The present application relates generally to agricultural implements.
Planting implements (e.g., planters) are typically towed behind a tractor across fields. These planting implements typically include multiple row units distributed across the width of the implement. These row units deposit seeds at a desired spacing and soil depth, thereby establishing rows of planted seeds. Each row unit may include a seed meter that controls the rate and/or spacing of the seeds deposited in the ground. The seed meter may use a fan induced vacuum pressure to meter the seeds, which are placed in the field by a row unit. In some situations, the seeds may have a coating, such as fungicide or pesticide. During planting operations, some of the coating may separate from the seeds as the seeds contact each other. The vacuum pressure draws this coating through the metering system and then discharges it into the environment.
In one embodiment, a vacuum system that includes a planter frame. A row unit bracket couples to the planter frame. A fan couples to the planter frame and draws air through a row unit. An exhaust duct extends through the row unit bracket. The exhaust duct couples to the fan and discharges airflow from the fan towards the ground.
In another embodiment, a vacuum system that includes an exhaust duct that extends through a row unit bracket. The exhaust duct couples to a fan and discharges airflow from the fan towards the ground. The exhaust duct includes a front wall and a rear wall. The exhaust duct also includes a first sidewall with a first curved portion and a first straight portion. A second sidewall with a second curved portion and a second straight portion.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments.
As discussed above, seed planting implements generally utilize multiple row units to plant rows of seeds in the ground. Each row unit may include a seed meter to control rate and/or spacing of the deposited seeds. These seed meters utilize vacuum pressure to attach seeds to a rotating seed disc, which controls the rate at which seeds are output by the seed meter. As used herein, “vacuum pressure” is intended to describe a pressure differential from atmospheric pressure and not necessarily a true vacuum. In some situations, the seeds may have a coating, such as fungicide or pesticide. During planting operations, some of the coating may separate from the seeds as the seeds contact each other and/or as the seeds contact components of the agricultural implement. The vacuum pressure draws the separated coating through the metering system and then discharges it into the environment. In order to reduce the spread of the coating, the agricultural implement includes an exhaust duct system that directs the discharged airflow from the fan towards the ground.
As depicted, the hitch assembly 14 is coupled to the main frame assembly 16 and the main frame assembly 16 is coupled to the toolbar 18. Additionally, as depicted, the toolbar 18 is coupled to multiple row units 20. Thus, as the work vehicle tows the implement 10, each of the row units 20 may deposit seeds at a desired depth beneath the soil surface, thereby establishing rows of planted seeds. In some embodiments, the bulk of the seeds to be planted may be stored in seed tanks. Thus, as seeds are planted by the row units 20, a pneumatic distribution system may distribute additional seeds from the seed tanks to the individual row units 20.
It should be noted that while the illustrated implement 10 includes 47 row units, alternative implements may include more or fewer row units 20. For example, certain implements 10 may include 6, 8, 12, 16, 24, 32, or 36 row units, or more. In addition, the spacing between row units may be particularly selected based on the type of seed being planting. For example, the row units may be spaced 30 inches from one another for planting corn, and 15 inches from one another for planting soy beans.
The seeds are metered through the row units 20 with a metering system that uses vacuum pressure created by a vacuum system 22. The vacuum pressure is created by one or more fans 24 (e.g., 1, 2, 3, 4, or more) that couple to the toolbar 18 with conduits 26. In operation, the fans 24 draw air out of the toolbar 18 creating a vacuum chamber. Hoses (e.g., vacuum hoses) extend between the row units 20 and the toolbar 18, which enable the vacuum pressure to transfer to the metering system. The vacuum pressure draws air through the metering system on the row units 20, and through the hoses that couple the metering system to the toolbar 18. The air drawn or sucked out of the toolbar 18 with the fans 24 is then directed towards the ground with one or more exhaust ducts 28. For example, each fan 24 may couple to a respective exhaust duct 28. By directing the airflow toward the ground with the exhaust duct 28, the vacuum system 22 may reduce the spread of chemical coatings (e.g., pesticide, fungicide) that may separate from the seeds and that is sucked into the vacuum system 22.
As illustrated, the exhaust duct 28 couples to an outlet 58 of the fan 24 and extends through a bracket 56 (e.g., row bracket, offset row bracket). The bracket 56 couples to the toolbar 18 and provides the supporting connection between the toolbar 18 and the row unit 20. The bracket 56 defines an opening or inlet 60 and another opening or outlet 62 that enables the exhaust duct 28 to pass through the bracket 56. In addition to coupling to the fan 24, the exhaust duct 28 may also couple to the bracket 56 and/or the toolbar 18. For example, the exhaust duct 28 may couple to the bracket 56 with one or more fasteners 64 (e.g., threaded fasteners). In some embodiments, the exhaust duct 28 may be spaced from the toolbar 18. In order to create a gap between the toolbar 18 and the exhaust duct 28, the exhaust duct 28 may include one or more protrusions 66 (e.g., bosses).
As illustrated, the exhaust duct 28 couples to the fan 24 and extends through the bracket 56 (e.g., row bracket, offset row bracket). The bracket 56 couples to the toolbar 18 and provides the supporting connection for a row unit 20. The bracket 56 may define a plurality of openings including the inlet 60 and the outlet 62 that enable the exhaust duct 28 to pass through the bracket 56. In addition to these apertures, the bracket 56 may define other apertures, such as a hose aperture 82 that enable the hose 54 to extend through the bracket 56.
In some embodiments, the first sidewall curved portion 132 defines a length 140 that is greater than the length 142 of the second sidewall curved portion 136. The length 140 of the first sidewall curved portion 132 enables a greater radius of curvature that enables the gradual redirection of airflow from the inlet 108 to the outlet 110. For example, the fan 24 may not direct the airflow directly into the inlet 108 of the exhaust duct 28, or in other words the airflow may not flow parallel to the central axis 138 when entering the inlet 108. Instead, the airflow may enter the inlet 108 at an angle with respect to the central axis 138. For example, the airflow may be directed towards the first sidewall curved portion 132. As the airflow contacts the first sidewall curved portion 132, the gradual curve of the first sidewall curved portion 132 may reduce the turbulence of the airflow as the exhaust duct 28 directs the airflow to the outlet 110. As illustrated, the first sidewall curved portion 132 and the second sidewall curved portion 136 may include respective concave portions 144, 146 and respective convex portions 148, 150. The convex portions 148, 150 enable the inlet 108 to couple to the fan 24.
As illustrated, the inclusion of the second straight portion 222 enables the gradual redirection of airflow from the inlet 210 to the outlet 212. For example, the fan 24 may not direct the airflow directly into the inlet 210 of the exhaust duct 28, or in other words the airflow may not flow parallel to a central axis 234 when entering the inlet 210. Instead, the airflow may enter the inlet 210 at an angle with respect to the central axis 234. For example, the airflow may be directed towards the first curved portion 224 of the first sidewall 206. As the airflow contacts the first curved portion 224, the gradual curve of the first curved portion 224 and the second straight portion 226 may reduce the turbulence of the airflow as the exhaust duct 200 directs the airflow to the outlet 212.
In order to couple to the implement 10, the exhaust duct 200 may define one or more apertures 236. The apertures 236 enable fasteners (e.g., threaded fasteners) to couple the exhaust duct 200 to the implement 10. In still other embodiments, the apertures 236 may be in protrusions or bosses 238 (e.g., 1, 2, 3, 4, or more) that space the exhaust duct 200 from the toolbar 18.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3393516 | Markowski | Jul 1968 | A |
4474511 | Labbe | Oct 1984 | A |
4852809 | Davis et al. | Aug 1989 | A |
5797793 | Matousek et al. | Aug 1998 | A |
6443671 | Weiste | Sep 2002 | B1 |
6951354 | Paulson | Oct 2005 | B1 |
7549383 | Sauder et al. | Jun 2009 | B2 |
7802651 | Park et al. | Sep 2010 | B2 |
8001914 | Peterson et al. | Aug 2011 | B2 |
8443742 | Orrenius | May 2013 | B2 |
8698057 | Park et al. | Apr 2014 | B2 |
8861195 | Fu | Oct 2014 | B2 |
9031749 | Hubalek et al. | May 2015 | B2 |
9599124 | Roberge et al. | Mar 2017 | B2 |
9648801 | Borkgren et al. | May 2017 | B2 |
9901026 | Kinzenbaw et al. | Feb 2018 | B2 |
10030796 | Johnson | Jul 2018 | B2 |
10718252 | Im | Jul 2020 | B2 |
10820480 | Hubner | Nov 2020 | B2 |
20120312212 | Cruson | Dec 2012 | A1 |
20130327261 | Bergere | Dec 2013 | A1 |
20160242352 | Hussherr et al. | Aug 2016 | A1 |
20170086354 | Groves et al. | Mar 2017 | A1 |
20170369257 | Bent et al. | Dec 2017 | A1 |
20190216006 | Hubner | Jul 2019 | A1 |
20190380260 | Meyer | Dec 2019 | A1 |
20190387663 | Wang | Dec 2019 | A1 |
20200329628 | McLuckie et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
203270120 | Nov 2013 | CN |
206580298 | Oct 2017 | CN |
102005024739 | Dec 2006 | DE |
102011000996 | Sep 2012 | DE |
3219186 | Sep 2017 | EP |
904MUM2010 | Jun 2010 | IN |
2012029003 | Mar 2012 | WO |
2018107259 | Jun 2018 | WO |
Entry |
---|
Oval Exhaust Tubing 90 Degree Twist, Nov. 26, 2018. |
6 in. Straight Oval-to-Round Boot-OTRB6, The Home Depot, Nov. 26, 2018. |
1800 Ceiling, Ceiling Air Diverter for 2′x2′ Ceiling Vent, 3 pgs, retrieved on Mar. 5, 2019 from https://www.1800ceiling.com/air-diverter-white-1pack. |
Number | Date | Country | |
---|---|---|---|
20200337222 A1 | Oct 2020 | US |