right in reaction to the upright main housing being tilted in the same direction.
An embodiment of the invention may further comprise an electric motor mounted within the suction base body such that a portion of the electric motor sits within an annular opening in a rear wheel, a brush roll mounted within the brush roll cavity, a brush roll gear operatively associated with the brush roll, a drive gear affixed to a rotating shaft of the electric motor, a drive belt that runs from the drive gear attached to the electric motor to the brush roll gear to cause the brush roll to rotate, wherein the drive belt resides outside of the suction base body and at least a portion of the drive belt is covered by the right base support.
An embodiment of the invention may further comprise a rear body cover attached to a lower suction base housing of the suction base body, and covers the electric motor, wherein the rear body cover has one or more openings to vent warm air from the inside of the suction base body.
An embodiment of the invention may further comprise a controller PCB mounted within the suction base body that is electrically connected and transmits power to the electric motor; and a micro-switch 109 mounted within the suction base body that is electrically connected to the PCB over an electrical path, wherein the micro-switch 109 has an actuator positioned to engage a corresponding face of the swivel joint housing, such that the face of the swivel joint housing triggers the micro-switch actuator to signal the PCB over the electrical path to interrupt the transmission of power to the electric motor, when the swivel joint is in the fully upright position.
An embodiment of the invention may further comprise annular openings in the rotary swivel coupling and the rotary hose bracket, wherein the openings are aligned to allow wiring from the PCB to run alongside the air path.
Another embodiment of the invention may comprise a low-profile suction base unit having a reduced profile swivel joint comprising a suction base body, a left base support operatively associated with the suction base body, such that there is a viewing opening between a portion of the left base support and a portion of the suction base body, a right base support operatively associated with the suction base body, such that there is a viewing opening between a portion of the left base support and a portion of the suction base body, and a swivel joint housing and a rotary swivel coupling operatively associated with an upright main housing and the suction base unit, wherein the swivel joint causes the suction base unit to pivot left when the upright main housing is tilted left and the suction base unit to pivot right when the upright main housing is tilted right, while allowing a user to view a surface being cleaned through viewing openings.
An embodiment of the invention may further comprise two rear wheels operatively associated with the suction base body, wherein the height of the wheels is preferably no greater than 5½ inches.
An embodiment of the invention may further comprise a low-profile suction base unit, wherein the height of the suction base unit at the top edge of the rotary swivel coupling is preferably no greater than 5¾ inches.
Further features of the present invention, its nature and various advantages will become more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, which are also illustrative of the best mode contemplated by the applicants, and in which like reference characters refer to like parts throughout, where:
The principles of the present invention relate to redesigning of a vacuum suction base to reduce its weight and bulk, while improving its suction performance and maneuverability,
In embodiments of the present invention, an electric motor for driving a beater brush is located in an internal portion of a suction base body that is in axial alignment with the axis of rotation of the supporting wheels.
In embodiments of the present invention, an air gap and exhaust openings are incorporated into the upper section of the suction base body of a cleaning apparatus to provide for the escape of hot air generated by the electric brush roll motor.
The principles of the present invention relate to providing a straight air path from the suction nozzle openings to the swivel joint conduit, and an articulate connection between the swivel joint conduit and the main body junction conduit to reduce the resistance to suction air flow.
The principles of the present invention relate to utilizing a smaller suction base body to reduce weight and bulk, and still provide sufficient room for mechanical and electrical components in the suction base.
The various parts can be joined or affixed to each other using snaps, mechanical fasteners, adhesives, and push or press fit connections, as would be know to those of ordinary skill in the art.
Examples of different embodiments of each of the various components as well as different embodiments of the overall apparatus will now be described in more detail with reference to the figures. It should be understood that these drawings only illustrate some of the preferred embodiments, and do not represent the full scope of the present invention for which reference should be made to the accompanying claims.
A non-limiting example of a preferred embodiment will now be described in reference to the apparatus depicted in the following figures.
The lower suction base housing 20 comprises three sections, as shown in
The swivel joint allows a user to turn the suction base by pivoting an upright main body to the left or right, which applies a force to the left and right swivel housings.
A brush roll cavity 60 and brush roll cavity intake 70 are formed by a brush roll cavity body 65, the lower suction base housing 20, and a brush roll cavity guard 63 (see
The front section 21 of the lower suction base body extends laterally away from the center section 22 to form a brush roll cavity 60 having a greater width than the center section 22 of the lower suction base housing 20 and upper suction base housing 10. The upper suction base housing covers and encloses the center section 22 of the suction base.
A tapered suction channel 40 is operatively associated and in fluid communication with a discharge opening 75 in a rear portion of the brush roll cavity 60 to apply a negative pressure from a suction source (not shown) located in the upright main body (not shown) to the brush roll cavity intake 70 to pick up debris. An inlet end of a suction hose is operatively associated and in fluid communication with the tapered suction channel outlet 47. A suction hose outlet is operatively associated and in fluid communication with a rotary hose bracket 210. The arrangement of the tapered channel 40 and suction hose 30 forms a suction conduit that provides a straight air path that is shorter, takes up less space, and reduces resistance to air flow compared to curved air flow paths.
Rear wheel bodies 95 are operatively associated with the lower suction base housing, and freely rotate around an axis of rotation. An overmold 90 covers each of the rear wheel bodies 95 to provide a smooth rubber surface to ride upon a surface.
A rear body cover 200 mounts to the lower suction base housing 20 to cover the swivel joint components, the electric motor 150, the wheel posts 195 and bearings 190, wiring, and other components inside the rear section 23 of the suction base. The rear body cover 200 has openings 15 that allows air-flow within the suction base, and heat built up from the electric motor to escape the suction base. The rear body cover 200 has a sloping shape that slants upwards from the edge closest to the wheel to the edge closest to the swivel joint. The sloping shape and an air gap between the motor and cover 200 assists in directing rising hot air from the motor to the openings 15, which improves the life of the motor.
The suction base body has a left wheel lock 87 attached to the suction base body; and a left base support 85 attached to the left wheel lock, such that there is a gap between a portion of the left base support and a portion of the suction base body. Similarly, the suction base has a right wheel lock 82 attached to the suction base body; and a right base support 80; attached to the left wheel lock, such that there is a gap between a portion of the left base support and a portion of the suction base body. The gap between the left base support 85 and the suction base body is a left viewing opening 19 that allows a user to see the floor between the support and body. The gap between the right base support 80 and the suction base body is a right viewing opening 18 that allows a user to see the floor between the support and body.
The right and left base supports 80, 85 provide a supporting surface that can ride across the horizontal surface being cleaned to provide additional stability against sideways tipping to the suction base. The right base support 80 and a drive belt cover 180 also covers a drive belt 160 that runs from the drive gear 170 attached to an electric motor 150 to a brush roll 59 gear to cause the brush roll 50 to rotate.
An electric motor 150 sits within a molded cradle formed in the lower suction base housing 20 partially within the rear wheel body 95 and rear wheel overmold 90, and is covered by the rear body cover 200. Openings 15 in the rear body cover allow warm air generated by the electric motor 150 to escape from the interior volume of the suction body. Other electronic components may be positioned partially within the wheel body 95 on the left side of the suction base.
A controller PCB is mounted in support columns molded into the lower suction base housing 20, and sits adjacent to the tapered suction channel 40 and suction hose 30. The straight arrangement of the tapered suction channel 40 and suction hose 30 provides sufficient room on either side for the PCB to be mounted in the suction base body.
The viewing gaps 18, 19 allow a user to see the surface being cleaned both in front of and to each side of the suction body behind the brush roll cavity, so a user is more likely to see if they are about to suction up a valuable or undesirable piece of debris.
The brush roll 50 sits within the brush roll cavity 60, and is mounted at either end to recesses in the side walls of the lower suction base housing 20, and/or brush roll cavity guard 67 with support blocks 57, 58. The bristles 56 of the brush roll may extend past the brush roll cavity intake 70 to sweep debris into the cavity 60.
The electric motor 150 for driving the brush roll is shown within the wheel 90 and the right swivel housing 220.
A main body junction conduit 290 is operatively associated with the swivel coupling 250 and held in place with a junction conduit bezel 295. The left side swivel housing 230 is operatively associated with the swivel coupling 250 and joined to the right swivel housing (not shown) to control the turning of the suction base unit while maintaining the alignment of the suction conduit.
A brush roll gear 59 is shown attached to and operatively associated with the brush roll 50. A drive gear 170 is affixed to and operatively associated with a rotating shaft 175 of the electric motor 150 to drive the drive belt 160 that rotates the brush roll gear 59 and thereby the brush roll 50. The drive belt 160 is preferably outside of the suction base body and covered by the right side base support (not shown) and drive belt cover 180. The vented drive belt cover 180 can prevent contact with the drive belt from the side facing the viewing opening while providing air circulation to the belt and gears.
A drive belt 160 that runs from the drive gear 170 attached to the electric motor 150 to the brush roll gear 59 to cause the brush roll to rotate, wherein the drive belt 160 resides outside of the suction base body and at least a portion of the drive belt is covered by the right base support 80.
The wheels ride on a plurality of wheel bearings 190 mounted on bearing posts 195 positioned a distance from the axis of rotation to allow the wheel to freely rotate while providing an open space around the center of the wheel body 95 for positioning the electric motor 150 and other electronics 105.
Additional electronic components 105 may be located in the central opening of the rear wheel on the side opposite the electric motor 150.
The upper suction base housing 10 covers the components located in the center section of the suction base body.
A swivel joint housing comprising a right swivel joint housing (not shown) and a left swivel joint housing 230 is supported by bushings 225, 235 mounted in supports formed in the lower suction base housing 20. The rotary swivel coupling 250 sits on top of the swivel joint housing and applies a force to the top surface of the swivel joint housing when the swivel coupling 250 is rotated by tilting an upright main housing (not shown) attached thereto. A main body junction conduit 290 is secured to the rotary swivel coupling 250 with a junction conduit bezel 295 and mechanical fasteners known in the art.
The joint housing allows an upright main body to pivot forwards and backwards in a vertical plane, while the rotary coupling allows the upright main housing to rotate left and right out of the plane. The combined action of pivoting and rotation steers the suction base to the left or right depending upon the direction of rotation, while the suction conduit remains in an essentially straight line within the suction base body. Wiring can be run coaxially from the suction base body to the upright main housing through openings in the rotary hose bracket 210 and rotary swivel coupling 250 without kinking or pulling due to the component alignment and freedom of pivoting and rotational motion.
The height of the brush roll housing is preferably less than 2⅝ inches, more preferable not greater than 2½ inches, and most preferably not greater than 2⅜ inches, to allow the brush roll cavity to fit under tower obstructions and into smaller vertical gaps.
References to the “left” and “right” sides of parts and drawings as well as reference of the “front” and “rear” are in reference to a viewer looking from the brush roll cavity towards the swivel joint, where the brush roll cavity is considered to be the front of the suction base unit.
Examples of different particular embodiments of each of the various components and arrangements, as well as different embodiments of the overall cleaning apparatus have been illustrated and described above. The examples illustrate particular combinations of controls and electrical component design features, however other combinations and arrangements of the various inventive features can be implemented, and are intended to be encompassed within the spirit and scope of the present invention. Furthermore, variations and modifications other than those illustrated and described will be apparent to persons of ordinary skill in the art. It is intended that all such embodiments, examples, variations, combinations, and modifications thereon are meant to be encompassed within the spirit and scope of the present invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1104612 | Bodey | Jul 1914 | A |
1139736 | Stabel | May 1915 | A |
1829582 | Carson | Oct 1931 | A |
4050112 | Saxon | Sep 1977 | A |
4637092 | Hayashi | Jan 1987 | A |
5354347 | McCoy et al. | Oct 1994 | A |
5794305 | Weger | Aug 1998 | A |
6055703 | Redding et al. | May 2000 | A |
6282748 | Thur et al. | Sep 2001 | B1 |
6629332 | Morgan et al. | Oct 2003 | B2 |
D498887 | Kent | Nov 2004 | S |
6968587 | Grey | Nov 2005 | B2 |
7181804 | Hafling | Feb 2007 | B2 |
7257859 | Nam et al. | Aug 2007 | B2 |
7805804 | Loebig | Oct 2010 | B2 |
8176596 | Conrad | May 2012 | B2 |
D683089 | Paterson | May 2013 | S |
8661613 | Marsh et al. | Mar 2014 | B2 |
8914940 | Morgan | Dec 2014 | B2 |
9074622 | Morgan | Jul 2015 | B2 |
9301662 | Conrad | Apr 2016 | B2 |
20040211023 | Streciwilk | Oct 2004 | A1 |
20080216281 | Conrad | Sep 2008 | A1 |
20080216283 | Miner | Sep 2008 | A1 |
20090126145 | D'Agostino | May 2009 | A1 |
20110107553 | Myers | May 2011 | A1 |
20110303239 | Harrison | Dec 2011 | A1 |
20120090105 | Henderson | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
364280 | Aug 1906 | FR |
2558711 | Aug 1985 | FR |
FR 2558711 | Aug 1985 | JP |
2010253206 | Nov 2010 | JP |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2014/011696 dated Apr. 2, 2014 (11 pages). |
European Patent Office Action for Application No. 14702705.6 dated Aug. 3, 2016 (9 pages). |
English Translation of Chinese Patent Office Action for Application No. 201480005097.3 dated Apr. 1, 2016 (13 pages). |
Number | Date | Country | |
---|---|---|---|
20140196250 A1 | Jul 2014 | US |