Vacuum transfer tool for extendable catheter

Information

  • Patent Grant
  • 11850349
  • Patent Number
    11,850,349
  • Date Filed
    Friday, October 14, 2022
    a year ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Lee; Brandy S
    • Smale; Avery
    Agents
    • Knobbe, Martens, Olson & Bear, LLP
Abstract
An aspiration catheter is provided including a proximal section and a distal section extendable through the proximal section. A vacuum transfer tool may be coupled to a proximal end of the proximal section. The vacuum transfer tool may include a proximal transfer tube and a distal transfer tube, each having an aspiration port in communication with a vacuum source. The proximal transfer tube may be removably received within a proximal end of the distal transfer tube. The distal section of the catheter may be inserted into the proximal section through the proximal transfer tube. The proximal transfer tube may maintain a vacuum around a proximal end of the distal section of the catheter such that when the distal section is removed by decoupling the proximal and distal transfer tubes, the vacuum within the distal transfer tube and proximal section of the catheter is maintained, preventing an escape of any clots.
Description
BACKGROUND

Stroke is the third most common cause of death in the United States and the most disabling neurologic disorder. Approximately 700,000 patients suffer from stroke annually. Stroke is a syndrome characterized by the acute onset of a neurological deficit that persists for at least 24 hours, reflecting focal involvement of the central nervous system, and is the result of a disturbance of the cerebral circulation. Its incidence increases with age. Risk factors for stroke include systolic or diastolic hypertension, hypercholesterolemia, cigarette smoking, heavy alcohol consumption, and oral contraceptive use.


Hemorrhagic stroke accounts for 20% of the annual stroke population. Hemorrhagic stroke often occurs due to rupture of an aneurysm or arteriovenous malformation bleeding into the brain tissue, resulting in cerebral infarction. The remaining 80% of the stroke population are ischemic strokes and are caused by occluded vessels that deprive the brain of oxygen-carrying blood. Ischemic strokes are often caused by emboli or pieces of thrombotic tissue that have dislodged from other body sites or from the cerebral vessels themselves to occlude in the narrow cerebral arteries more distally. When a patient presents with neurological symptoms and signs which resolve completely within 1 hour, the term transient ischemic attack (TIA) is used. Etiologically, TIA and stroke share the same pathophysiologic mechanisms and thus represent a continuum based on persistence of symptoms and extent of ischemic insult.


Emboli occasionally form around the valves of the heart or in the left atrial appendage during periods of irregular heart rhythm and then are dislodged and follow the blood flow into the distal regions of the body. Those emboli can pass to the brain and cause an embolic stroke. As will be discussed below, many such occlusions occur in the middle cerebral artery (MCA), although such is not the only site where emboli come to rest.


When a patient presents with neurological deficit, a diagnostic hypothesis for the cause of stroke can be generated based on the patient's history, a review of stroke risk factors, and a neurologic examination. If an ischemic event is suspected, a clinician can tentatively assess whether the patient has a cardiogenic source of emboli, large artery extracranial or intracranial disease, small artery intraparenchymal disease, or a hematologic or other systemic disorder. A head CT scan is often performed to determine whether the patient has suffered an ischemic or hemorrhagic insult. Blood would be present on the CT scan in subarachnoid hemorrhage, intraparenchymal hematoma, or intraventricular hemorrhage.


Traditionally, emergent management of acute ischemic stroke consisted mainly of general supportive care, e.g. hydration, monitoring neurological status, blood pressure control, and/or anti-platelet or anti-coagulation therapy. In 1996, the Food and Drug Administration approved the use of Genentech Inc.'s thrombolytic drug, tissue plasminogen activator (t-PA) or Activase®, for treating acute stroke. A randomized, double-blind trial, the National Institute of Neurological Disorders and t-PA Stroke Study, revealed a statistically significant improvement in stoke scale scores at 24 hours in the group of patients receiving intravenous t-PA within 3 hours of the onset of an ischemic stroke. Since the approval of t-PA, an emergency room physician could, for the first time, offer a stroke patient an effective treatment besides supportive care.


However, treatment with systemic t-PA is associated with increased risk of intracerebral hemorrhage and other hemorrhagic complications. Patients treated with t-PA were more likely to sustain a symptomatic intracerebral hemorrhage during the first 36 hours of treatment. The frequency of symptomatic hemorrhage increases when t-PA is administered beyond 3 hours from the onset of a stroke. Besides the time constraint in using t-PA in acute ischemic stroke, other contraindications include the following: if the patient has had a previous stroke or serious head trauma in the preceding 3 months, if the patient has a systolic blood pressure above 185 mm Hg or diastolic blood pressure above 110 mmHg, if the patient requires aggressive treatment to reduce the blood pressure to the specified limits, if the patient is taking anticoagulants or has a propensity to hemorrhage, and/or if the patient has had a recent invasive surgical procedure. Therefore, only a small percentage of selected stroke patients are qualified to receive t-PA.


Obstructive emboli have also been mechanically removed from various sites in the vasculature for years. Mechanical therapies have involved capturing and removing the clot, dissolving the clot, disrupting and suctioning the clot, and/or creating a flow channel through the clot. One of the first mechanical devices developed for stroke treatment is the MERCI Retriever System (Concentric Medical, Redwood City, CA). A balloon-tipped guide catheter is used to access the internal carotid artery (ICA) from the femoral artery. A microcatheter is placed through the guide catheter and used to deliver the coil-tipped retriever across the clot and is then pulled back to deploy the retriever around the clot. The microcatheter and retriever are then pulled back, with the goal of pulling the clot, into the balloon guide catheter while the balloon is inflated and a syringe is connected to the balloon guide catheter to aspirate the guide catheter during clot retrieval. This device has had initially positive results as compared to thrombolytic therapy alone.


Other thrombectomy devices utilize expandable cages, baskets, or snares to capture and retrieve clot. Temporary stents, sometimes referred to as stentrievers or revascularization devices, are utilized to remove or retrieve clot as well as restore flow to the vessel. A series of devices using active laser or ultrasound energy to break up the clot have also been utilized. Other active energy devices have been used in conjunction with intra-arterial thrombolytic infusion to accelerate the dissolution of the thrombus. Many of these devices are used in conjunction with aspiration to aid in the removal of the clot and reduce the risk of emboli. Suctioning of the clot has also been used with single-lumen catheters and syringes or aspiration pumps, with or without adjunct disruption of the clot. Devices which apply powered fluid vortices in combination with suction have been utilized to improve the efficacy of this method of thrombectomy. Finally, balloons or stents have been used to create a patent lumen through the clot when clot removal or dissolution was not possible.


Notwithstanding the foregoing, there remains a need for new devices and methods for treating vasculature occlusions in the body, including acute ischemic stroke and occlusive cerebrovascular disease.


SUMMARY

There is provided in according with one aspect, a telescoping catheter, comprising: an elongate, flexible tubular body, comprising a proximal section having at least one lumen and a distal section axially movably positioned within the lumen; and a control for advancing the distal section from a first, proximally retracted position within the proximal section to a second, extended position, extending distally beyond the proximal section; and an active tip on the distal end of the distal section, comprising a distal opening that is movable between a smaller and a larger configuration.


In one aspect of present disclosure, the control comprises a pull wire extending through the proximal section. In another aspect of present disclosure, the distal section is distally advanceable to extend beyond the proximal section for a distance of at least about 10 cm. In yet another aspect of present disclosure, the distal section is distally advanceable to extend beyond the proximal section for a distance of at least about 25 cm.


In one aspect of present disclosure, the distal opening is movable in response to movement of a control wire. In another aspect of present disclosure, the distal opening is movable between a smaller and a larger configuration in response to application of vacuum to the lumen. In yet another aspect of present disclosure, the size of the distal opening is changed by lateral movement of a side wall on the distal section. In yet another aspect of present disclosure, the distal opening comprises at least one movable jaw. In another aspect of present disclosure, the distal end of the distal section comprises a duck bill valve configuration.


In one aspect of present disclosure, the telescoping catheter may further comprise a controller for applying intermittent vacuum to the lumen. The controller may be configured to apply pulses of vacuum to the lumen spaced apart by spaces of neutral pressure. The controller may be configured to alternate between applying pulses of higher negative pressure and lower negative pressure. The distal tip of the catheter may axially reciprocate in response to application of pulses of vacuum to the lumen.


In another aspect of the present disclosure, disclosed herein is a vacuum transfer tool for maintaining a vacuum within an extendable catheter. The vacuum transfer tool has a proximal transfer tube and a distal transfer tube. The proximal transfer tube has a proximal end, a distal end, a lumen extending from the proximal end to the distal end, and an aspiration port in fluid communication with the lumen. The aspiration port is positioned between the proximal end and the distal end. The distal transfer tube has a proximal end, a distal end, a lumen extending from the proximal end to the distal end, and an aspiration port in fluid communication with the lumen. The aspiration port is positioned between the proximal end and the distal end. The distal end of the proximal transfer tube is removably connectable to the proximal end of the distal transfer tube. The distal end of the distal transfer tube is directly or indirectly connectable to a proximal end of a catheter. The proximal end of the proximal transfer tube has a proximal sealing port configured to receive and form a fluid seal around an extendable catheter segment. The proximal transfer tube is configured to form a sealed space between the proximal end and the distal end of the proximal transfer tube around the extendable catheter segment. The distal transfer tube is configured to receive the extendable catheter segment from the proximal transfer tube and to position the extendable catheter segment within a lumen of the catheter.


The proximal end of the distal transfer tube may have a fluid sealing port. The fluid sealing port may be a self-sealing port. The distal transfer tube may be removably connectable directly or indirectly to the proximal end of the catheter. The distal end of the proximal transfer tube may have an introducer configured to be received within the lumen of the distal transfer tube. The introducer may have a rigid tubular body. The introducer may have a step adjacent the rigid tubular body, the step being configured to abut the proximal end of the distal transfer tube. The proximal sealing support of the proximal transfer tube may be a rotating hemostasis valve. The proximal transfer tube may have a rotating hemostasis valve between the introducer and the aspiration port configured to help form the sealed space. The proximal transfer tube may have two rotating hemostasis valves positioned on opposite sides of the aspiration port. The rotating hemostasis valves may be configured to form the sealed space when closed. The rotating hemostasis valves may be configured to secure the extendable catheter segment to the proximal transfer tube when closed such that movement of the proximal transfer tube simultaneously moves the extendable catheter segment.


At least portions of the proximal transfer tube and/or the distal transfer tube may be transparent. The proximal transfer tube may be configured to allow visual determination of the positioning of the proximal end of the extendable catheter segment within a portion of the lumen corresponding to the sealed space. The vacuum transfer tool may further include the catheter. The vacuum transfer tool may further include the extendable catheter segment.


In another aspect of the present disclosure, disclosed herein is a method of aspirating a clot from a blood vessel using an extendable catheter. The method includes introducing a catheter into the blood vessel, coupling a proximal transfer tube to a distal transfer tube, inserting an extendable catheter segment through the proximal transfer tube and into the distal transfer tube, and inserting the extendable catheter segment through the distal transfer tube and into the catheter. The proximal transfer tube has a proximal end, a distal end, a lumen extending from the proximal end to the distal end, and an aspiration port in fluid communication with the lumen. The aspiration port is positioned between the proximal end and the distal end. The distal transfer tube has a proximal end, a distal end, a lumen extending from the proximal end to the distal end, and an aspiration port in fluid communication with the lumen. The aspiration port is positioned between the proximal end and the distal end. The proximal transfer tube is attached or attachable to a proximal end of the catheter. The method further includes retracting the extendable catheter segment while aspiration is provided by both the aspiration port of the proximal transfer tube and the aspiration port of the distal transfer tube. The method further includes positioning the proximal end of the extendable catheter segment within a portion of the proximal transfer tube corresponding to a sealable space and sealing the sealable space of the proximal transfer tube such that a vacuum is maintained by the aspiration port of the proximal transfer tube around the proximal end of the extendable catheter segment. The method further includes withdrawing the extendable catheter segment from the distal transfer tube by decoupling the proximal transfer tube and the distal transfer tube and moving the proximal transfer tube away from the distal transfer tube while maintaining a vacuum within the distal transfer tube via the aspiration port of the distal transfer tube.


The method may include extending the extendable catheter segment such that a distal end of the extendable catheter segment extends distally beyond a distal end of the catheter. The method may include attaching the distal end of the distal transfer tube directly or indirectly to the proximal end of the catheter. The method may include capturing the clot on the distal end of the extendable catheter segment prior to retracting the extendable catheter segment. The method may include transferring the clot from the distal end of the extendable catheter segment. The method may include applying an irrigation fluid to at least one of the aspiration port of the proximal transfer tube and the aspiration port of the distal transfer tube. Sealing the sealable space may comprise rotating a rotating hemostasis valve proximal to the aspiration port and rotating a rotating hemostasis valve distal to the aspiration port. Sealing the sealable space may secure the extendable catheter segment to the proximal transfer tube such that the extendable transfer segment is not axially translatable relative to the proximal transfer tube.


The method may include closing a fluid sealing port on the proximal end of the proximal transfer tube around a pull wire to a first position, extending the extendable catheter segment through the catheter while the fluid sealing port is in the first position, retracting the extendable catheter segment through the catheter while the fluid sealing port is in the first position, and further closing the fluid sealing port around the pull wire to a second position. The pull wire may be connected to the extendable catheter segment. The first position may form a fluid seal around the pull wire but allow axial translation of the pull wire through the proximal sealing port. The second position may form a better fluid seal around the pull wire than the first position and disallow axial translation of the pull wire through the proximal sealing port. The withdrawing of the extendable catheter segment from the distal transfer tube may be performed while the proximal sealing port is in the second position.


The method may include inserting an agitator through the proximal transfer tube after the extendable catheter segment is withdrawn. The method may include inserting an agitator through a central lumen in the pull wire while the pull wire extends through the proximal transfer tube.


Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages, and features of the embodiments have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment disclosed herein. No individual aspects of this disclosure are essential or indispensable. Further features and advantages of the embodiments will become apparent to those of skill in the art in view of the Detailed Description which follows when considered together with the attached drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational schematic view of an intracranial aspiration catheter in accordance with the present invention, with a distal segment in a proximally retracted configuration.



FIG. 2 is a side elevational view as in FIG. 1, with the distal segment in a distally extended configuration.



FIGS. 3A-3B are cross-sectional elevational views of a distal end of catheter 10, with the distal section 34 fully extended.



FIG. 4 depicts cerebral arterial vasculature including the Circle of Willis, and an access catheter positioned at an occlusion in the left carotid siphon artery.



FIGS. 5 through 8 show a sequence of steps involved in positioning of the catheter and aspirating obstructive material from the middle cerebral artery.



FIG. 9 illustrates removal of the catheter following aspiration of obstructive material.



FIG. 10 illustrates an aspiration system configured to apply pulsatile negative pressure through the aspiration catheter.



FIG. 11 illustrates an alternative aspiration system configured to apply pulsatile negative pressure through the aspiration catheter.



FIG. 12 illustrates a further alternative aspiration system configured to apply mechanical vibration through the aspiration catheter.



FIGS. 13A-13C depict a pulsed aspiration cycle according to an embodiment.



FIGS. 14A-14C illustrate perspective views of an example of a vacuum transfer device. FIG. 14A shows the vacuum transfer device comprising the proximal transfer tube uncoupled from the distal transfer tube. FIG. 14B shows the distal transfer tube. FIG. 14C shows the proximal transfer tube.



FIGS. 15A-15D schematically illustrate cross sections of the vacuum transfer device during an example of a procedure for capturing a clot on a distal end of the proximal section of the catheter and maintaining vacuum on the proximal section during removal of the extendable distal section of the catheter from the proximal section.



FIG. 16 illustrates a cross-sectional elevational view of a catheter wall according to an embodiment.



FIG. 17A illustrates a side elevational view of a progressively enhanced flexibility catheter according to an embodiment.



FIG. 17B is a proximal end view of the enhanced flexibility catheter of FIG. 17A.





DETAILED DESCRIPTION

Referring to FIG. 1, there is disclosed a catheter 10 in accordance with one aspect of the present invention. Although primarily described in the context of an axially extendable distal segment aspiration catheter with a single central lumen, catheters of the present invention can readily be modified to incorporate additional structures, such as permanent or removable column strength enhancing mandrels, two or more lumen such as to permit drug, contrast or irrigant infusion or to supply inflation media to an inflatable balloon carried by the catheter, or combinations of these features, as will be readily apparent to one of skill in the art in view of the disclosure herein. In addition, the present invention will be described primarily in the context of removing obstructive material from remote vasculature in the brain, but has applicability as an access catheter for delivery and removal of any of a variety of diagnostics or therapeutic devices with or without aspiration.


The catheters disclosed herein may readily be adapted for use throughout the body wherever it may be desirable to distally advance a low profile distal catheter segment from a larger diameter proximal segment. For example, axially extendable catheter shafts in accordance with the present invention may be dimensioned for use throughout the coronary and peripheral vasculature, the gastrointestinal tract, the urethra, ureters, Fallopian tubes and other lumens and potential lumens, as well. The telescoping structure of the present invention may also be used to provide minimally invasive percutaneous tissue access, such as for diagnostic or therapeutic access to a solid tissue target (e.g., breast or liver or brain biopsy or tissue excision), delivery of laparoscopic tools or access to bones such as the spine for delivery of screws, bone cement or other tools or implants.


The catheter 10 generally comprises an elongate tubular body 16 extending between a proximal end 12 and a distal functional end 14. The length of the tubular body 16 depends upon the desired application. For example, lengths in the area of from about 120 cm to about 140 cm or more are typical for use in femoral access percutaneous transluminal coronary applications. Intracranial or other applications may call for a different catheter shaft length depending upon the vascular access site, as will be understood in the art.


In the illustrated embodiment, the tubular body 16 is divided into at least a fixed proximal section 33 and an axially extendable and retractable distal section 34 separated at a transition 32. FIG. 2 is a side elevational view of the catheter 10 shown in FIG. 1, with the distal segment in a distally extended configuration.


Referring to FIGS. 3A and 3B, there is illustrated a cross-sectional view of the distal segment 34 shown extended distally from the proximal segment 33 in accordance with the present invention. Distal segment 34 extends between a proximal end 36 and a distal end 38 and defines at least one elongate central lumen 40 extending axially therethrough. Distal end 38 may be provided with one or more movable side walls or jaws 39, which move laterally in the direction of an opposing side wall or jaw 41 under the influence of aspiration, to enable the distal end 38 to bite or break thrombus or other material into smaller particles, to facilitate aspiration through lumen 40. Both walls 39 and 41 may be movable towards and away from each other to break up thrombus as is discussed further below. For certain applications, the proximal section 33 may also or alternatively be provided with one or two opposing jaws, also responsive to vacuum or mechanical actuation to break up thrombus.


The inner diameter of the distal section 34 may be between about 0.030 inches and about 0.112 inches, between about 0.040 inches and about 0.102 inches, between about 0.045 inches and about 0.097 inches, between about 0.050 inches and about 0.092 inches, between about 0.055 inches and about 0.087 inches, between about 0.060 inches and about 0.082 inches, between about 0.062 inches and about 0.080 inches, between about 0.064 inches and about 0.078 inches, between about 0.066 inches and about 0.076 inches, between about 0.068 inches and about 0.074 inches, or between about 0.070 inches and about 0.072 inches.


The inner diameter and the outer diameter of the distal section 34 may be constant or substantially constant along its longitudinal length. The inner diameter may be at least about 0.06 inches, 0.065 inches, 0.07 inches, 0.075 inches, 0.08 inches, or more than 0.08 inches. The outer diameter may be at least about 0.07 inches, 0.075 inches, 0.08 inches, 0.085 inches, 0.09 inches, 0.095 inches, 0.1 inches, or more than 0.1 inches. The total thickness of the sidewall extending between the inner and outer diameter may be at least about 0.005 inches, 0.010 inches, 0.015 inches, 0.02 inches, 0.025 inches, or more than 0.025 inches. For example, the distal section 34 may have an inner diameter of about 0.071 inches and an outer diameter of about 0.083 inches. Alternatively, the distal section 34 may be tapered near its distal end. A larger lumen (internal diameter) may increase the applied aspiration force through the distal end of the distal section 34. A smaller outer diameter may provide better catheter trackability and/or may better enable the catheter to reach more distal anatomy (e.g. neuroanatomy), as the tapered distal end may be better accommodated in smaller blood vessels. The inner and outer diameters of the distal section 34 may be correlated in order to maintain a sufficient sidewall thickness that provides sufficient structural integrity to the catheter. The distal section 34 may be tapered at less than or equal to about 5 cm, about 10 cm, about 15 cm, about 20 cm, about 23 cm, about 25 cm, about 30 cm, about 31 cm, about 35 cm, about 40 cm, about 45 cm, about 50 cm, about 60 cm, or about 70 cm from its distal end. In some embodiments, the taper may be positioned between about 25 cm and about 35 cm from the distal end of the distal section 34.


The inner diameter of the distal section 34 may be tapered or decreased in the distal direction near the distal end to an internal diameter that is less than or equal to about 95%, about 90%, about 85%, about 80%, about 75%, about 70%, about 65%, about 60%, about 55%, or about 50% of the adjacent, untapered internal diameter. In some embodiments, the internal diameter of the tapered distal section 34 may be between about 50% and about 70% of the adjacent, untapered internal diameter. For example, the untapered internal diameter at the proximal end of the distal section 34 may be about 0.071 inches and the tapered internal diameter at the distal end of the distal section 34 may be about 0.035 inches, 0.045 inches, or 0.055 inches. The inner diameter of the distal section 34 may be tapered or increased near the distal end by greater than or equal to about 102%, 104%, 106%, 108%, or more of the internal diameter just proximal to a transition into the taper. The tapered inner diameter of the distal section 34 may be less than or equal to about 0.11 inches, about 0.1 inches, about 0.090 inches, about 0.080 inches, about 0.070 inches, about 0.065 inches, about 0.060 inches, about 0.055 inches, about 0.050 inches, about 0.045 inches, about 0.040 inches, about 0.035 inches, about 0.030 inches, about 0.025 inches, about 0.020 inches, about 0.015 inches, or about 0.010 inches. The taper in the outer diameter of the tapered portion of the distal section 34 may be matched to maintain a constant thickness of the sidewall. Alternatively, the sidewall may be thinner along the tapered portion. For instance, the sidewall may be no greater than 95%, 90%, 85%, 80%, 75%, 70%, or less than 70% of the thickness of the sidewall along the proximal portion of the distal section 34. In some embodiments, the length of the distal tapered portion of the distal section 34 may be between about 25 cm and about 35 cm, between about 25 cm and about 30 cm, between about 30 cm and 35 cm, or approximately 30 cm.


In some embodiments, the proximal segment 33 may have an inner diameter of at least about 0.07 inches, 0.075 inches, 0.08 inches, 0.085 inches, 0.09 inches, 0.1 inches, 0.105 inches, or more than 0.105 inches. The proximal segment 33 may have an outer diameter of at least about 0.08 inches, 0.085 inches, 0.09 inches, 0.095 inches, 0.01 inches, 0.105 inches, 0.11 inches, 0.0115 inches, 0.012 inches, or more than 0.012 inches. For example, the inner diameter may be approximately 0.088 inches and the outer diameter may be approximately 0.106 inches. The sidewall of the proximal segment 33 may have a thickness of at least about 0.005 inches, 0.01 inches, 0.015 inches, 0.02 inches, 0.025 inches, or more than 0.25 inches. In some embodiments, the proximal segment 33 has a constant inner and/or outer diameter along its length. In some embodiments, the proximal segment 33 may slightly taper or decrease in diameter along the distal direction. For example, in some embodiments, the outer diameter of the proximal segment 33 may be about 0.106 inches at the distal end and about 0.108 inches at the proximal end.


The length of the proximal segment 33 may be at least about 90 cm, 95 cm, 100 cm, 105 cm, 110 cm, 115 cm, 120 cm, 125 cm, 130 cm, 135 cm, or more than 135 cm. For example, in one embodiment the length is approximately 106 cm. In another embodiment, the length is approximately 117 cm. In some neurovascular applications, the distal end of the proximal segment 33 may extend at least to the Horizontal Petrous segment of the vasculature.


In some embodiments, the length of the distal section 34 may be between about 13 cm and about 53 cm, between about 18 cm and about 48 cm, between about 23 cm and about 43 cm, between about 28 cm and about 38 cm, between about 20 cm and 30 cm, or between about 25 cm and 30 cm. The length of the distal section 34 may be less than or equal to about 20 cm, about 25 cm, about 30 cm, about 33 cm, about 35 cm, about 40 cm, about 41 cm, about 45 cm, about 50 cm, about 55 cm, about 60 cm, about 70 cm, or about 80 cm. The length of the distal section 34 may depend on the degree of tapering of the internal diameter of the distal section 34.


The inner diameter and the outer diameter of the distal section 34 may be constant or substantially constant along its longitudinal length. The inner diameter may be at least about 0.06 inches, 0.065 inches, 0.07 inches, 0.075 inches, 0.08 inches, or more than 0.08 inches. The outer diameter may be at least about 0.07 inches, 0.075 inches, 0.08 inches, 0.085 inches, 0.09 inches, 0.095 inches, 0.1 inches, or more than 0.1 inches. The total thickness of the sidewall extending between the inner and outer diameter may be at least about 0.005 inches, 0.010 inches, 0.015 inches, 0.02 inches, 0.025 inches, or more than 0.025 inches. For example, the distal section 34 may have an inner diameter of about 0.071 inches and an outer diameter of about 0.083 inches. Alternatively, the distal section 34 may be tapered near its distal end. A larger lumen (internal diameter) may increase the applied aspiration force through the distal end of the distal section 34. A smaller outer diameter may provide better catheter trackability and/or may better enable the catheter to reach more distal anatomy (e.g. neuroanatomy), as the tapered distal end may be better accommodated in smaller blood vessels. The inner and outer diameters of the distal section 34 may be correlated in order to maintain a sufficient sidewall thickness that provides sufficient structural integrity to the catheter. The distal section 34 may be tapered at less than or equal to about 5 cm, about 10 cm, about 15 cm, about 20 cm, about 23 cm, about 25 cm, about 30 cm, about 31 cm, about 35 cm, about 40 cm, about 45 cm, about 50 cm, about 60 cm, or about 70 cm from its distal end.


The inner diameter of the distal section 34 may be tapered or decreased near the distal end by less than or equal to about 95%, about 90%, about 85%, about 80%, about 75%, about 70%, about 65%, about 60%, about 55%, about 50%, about 45%, about 40%, about 35%, about 30%, about 25%, about 20%, about 10%, or about 5%. The inner diameter of the distal section 34 may be tapered or decreased near the distal end by greater than or equal to about 95%, about 90%, about 85%, about 80%, about 75%, about 70%, about 65%, about 60%, about 55%, about 50%, about 45%, about 40%, about 35%, about 30%, about 25%, about 20%, about 10%, or about 5%. The tapered inner diameter of the distal section 34 may be by less than or equal to about 0.11 inches, about 0.1 inches, about 0.090 inches, about 0.080 inches, about 0.070 inches, about 0.065 inches, about 0.060 inches, about 0.055 inches, about 0.050 inches, about 0.045 inches, about 0.040 inches, about 0.035 inches, about 0.030 inches, about 0.025 inches, about 0.020 inches, about 0.015 inches, or about 0.010 inches.


The length of the distal section 34 may be between about 13 cm and about 53 cm, between about 18 cm and about 48 cm, between about 23 cm and about 43 cm, or between about 28 cm and about 38 cm. The length of the distal section 34 may be less than or equal to about 20 cm, about 25 cm, about 30 cm, about 33 cm, about 35 cm, about 40 cm, about 41 cm, about 45 cm, about 50 cm, about 55 cm, about 60 cm, about 70 cm, or about 80 cm. The length of the distal section 34 may depend on the degree of tapering of the internal diameter of the distal section 34.


The proximal end 36 of distal section 34 is provided with a proximally extending pull wire 42. Pull wire 42 extends proximally throughout the length of the tubular body 16, to control 24 which may be carried by manifold 18. Axial movement of control 24 produces a corresponding axial movement of distal section 34 with respect to proximal section 33 as has been discussed. Alternatively, the proximal end of pull wire 42 may exit through a port on manifold 18, such that it may be manually grasped and pulled or pushed by the clinician to extend or retract the distal section 34. The length of the pull wire 42 may be between about 700 mm and about 1556 mm, between about 800 mm and about 1456 mm, between about 850 mm and about 1406 mm, between about 900 mm and about 1356 mm, between about 950 mm and about 1306 mm, between about 1000 mm and about 1256 mm, between about 1020 mm and about 1236 mm, between about 1040 mm and about 1216 mm, between about 1060 mm and about 1196 mm, between about 1080 mm and about 1176 mm, between about 1100 mm and about 1156 mm, between about 1110 mm and about 1146 mm, or between about 1120 mm and about 1136 mm. In some preferred embodiments, the length of the pull wire 42 may be between approximately 110-120 cm.


Upon distal advance of pull wire 42 to its limit of travel, an overlap 44 remains between the proximal end 36 of distal section 34 and the proximal section 33. This overlap 44 is configured to provide a seal to enable efficient transmission of vacuum from proximal section 33 to distal section 34. In some embodiments, the length of the pull wire 42 may be limited to ensure that there is a minimal overlap 44 between the proximal segment 33 and the distal segment 34 when the pull wire 42 is fully inserted into the proximal segment 33 or attached manifold in a distal direction. In some embodiments, the length of the proximal segment 33 may be sufficiently long for neurovascular applications such that when the proximal segment is positioned in a relatively proximal position (e.g., the horizontal petrous segment), the neuroanatomy effectively limits the distance by which the distal segment 34 may be extended, ensuring a sufficient overlap 44. For example, the distal segment 34 may not be able to extend further than the M2 segment of the middle cerebral artery (MCA) given its dimensions. Overlap 44 may be provided with any of a variety of additional features to facilitate a seal, such as a gasket, coating or tightly toleranced sliding fit, as described elsewhere herein. In some embodiments, the proximal end of the distal segment 34 may be slightly expanded to create a seal. For instance, the outer diameter of the proximal end of the distal segment 34 and the inner diameter of the proximal segment 33 may both be about 0.088 inches. Preferably the clearance between the OD of the distal section 34 and ID of the proximal section 33, at least in the vicinity of transition 32, will be no more than about 0.005 inches and preferably no more than about 0.003 inches to provide an effective seal in a blood environment. A larger clearance may be more feasible.


Following positioning of the distal end of proximal section 33 within the vasculature, such as within the cervical carotid artery, the control 24 is manipulated to distally advance distal section 34 deeper into the vasculature. For this purpose, the pull wire 42 will be provided with sufficient column strength to enable distal advance of the distal tip 38 as will be discussed below.


The pull wire 42 and distal section 34 may be integrated into a catheter as illustrated in FIGS. 1 and 2. Alternatively, distal section 34 and pull wire 42 may be configured as a stand-alone catheter extension device as is discussed in greater detail below. The catheter extension device may be introduced into the proximal end of proximal section 33 after placement of proximal section 33 and advanced distally there through as illustrated in FIG. 3A, to telescopically extend the reach of the aspiration system.


Referring to FIG. 3B, the pull wire 42 may comprise a tubular wall having an axially extending central lumen 45. The central lumen 45 permits introduction of media such as lubricants, drugs, contrast agents or others into the distal section 34. In addition, the central lumen 45 extending through pull wire 42 permits introduction of an agitator as is discussed in greater detail below. As shown in FIG. 3B, the central lumen 45 may open into the lumen 40. The distal opening of the central lumen 45 may be positioned at a point along the length of the distal section 34 such that the central lumen 45 terminates where the lumen 40 begins (the distal opening of central lumen 45 may be longitudinally aligned with the proximal opening of lumen 40). The proximal opening of lumen 40 may be angled or slanted as shown in FIG. 3B. In some embodiments, the opening of lumen 40 may be flat. The distal opening of central lumen 45 may be flat as shown in FIG. 3B. In some embodiments, the opening may be angled or slanted, similar to the opening of lumen 40 in FIG. 3B.


In some embodiments, the central lumen 45 may terminate proximal to the opening of the lumen 40. In some embodiments, the central lumen 45 may terminate distal to the opening of the lumen 40 and/or the proximal end of the distal section 34 (e.g., at a point within the lumen 40). For example, the central lumen 45 may terminate at the distal end of the distal section or just short of the distal end (e.g., no more than approximately 1 cm from the distal end). In some implementations, the portion of the pull wire 42, with or without a central lumen 45, which extends beyond the proximal end of the distal section 34 (e.g., into lumen 40) may decrease in stiffness (durometer) in a distal direction. The pull wire 42 may be relatively stiff along the portion proximal to the proximal end of the distal section 34 in order to provide sufficient pushability of the extension catheter. The stiffness of the portion of the pull wire 42 distal of the proximal end of the distal section 34 may substantially match or be less than the stiffness of the distal section 34 along the length of the distal section 34. The portion of the pull wire 42 distal of the proximal end of the distal section 34 may have a uniform stiffness less than the stiffness of the portion proximal of the proximal end of the distal section 34 or it may have a gradated or gradually decreasing stiffness in the distal direction, decreasing from the stiffness of the portion proximal of the proximal end of the distal section 34. For example, the pull wire 42 may comprise metal along the portion proximal to the proximal end of the distal section 34 and may comprise a polymer, softer than the metal, along the portion distal to the proximal end of the distal section 34. The portion distal to the proximal end, in some embodiments, may be extruded with decreasing stiffness in the distal direction.


The proximal end 12 of catheter 10 may be additionally provided with a manifold 18 having one or more access ports as is known in the art. Generally, manifold 18 is provided with a proximal port such as a guidewire port 20 in an over-the-wire construction, and at least one side port such as aspiration port 22. Alternatively, the aspiration port 22 may be omitted if the procedure involves removal of the guidewire proximally from the guidewire port 20 following placement of the aspiration catheter, and aspiration through the guidewire port. Additional access ports and lumen may be provided as needed, depending upon the functional capabilities of the catheter. Manifold 18 may be injection molded from any of a variety of medical grade plastics, or formed in accordance with other techniques known in the art.


Manifold 18 may additionally be provided with a control 24, for controlling the axial position of the distal segment 34 of the catheter. Control 24 may take any of a variety of forms depending upon the mechanical structure and desired axial range of travel of the distal segment 34. In the illustrated embodiment, control 24 comprises a slider switch which is mechanically axially movably linked to the distal segment such that proximal retraction of the slider switch 24 produces a proximal movement of the distal segment 34. This retracts the distal segment 34 into the proximal section 33 as illustrated in FIG. 1. Distal axial advancement of the slider switch 24 produces a distal axial advance of the distal segment 34, as illustrated in FIGS. 2 and 3.


Any of a variety of controls may be utilized, including switches, buttons, levers, rotatable knobs, pull/push wires, and others which will be apparent to those of skill in the art in view of the disclosure herein. The control will generally be linked to the distal segment by a control wire 42.


Alternatively, the proximal section 33 and distal section 34 maybe provided as separate devices, in which construction the proximal control may be omitted. The distal end of proximal section 33 may be provided with one or more jaws for morcellating or otherwise breaking thrombus or other obstruction into pieces or otherwise facilitating aspiration. The proximal section 33 may additionally be mechanically coupled to or adapted for coupling to a source of vibrational or rotational movement, such as to provide the intermittent or pulsatile movement to facilitate navigation into the vasculature.


Using axial reciprocation, and/or rotation, and/or biting action of the distal jaws, the clinician may be able to reach the obstruction using proximal section 33. See, for example, FIG. 4 in which proximal section 33 is able to reach an obstruction in the left carotid siphon. If, however, the proximal section 33 is not able to advance sufficiently close to the obstruction, a separate telescoping distal section 34 may be introduced into the proximal section 33 and advanced therethrough and beyond, as illustrated in FIGS. 2 and 5-9, to reach the obstruction.


The cerebral circulation is regulated in such a way that a constant total cerebral blood flow (CBF) is generally maintained under varying conditions. For example, a reduction in flow to one part of the brain, such as in acute ischemic stroke, may be compensated by an increase in flow to another part, so that CBF to any one region of the brain remains unchanged. More importantly, when one part of the brain becomes ischemic due to a vascular occlusion, the brain compensates by increasing blood flow to the ischemic area through its collateral circulation.



FIG. 4 depicts cerebral arterial vasculature including the Circle of Willis. Aorta 100 gives rise to right brachiocephalic artery 82, left common carotid artery (CCA) 80, and left subclavian artery 84. The brachiocephalic artery 82 further branches into right common carotid artery 85 and right subclavian artery 83. The left CCA gives rise to left internal carotid artery (ICA) 90 which becomes left middle cerebral artery (MCA) 97 and left anterior cerebral artery (ACA) 99. Anteriorly, the Circle of Willis is formed by the internal carotid arteries, the anterior cerebral arteries, and anterior communicating artery 91 which connects the two ACAs. The right and left ICA also send right posterior communicating artery 72 and left posterior communicating artery 95 to connect, respectively, with right posterior cerebral artery (PCA) 74 and left PCA 94. The two posterior communicating arteries and PCAs, and the origin of the posterior cerebral artery from basilar artery 92 complete the circle posteriorly.


When an occlusion occurs acutely, for example, in left carotid siphon 70, as depicted in FIG. 4, blood flow in the right cerebral arteries, left external carotid artery 78, right vertebral artery 76 and left vertebral artery 77 increases, resulting in directional change of flow through the Circle of Willis to compensate for the sudden decrease of blood flow in the left carotid siphon. Specifically, blood flow reverses in right posterior communicating artery 72, right PCA 74, left posterior communicating artery 95. Anterior communicating artery 91 opens, reversing flow in left ACA 99, and flow increases in the left external carotid artery, reversing flow along left ophthalmic artery 75, all of which contribute to flow in left ICA 90 distal the occlusion to provide perfusion to the ischemic area distal to the occlusion.


As illustrated in FIG. 4, the proximal segment of catheter 10 is transluminally navigated along or over the guidewire, to the proximal side of the occlusion. Transluminal navigation may be accomplished with the distal section 34 of the catheter in the first, proximally retracted configuration. This enables distal advance of the proximal section 33 until further progress is inhibited by small and/or tortuous vasculature. Alternatively, the distal section 34 is a separate device, and is not inserted into the proximal section 33 until it is determined that the proximal section 33 cannot safely reach the occlusion. In the example illustrated in FIG. 4, the occlusion may be safely reached by the proximal section 33, without the need to insert or distally extend a distal section 34.


The distal end of the proximal section 33 of aspiration catheter 10 is inserted typically through an incision on a peripheral artery over a guidewire and advanced as far as deemed safe into a more distal carotid or intracranial artery, such as the cervical carotid, terminal ICA, carotid siphon, MCA, or ACA. The occlusion site can be localized with cerebral angiogram or IVUS. In emergency situations, the catheter can be inserted directly into the symptomatic carotid artery after localization of the occlusion with the assistance of IVUS or standard carotid doppler and TCD.


If it does not appear that sufficient distal navigation of the proximal section 33 to reach the occlusion can be safely accomplished, the distal section 34 is inserted into the proximal port 20 and/or distally extended beyond proximal section 33 until distal tip 38 is positioned in the vicinity of the proximal edge of the obstruction.


Referring to FIG. 5, an obstruction 70 is lodged in the middle cerebral artery 97. Proximal section 33 is positioned in the ICA and not able to navigate beyond a certain point such as at the branch 96 to the MCA artery 97. The proximal section 33 may be provided with a distal section 34 carried there in. Alternatively, a separate distal section 34 may be introduced into the proximal end of proximal section 33 once the determination has been made that the obstruction 70 cannot be reached directly by proximal section 33 alone. As seen in FIGS. 6 and 7, the distal section 34 may thereafter be transluminally navigated through the distal tortuous vasculature between proximal section 33 and the obstruction 70.


Referring to FIG. 8, the obstruction 70 may thereafter be drawn into distal section 34 upon application of constant or pulsatile negative pressure with or without the use of jaws or other activation on the distal end of distal section 34 as discussed elsewhere herein. Once the obstruction 70 has either been drawn into distal section 34, or drawn sufficiently into distal section 34 that it may be proximately withdrawn from the body, proximal section 33 and distal section 34 are thereafter proximally withdrawn.


Aspiration may be applied via lumen 40, either in a constant mode, or in a pulsatile mode. Preferably, pulsatile application of vacuum will cause the distal tip 38 to open and close like a jaw, which facilitates reshaping the thrombus or biting or nibbling the thrombus material into strands or pieces to facilitate proximal withdrawal under negative pressure through lumen 40. Application of aspiration may be accompanied by distal advance of the distal tip 38 into the thrombotic material.


Pulsatile application of a vacuum may oscillate between positive vacuum and zero vacuum, or between a first lower negative pressure and a second higher negative pressure. Alternatively, a slight positive pressure may be alternated with a negative pressure, with the application of negative pressure dominating to provide a net aspiration through the lumen 40. Pulse cycling is discussed in greater detail elsewhere herein.


The proximal manifold and/or a proximal control unit (not illustrated) connected to the manifold may enable the clinician to adjust any of a variety o/f pulse parameters including pulse rate, pulse duration, timing between pulses as well as the intensity of the pulsatile vacuum.


The distal section may thereafter be proximally retracted into proximal section 33 and the catheter proximally retracted from the patient. Alternatively, proximal retraction of the catheter 10 may be accomplished with the distal section 34 in the distally extended position. A vasodilator, e.g., nifedipine or nitroprusside, may be injected through a second lumen to inhibit vascular spasm induced as a result of instrumentation.


Pressure may be monitored by a manometer carried by the catheter or a wire positioned in a lumen of the catheter. A pressure control and display may be included in the proximal control unit or proximal end of the catheter, allowing suction within the vessel to be regulated.


Focal hypothermia, which has been shown to be neuroprotective, can be administered by perfusing hypothermic oxygenated blood or fluid. Moderate hypothermia, at approximately 32 to 34° C., can be introduced during the fluid infusion. Perfusion through a port on manifold 18 can be achieved by withdrawing venous blood from a peripheral vein and processing through a pump oxygenator, or by withdrawing oxygenated blood from a peripheral artery, such as a femoral artery, and pumping it back into the carotid artery.


If continuous and/or intermittent suction fails to dislodge the occlusion, a thrombolytic agent, e.g., t-PA, can be infused through central lumen 40 or a second lumen to lyse any thrombotic material with greater local efficacy and fewer systemic complications. Administration of thrombolytic agent, however, may not be recommended for devices which are inserted directly into the carotid artery due to increased risk of hemorrhage.


The intensity of intermittent or pulsatile vacuum applied to lumen 40 may be adjusted to cause the distal tip 38 of the catheter 10 to experience an axial reciprocation or water hammer effect, which can further facilitate both translumenal navigation as well as dislodging or breaking up the obstruction. Water hammer, or more generally fluid hammer, is a pressure surge or wave caused when a fluid in motion is forced to stop or change direction suddenly, creating a momentum change. A water hammer commonly occurs when a valve closes suddenly at the end of a pipeline system, and a pressure wave propagates in the pipe. A pressure surge or wave is generated inside the lumen 40 of the aspiration catheter 10 when a solenoid or valve closes and stops the fluid flow suddenly, or other pulse generator is activated. As the pressure wave propagates in the catheter 10, it causes the catheter 10 to axially vibrate. Since vibration can reduce surface friction between the outer diameter of the catheter 10 and the inner diameter of the vessel wall, it enables catheter to track through tortuous anatomies as well as assist capturing thrombus.


A pulsatile vacuum pressure aspirator may be used in order to improve effectiveness of aspiration for vascular thrombectomy and to improve catheter trackability through tortuous vasculatures. FIG. 10 shows an embodiment of a pulsatile vacuum pressure aspirator 300 that applies intermittent or pulsatile vacuum to lumen 40. In the illustrated embodiment, the pulsatile vacuum pressure aspirator 300 is in fluid connection with the proximal end 12 of the catheter 10 and comprises vacuum generator 302, vacuum chamber 310, collection canister 312, solenoid valve 314, frequency modulator 316, valve controller 318, and remote controller 320.


Vacuum generator 302 comprises a vacuum pump 304, a vacuum gauge 306, and a pressure adjustment control 308. The vacuum pump 304 generates vacuum. The vacuum gauge 306 is in fluid connection with the vacuum pump 304 and indicates the vacuum pressure generated by the pump 304. The pressure adjustment control 308 allows the user to set to a specific vacuum pressure. Any of a variety of controls may be utilized, including switches, buttons, levers, rotatable knobs, and others which will be apparent to those of skill in the art in view of the disclosure herein.


Vacuum chamber 310 is in fluid connection with the vacuum generator 302 and acts as a pressure reservoir and/or damper. Collection canister 312 is in fluid connection with the vacuum chamber 310 and collects debris. The collection canister 312 may be a removable vial that collects debris or tissues, which may be used for pathologic diagnosis. Vacuum chamber 310 and collection canister 312 may be separate components that are in fluid connection with each other or a merged component. In the illustrated embodiment, the vacuum chamber 310 and the collection canister 312 is a merged component and is in fluid connection with the vacuum generator 302.


Solenoid valve 314 is located in the fluid connection path between a luer or other connector configured to releasably connect to an access port of the catheter 10 and the vacuum chamber 310/collection canister 312. The solenoid valve 314 controls the fluid flow from the catheter 10 to the vacuum chamber 310/collection canister 312.


Pulsatile vacuum pressure aspirator 300 may comprise frequency modulator 316 for control of the solenoid valve 314. The frequency modulator 316 generates different electrical wave frequencies and forms, which are translated into the movement of the solenoid valve 314 by the valve controller 318. The wave forms generated from the frequency modulator 316 comprise sinusoidal, square, and sawtooth waves. The wave forms generated from the frequency modulator 316 typically have frequencies less than about 500 Hz, in some modes of operation less than about 20 Hz or less than about 5 Hz. The wave forms have duty cycles ranging from 0%, in which the solenoid valve 314 is fully shut, to 100%, in which the solenoid valve 314 is fully open.


Valve controller 318 modulates the solenoid valve 314 on and off. The valve controller 318 may be electrically or mechanically connected to the solenoid valve 314. Any of a variety of controls may be utilized, including electrical controllers, switches, buttons, levers, rotatable knobs, and others which will be apparent to those of skill in the art in view of the disclosure herein. The valve controller 318 may be mechanically controlled by users or may be electrically controlled by the frequency modulator 316. The frequency modulator 316 and the valve controller 318 may be separate components that are electrically or mechanically connected or a merged component.


Remote control 320 enables physicians to control the frequency modulator 316 and/or the valve controller 318 for various purposes, such as turning the valve on/off, selecting different wave frequencies, and selecting different wave forms, while manipulating the catheter 10 at the patient side. Remote control 320 may be in wired or wireless communication with aspirator 300.


By tuning frequency, duty cycle, and wave form, one skilled in the art may match or approximate the resonating frequency to the natural frequency of the catheter. This may further enhance the efficacy of aspiration. The natural frequency of the catheter is typically less than about 260 Hz.


In another embodiment, shown in FIG. 11, the solenoid valve 414 is positioned in and fluidly connects between the air/fluid reservoir 422 at the atmospheric pressure and the aspiration line 424 connecting the catheter 10 to the vacuum chamber 410/collection canister 412. Unlike the first embodiment in FIG. 10, this system modulates pressure in the catheter 10 by allowing pressure to vary from vacuum to atmospheric pressure. When the solenoid valve 414 is open to the air/fluid reservoir 422 at the atmospheric pressure, the vacuum pressure in the aspiration line 424 decreases to the atmospheric pressure. When the solenoid valve 414 is closed, it increases the vacuum pressure in the aspiration line 424.


In yet another embodiment, shown in FIG. 12, an electro-magnetic actuated diaphragm 522 is attached to the aspiration line 524 connecting the catheter 10 to the vacuum chamber 510/collection canister 512. The electromagnetic actuated diaphragm 522, which is similar to that of a speaker driver, generates acoustic pressure waves in the catheter 10. The diaphragm 522 typically has a structure similar to a speaker driver and comprises frame 526, cone 528, dust cap 530, surround 532, spider or damper 534, voice coil 536 and magnet 538. Strength of the acoustic pressure waves may be modulated by the strength of the magnet 538. The frequency modulator 516 connected to the remote control 520 is electrically connected to the diaphragm 522 and generates different electrical wave frequencies and forms, which are translated by the diaphragm 522 into acoustic pressure waves in the aspiration line 524 and the catheter 10.


Media may be infused into/around the clot area to help liberate the clot from the vasculature.


Referring to FIGS. 13A-13C, experiments showed that an interrupted vacuum can help aspirating a corked clot stuck at the distal end 2512 of the catheter 2510 by loosening the clot and reshaping it to fit into the catheter 2510 after each vacuum and release cycle. Merely stopping the vacuum is not sufficient to loosen the clot. Completely releasing (venting to atmospheric pressure) the vacuum and allowing the clot to relax before reapplying a vacuum is found to aspirate the corked clot most efficiently. The period of each vacuum and release cycle may be equal to or greater than about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 seconds.



FIGS. 13A-13C show a logical progression of the vacuum and release cycle as applied to the catheter 2510. A release line 2518 and a vacuum line 2520 are connected to or near the proximal end of the catheter 2510. The release line 2518 is in communication with atmospheric pressure on its proximal end and has a release valve 2514 configured to open or close the fluid communication between the catheter 2510 and the vacuum. The vacuum line 2520 is connected to vacuum on its proximal end and has a vacuum valve 2516 configured to open or close the fluid communication between the catheter 2510 and the vacuum.


In the first step as shown in FIG. 13A, the release valve 2514 is closed, and the vacuum valve 2516 is open such that the vacuum is applied to the catheter 2510 to aspirate the clot. Then, as shown in FIG. 13B, the release valve 2514 is opened while the vacuum valve 2516 stays open. Because the release line 2518 and the vacuum line 2520 are in fluid communication, either directly or via at least a portion of the catheter 2510, the vacuum is applied mainly through the release line 2518, dropping vacuum applied to the catheter. Finally, as shown in FIG. 13C, the vacuum valve 2516 is shut off, allowing the vacuum to be completely released and the clot to relax. Then, another cycle from FIG. 13A to FIG. 13C begins by closing the release valve 2514 and opening the vacuum valve 2516.


The method of retrieving a clot may comprise providing the aspiration catheter, an agitator longitudinally extending or positionable inside the lumen of the aspiration catheter, and a driver coupled to the proximal end of the agitator; placing the catheter adjacent to the clot; attempting to aspirate clot; if not successful, advancing an agitator distally through the catheter; activating the driver to rotate the agitator and loosen the clot; optionally injecting media through the agitator to lubricate the clot and/or create a media jet from the distal end of the agitator, configured to help aspirate the clot; transporting the clot proximally inside the lumen of the catheter by applying the vacuum at the proximal end of the catheter; and optionally pulsing the vacuum. As pieces of the clot separate, transport may be assisted by the rotating agitator and/or injection media.


In order to detach a more stubborn clot, aspiration, media injection, and/or rotation of the wire or hypo tube may be timed. Building up a surplus of media around the clot will form a plug. When aspiration is activated and/or pulsed, the vacuum can draw the “plug” proximally inside the lumen of the wire or hypo tube like a syringe plunger. A higher local vacuum around the clot is maintained, and more momentum is added to the “plug” as more media is added. Timing the rotation of the wire or hypo tube with aspiration and media injection may help wiggle or fatigue the clot and detach it out of the vasculature.


The catheter 10 may comprise a manifold at its proximal end, as described elsewhere herein. In some embodiments, a manifold 18 may configured to be coupled to the proximal section 33 of the tubular body 16 of catheter 10. The manifold 18 may be removably attachable to the proximal section 33 or the manifold, or at least a portion thereof, may be permanently attached to the proximal section 33. The distal section 34 may be axially translatable through the proximal section 33, as described elsewhere herein, such that the total length of the catheter 10 may be extendable by the distal section 34, as shown in FIG. 2. The distal section 34 may have a smaller diameter and cross-sectional area than the proximal section 33 to allow the distal section 34 to be received within the lumen of the proximal section 33. In some embodiments, the distal section 34 may be axially translatable through the manifold 18 and may be removable from the proximal section 33 by retracting the distal section 34 through a proximal end of the manifold 18.


In some implementations, the distal section 34 may be extended through the proximal section 33 and the clot may be aspirated through or captured on the distal end 38 of the distal section 34. In situations in which the clot is not aspirated into the lumen 40 of the distal section 34 (e.g., the clot is too large to fully enter the lumen 40), the clot may be retained, at least to a degree, on the distal end 38 via the suction force of aspiration through the distal section 34. In many circumstances, the clot may be subsequently removable via aspiration through the larger diameter proximal section 33. The distal section 34 may be proximally retracted through the proximal section 33 such that the distal end 38 of the distal section 34 is retracted proximally past the distal end of the proximal section 33. At such a point the clot may either be drawn into the lumen of the proximal section 33 or the clot may become captured on the distal end of the proximal section 33 via the suction force extending through the proximal section 33 of the catheter 10. In scenarios in which the clot is ingested into the lumen of the proximal section 33, the clot is likely to remain stuck on the distal end 14 of the distal section 33. The distal section 33 may be proximally withdrawn from the catheter 10 bringing the clot with it. In embodiments, in which separate aspiration lines are provided to the proximal section 33 and the distal section 34, whether connected to the same or different vacuum sources, the clot may become dislodged from the distal end 38 of the distal section 34 and aspirated through the aspiration line connected to the proximal section 33 as the distal end 38 of the distal section 34 approaches or passes the aspiration line to the proximal section 33. Otherwise, the clot may be removed through the proximal end of the proximal section 33 or manifold with the distal section 34 as it is withdrawn. In scenarios in which the clot is stuck on the distal end of the proximal section 33 or becomes stuck within the lumen of the proximal section 33, it may be advantageous to remove the distal section 34 from the lumen of the proximal section 33 to increase the effective cross-sectional area of the proximal section 33. To do so, it may be necessary, in some embodiments, to remove the distal section 34 entirely from the manifold at the proximal end of the proximal section 33.


In some embodiments, it may be necessary to open, at least partially, or to increase an opening in a proximal valve of a manifold to remove the distal section 34 from the manifold. For instance, in embodiments where the distal section 34 is coupled at its proximal end to a pull wire 42, the pull wire 42 may extend through a proximal valve or port of the manifold. The proximal valve or port may be closed, at least partially, around the pull wire 42, allowing a user to manually retract or extend the distal section 34 by manipulating the portion of the pull wire 42 extending proximally from the manifold. In order, to proximally, withdraw the entire distal section 34 from the manifold, the proximal valve or port would need to be further opened to allow the tubular body 16 of the distal section 34, which comprises a larger outer diameter than the pull wire 42, to be removed from the manifold 18. In some embodiments, further opening the proximal valve or port may cause a loss or substantial decrease in the vacuum pressure applied to the catheter 10, as the lumen 40 of the distal section will be placed in fluid communication with the ambient atmosphere when the proximal port or valve is opened to allow the distal section 34 to pass through. Additionally or alternatively, vacuum pressure may be lost through the proximal port or valve opening in the space around the distal section 34 as it is withdrawn. This valve or port may not be maximally tightened or closed in order to allow movement of the distal section 34 through the valve or port. This loss in vacuum pressure, even if only transient, may cause the release of clots stuck on the end of the proximal section 33, may cause release of clots stuck on the end of the distal section 34, and/or may cause clots trapped within the lumens of either the proximal section 33 or distal section 34 to flow distally out of the respective lumen.


In some embodiments, the loss of vacuum pressure at the distal ends of the proximal section 33 and distal section 34 may be prevented via a vacuum transfer tool 3500. The vacuum transfer tool 3500 may effectively “transfer” vacuum to the proximal section 33 as the distal section is withdrawn from the proximal section 33. FIG. 14A depicts an example of a vacuum transfer tool 3500. The vacuum transfer tool 3500 may replace or function as the manifold 18 or may be coupled to the proximal end of the manifold 18 or another manifold coupled to the proximal end of the proximal section 33 of the catheter 10. The vacuum transfer tool 3500 can maintain vacuum pressure on the proximal section 33 of the catheter 10 independently of the distal section 34 of the catheter 10, allowing removal of the distal section 34 from the proximal section 33 without a loss or drop in vacuum pressure. The transfer tool 3500 may comprise a proximal transfer tube 3510 and a distal transfer tube 3520, the proximal transfer tube 3510 being configured to be positioned proximal to the distal transfer tube 3520. FIG. 14B shows a close-up of the distal transfer tube 3520 and FIG. 14C shows a close-up of the proximal transfer tube 3510. The distal transfer tube 3520 may have a proximal end 3521 and a distal end 3522 and a central lumen extending along a longitudinal axis from the proximal end 3521 to the distal end 3522. The central lumen of the distal transfer tube may comprise a minimum diameter configured to receive the proximal section 33, or at least an introducer (described elsewhere herein), or at least the distal section 34 of the catheter 10, such that the distal section 34 may be readily axially translated (e.g., slid) through the central lumen. The distal end 3522 of the distal transfer tube 3520 may be coupled to proximal end of the proximal section 33 of catheter 10 or the proximal end of the manifold 18 (or another manifold) forming a fluid tight seal between the two. The distal transfer tube 3520 may be permanently coupled to the proximal section 33 or manifold or it may be removably attachable to the proximal section 33 or manifold. In some embodiments, a portion of the proximal section 33 or of the manifold may be received within the distal transfer tube 3520.


The proximal transfer tube 3510 may have a proximal end 3511 and a distal end 3512 and a central lumen extending along a longitudinal axis from the proximal end 3511 to the distal end 3512. The central lumen of the distal transfer tube may comprise a minimum diameter configured to receive the distal section 34 and allow the distal section 34 to be readily axially translated (e.g., slid) there through. The central lumen of the proximal transfer tube 3510 may be configured to be placed in fluid communication with the central lumen of the distal transfer tube 3520 when the transfer tubes 3510, 3520 are docked together. The longitudinal axis of the proximal transfer tube 3510 and the distal transfer tube 3520 may be collinear. The distal end 3512 of the proximal transfer tube 3510 may be removably attachable and/or receivable within the proximal end 3521 of the distal transfer tube 3520. The proximal transfer tube 3510 may serve to introduce the distal section 34 of catheter 10 into the proximal end 3521 of the distal transfer tube 3520 such that the distal section 34 may be insertable into the lumen of the proximal section 33. In some embodiments, the proximal transfer tube 3510 and/or the distal transfer tube 3520, or portions thereof, may be entirely or partially transparent. The transparency of one or both of the transfer tubes 3510, 3520 may facilitate the user observing the relative positioning of the catheter 10 or of either of its sections 33, 34 within the vacuum transfer tool 3500.


The proximal transfer tube 3510 may comprise a proximal aspiration port 3513 and the distal transfer tube 3520 may comprise a distal aspiration port 3523. The proximal aspiration port 3513 and/or the distal aspiration port 3523 may be positioned between the proximal and distal ends of their respective transfer tubes 3510, 3520. The aspiration ports 3513, 3523 may be in fluid communication with the central lumens of the transfer tubes 3510, 3520, respectively. The aspiration ports 3513, 3523 may extend outwardly from the central longitudinal axis of the transfer tubes 3510, 3520. The aspiration ports 3513, 3523 may be coupled to one or more vacuum sources for providing vacuum pressure to the catheter 10 via aspiration lines (e.g., plastic tubing). In some implementations, the aspiration ports 3513, 3523 are connected to separate vacuum sources. In some implementations, the aspiration ports 3513, 3523 are connected to a single vacuum source. The single vacuum source may be connected to the aspiration ports 3513, 3523 through a tube splitter. The connection between the single vacuum source and the aspiration ports 3513, 3523 may include one or more valves (e.g., a three-way stopcock) which may selectively regulate the flow to the individual aspiration ports 3513, 3523. For instance, a valve may open fluid communication between both the aspiration ports 3513, 3523 and the vacuum source, between only one of the aspiration ports 3513, 3523 and the vacuum source, or between neither of the aspiration ports 3513, 3523 and the vacuum source. The one or more vacuum sources may be operatively coupled to the aspiration ports 3513, 3523 via removable connections, such as plastic tubing that forms removable fluid-tight seals with the aspiration ports 3513, 3523.


In embodiments in which the distal transfer tube 3520 is removably attachable to the proximal section 33 of catheter 10 or to a separate manifold, the distal end 3522 may comprise connecting means 3524 for connecting to the proximal section 33 or manifold and forming a fluid seal with the proximal section 33 or manifold. For example, the connecting means may comprise a hemostasis valve, such as a rotating hemostasis valve. The proximal end of the proximal section 33 may be received within the connecting means and secured therein, such that the lumen of the proximal section 33 is placed in fluid communication with the central lumen of the distal transfer tube 3520. The proximal end 3521 of the distal transfer tube 3520 may comprise a proximal port 3525 for forming a fluid seal with the distal end 3512 of the proximal transfer tube 3510 and/or the distal section 34 of the catheter 10. The proximal seal 3525 may be configured to removably receive the distal end 3512 of the proximal transfer tube 3510 and/or the distal section 34. In preferred embodiments, the proximal port 3525 may be a self-sealing port configured to automatically form a fluid-tight seal as the distal end 3512 of the proximal transfer tube 3510 and/or distal section 34 is received into and/or withdrawn from the proximal end 3522 of the distal transfer tube 3520. For instance, the self-sealing port may comprise an opening which automatically adjusts in size to the size of the distal end 3512 of the proximal transfer tube 3510 as the proximal transfer tube 3510 is translated axially relative to the port and which forms a fluid seal with the ambient environment when the distal section 34 is subsequently withdrawn, as described elsewhere herein. In some embodiments, the self-sealing port may comprise an elastomeric material which is punctured by the distal end 3512 of the proximal transfer tube 3510 and which effectively reseals upon withdraw of the distal section 33. In some embodiments, the self-sealing port may comprise mechanical means as known in the art for forming automatically forming a fluid seal with a component of variable diameter. In some embodiments, the self-sealing port may be removably attachable to the proximal end 3521 of the distal transfer tube 3520 (e.g., via a rotating hemostasis valve), for example as an adaptor component, and may be replaceable and/or interchangeable. The distal transfer tube 3520 when fluidly sealed to the proximal end of the proximal section 33 of the catheter 10 may be configured to maintain a vacuum around the proximal end of the proximal section 33 via the distal aspiration port 3523 regardless of whether the proximal transfer tube 3510 and/or distal section 34 of catheter 10 are present within, absent from, being inserted into, or being withdrawn from the distal transfer tube 3520.


The distal end 3512 of the proximal transfer tube 3510 may comprise an introducer 3514 for introducing the distal section 34 of catheter 10 into the distal transfer tube 3520. The introducer 3514 may comprise a substantially rigid tubular member configured to be received by the proximal port 3525 of the distal transfer tube 3520. The tubular member may be more rigid than the distal section 34 of the catheter 10, particularly or at least more rigid than the distal end 38 of the distal section 34, which may be highly flexible. The rigid tubular member may facilitate insertion of the distal section 34 of catheter 10 into the proximal port 3525, particularly if the proximal port 3525 is a self-sealing port, as the rigid tubular member may provide better pushability and/or navigability into the port 3525 than the distal end 38 of distal section 34. The introducer 3514 may comprise a stepped-up outer diameter wherein the step is configured to abut the proximal end 3521 of the distal transfer tube 3520 and prevent further insertion of the proximal transfer tube 3510 into the distal transfer tube 3520. Once the introducer 3514 forms a fluid seal with the distal transfer tube 3520, the distal end 14 of distal section 34 can be extended from within and/or inserted through the introducer 3514 into the distal transfer tube 3520. The internal diameter of the rigid tubular member of the introducer 3514 may be at least slightly larger than the largest outer diameter of the distal section 34 of the catheter 10, such that the distal section 34 may be readily translated through the introducer 3514. The central lumen of the distal transfer tube 3520 may be configured to guide the distal section 34 of the catheter 10 into the proximal section 33 of the catheter 10.


In some embodiments, the introducer 3514 may be removably attachable to the distal end 3512 of the proximal transfer tube 3510 (e.g., via a rotating hemostasis valve), for example as an adaptor component, and may be replaceable and/or interchangeable (e.g., to better accommodate various sizes of catheters). While the self-sealing embodiment of the proximal port 3525 may be configured to adjustably seal the distal transfer tube 3520 relative to components of variable size, in some embodiments, the dimensions of the introducer 3514 and the proximal port 3525 of the distal transfer tube 3520 may be optimally configured to form a fluid seal with one another. For example, the self-sealing opening may be configured to form an especially tight fluid seal with a component having the outer diameter of the introducer 3514. The outer diameter of the introducer 3514 may correspond to the maximum diameter of the self-sealing port 3525, under which maximum pressure may be exerted against the introducer 3514 by the seal. The introducer 3514 may provide a static interface between the proximal transfer tube 3510 and the distal transfer tube 3520 that allows ready translation of the distal section 34 within the vacuum transfer tool 3500 without compromising the fluid seal between the two transfer tubes 3510, 3520.


In some embodiments, the vacuum transfer tool 3500 may comprise a locking mechanism or securing mechanism (not shown) configured to releasably secure the proximal transfer tube 3510 (e.g., introducer 3514) to the distal transfer tube 3520 (e.g., proximal port 3525) to prevent the two from becoming inadvertently separated during use. The locking mechanism may comprise components coupled to the proximal transfer tube 3510 and/or the distal transfer tube and may comprise one or more components such as latches, clasps, clamps, threaded connectors, easily removable pins, etc. The locking mechanism may be easily engaged after the distal end 3512 of the proximal transfer tube 3510 is inserted into the proximal end 3521 of the distal transfer tube 3520 and easily disengaged prior to removing the distal end 3512 of the proximal transfer tube 3510 from the proximal end 3521 of the distal transfer tube 3520. In some embodiments, the proximal transfer tube 3510 and distal transfer tube 3520 may be sufficiently secured without an additional locking mechanism. For example, in some embodiments, the length of the introducer 3514 may be a length sufficient to steadily dock and maintain the distal end 3512 of the proximal transfer tube 3510 within the distal transfer tube 3520 even with inadvertent movement of the two transfer tubes 3510, 3520.


The proximal end 3511 of the proximal transfer tube 3510 may comprise a proximal sealing port 3515. The proximal sealing port 3515 may be configured to removably receive the distal section 34 of the catheter 10. The proximal sealing port 3515 may be configured to form a fluid seal around the distal section of catheter 10. In some embodiments, the proximal sealing port 3515 may be a hemostasis valve, such as a rotating hemostasis valve. The rotating hemostasis valve may comprise an openable/closeable seal and a rotatable collar that controls the opening and closing of a seal, as is known in the art. Rotating the collar in one direction may open the seal while rotating the color in the opposite direction may close the seal. The size of the opening formed by the seal may be adjustable by the rotatable collar. The seal may be closed around the pull wire 42 to an extent that substantially seals the inside of the proximal transfer tube 3510, around the pull wire 42, from the ambient environment, but which allows axial translation of the distal section 34 without breaking the fluid seal. In some embodiments, the proximal sealing port 3515 may be a self-sealing port, as described elsewhere herein.


The proximal transfer tube 3510 may comprise two openable/closeable fluid seals 3516, 3517 surrounding the proximal aspiration port 3513. A first fluid seal 3516 may be positioned on a proximal side of the proximal aspiration port 3513 and a second fluid seal 3517 may be positioned on a distal side of the proximal aspiration port 3513. The first fluid seal 3516 and/or the second fluid seal 3517 may be hemostasis valves, such as rotating hemostasis valves. In some embodiments, as shown in FIGS. 14A and 14C, the first fluid seal 3516 may be the proximal sealing port 3515 of the proximal transfer tube 3510. In other embodiments, the first fluid seal 3517 may be a separate seal positioned between the proximal sealing port 3515 and the proximal aspiration port 3513. The first and second fluid seals 3516, 3517 may be configured to form an airtight environment within the central lumen of the proximal transfer tube 3510 between the seals 3516, 3517 which is in fluid communication with the proximal aspiration port 3513. The first and second fluid seals 3516, 3517 may be used to trap a vacuum formed by the proximal aspiration port 3513 around the proximal end 36 of the distal section 34 of catheter 10, as described elsewhere herein. In some implementations, manually adjustable seals, such as rotating hemostasis valves, may form better fluid seals than self-sealing seals, particularly with respect to larger diameter components, while self-sealing seals may allow for easier translation of a component through the seal without breaking the seal.



FIGS. 15A-15D schematically illustrate example configurations of the vacuum transfer tool 3500 during the illustrative, but non-limiting, example of use with the catheter 10 described hereafter. The various components may not be drawn to scale. The vacuum transfer tool 3500 may be used to introduce and remove the distal section 34 of catheter 10 into the proximal section 33 of the catheter 10. The proximal transfer tube 3510 may be configured to maintain a vacuum on the proximal end 36 of distal section 34, even as the proximal end 36 is proximally retracted beyond the proximal end 3521 of the distal transfer tube 3520. Thus, the lumen 40 of the distal section 34 will not provide a fluid pathway between the distal transfer tube 3520 and the ambient atmosphere, effectively preventing or inhibiting loss of vacuum pressure at the distal end of the proximal section 33 of the catheter 10. Also, vacuum pressure will be maintained on both the distal end of the proximal section 33 and the distal end 38 of the distal section 34, after the distal end 38 is removed from the distal transfer tube 3520.


As shown in FIG. 15A, in one embodiment, the distal transfer tube 3520 may be coupled to the proximal section 33 of catheter 10 (or to a manifold connected to proximal section 33) and the proximal transfer tube 3510 may then be coupled to or docked with the distal transfer tube 3510 by inserting the introducer 3514 into and through the proximal port 3525 of the distal transfer tube 3520. The proximal transfer tube 3510 and distal transfer tube 3520 may be locked together in embodiments comprising a locking mechanism. Alternatively, the two transfer tubes 3510, 3520 could be coupled prior to connecting the distal transfer tube 3520 to the proximal section 33 of catheter 10, if the distal transfer tube 3520 is a separable component from the proximal section 33. Prior to initiating the aspiration procedure, either or both of the aspiration ports 3513, 3523 may be connected to an irrigation source (e.g., a saline solution) to allow flushing through the catheter 10. In some embodiments, one of the ports may be connected to the irrigation source and the other to a vacuum source. In some embodiments, both aspiration ports 3513, 3523 may be connected to a vacuum source.


As shown in FIG. 15B, the distal section 34 of catheter 10 can be introduced into the vacuum transfer tool 3500 via the proximal sealing port 3515 of the proximal transfer tube 3510. The distal section 34 may be advanced through the introducer 3514 into the central lumen of the distal transfer tube 3520 and within the central lumen of the distal transfer tube 3520 into the lumen of the proximal section 33. The distal section 34 may be selectively extended within the proximal section 33 such that the distal end 38 of the distal section 34 may be extended beyond the distal section of the proximal section and/or retracted relative to the proximal section 33 as desired. The second seal 3517 may be maintained in an open position during the introduction of section 34 of the catheter 10. The first seal 3515 may be maintained in an open position during the introduction if it is separate from the proximal sealing port 3515. The proximal sealing port 3515 may be opened, at least partially, to allow the introduction of the distal section 34 of catheter 10 into the vacuum transfer tool 3500. Once the proximal end 36 of the distal section 34 is positioned within the vacuum transfer tool 3500, the proximal sealing port 3515 may be closed, at least partially, around the pull wire 42, which may extend from the proximal end of the vacuum transfer tool 3500 to allow the user to extend and retract the distal section 34 of the catheter 10 relative to the proximal section 33. The proximal sealing port 3515 may be closed as much as possible to optimally seal the vacuum transfer tool 3500 while not preventing or unduly interfering with the axial translation of the pull wire 42 (e.g., via excess friction). The rigid construction of the pull wire 42 (e.g., a metal rod or hypotube) may allow the pull wire 42 to slide relatively easily through a tight fluid seal of the proximal sealing port 3515 (e.g., be relatively pushable) without collapsing any internal lumen, particularly as compared to the more flexible catheter 10. In some implementations, vacuum is not applied to the catheter 10 until the proximal end 36 of the distal section 34 is positioned within the vacuum transfer tool 3500 and the proximal sealing port 3515 is closed around the pull wire 42. In some implementations, vacuum is not applied to catheter 10 until the distal section 34 is fully extended, or at least extended as far as it will be extended during the aspiration procedure. Once the distal section 34 is fully or optimally extended, the proximal sealing port 3515 may be closed even tighter around the pull wire 42, in some implementations, for the aspiration procedure. In some implementations, irrigation may remain connected to one of the aspiration ports 3513, 3523. Irrigation fluid may be sucked into the other aspiration port through which vacuum is applied when the vacuum is on, but may be flushed through the catheter 10 when the vacuum is off (e.g., during a pulsing sequence). In some implementations, vacuum may be applied to both aspiration ports 3513, 3523.



FIG. 15C illustrates a clot corked on the distal end of the proximal section 33 of the catheter 10 after the distal end 38 of the distal section 34 has been retracted to a position within the proximal section 33 or the proximal transfer tube 3520. Prior to retracting the distal section 34, the proximal sealing port 3515 may be slightly opened to allow easier movement of the pull wire 42 through the proximal sealing port 3515 without losing vacuum pressure. As described elsewhere herein, the distal section 34 may be removed from proximal section 33 and distal transfer tube 3520 to increase the effective cross-sectional area within the proximal section 33. Prior to removing the distal section 34 vacuum may be applied to both the proximal aspiration port 3513 and the distal aspiration port 3523. The vacuum may be applied to both aspiration ports 3513, 3523 prior to capturing the clot. The distal section 34 may be proximally withdrawn until the proximal end 36 of the distal section 34 is positioned within the proximal transfer tube 3510 between the first seal 3516 and the second seal 3517. The position of the proximal end 36 may be visually ascertained through the proximal transfer tube 3510 and/or another suitable indicator may be used, such as a marking on the pull wire 42 which may be configured to become visible (i.e. emerge from the proximal sealing port 3515) when the proximal end 36 of distal section 34 is in the proper position. At this point, first and second seals 3516, 3517 may be fully closed. The first seal 3516 may be closed around the pull wire 42. The second seal 3517 may be closed around a proximal portion of the distal section 34 of catheter 10. The closure of the fluid seals 3516, 3517 may firmly secure the proximal transfer tube 3510 to the distal section 34 of the catheter 10 such that the two components are readily moveable as a single unit. The tight closing of the first and second seals 3516, 3517 around the proximal end 36 of the distal section 34 may optimize the fluid seal around the proximal end 36 of the distal section 34 since the distal section 34 no longer need be axially translated with respect to the proximal transfer tube 3510. In some implementations, the vacuum may be disconnected or rerouted from the proximal aspiration port 3513 after the seals 3516, 3517 are closed as long as the existing vacuum pressure within the proximal transfer tube 3510 is not released through the proximal aspiration port 3513.



FIG. 15D illustrates the undocking or decoupling of the proximal transfer tube 3510 from the distal transfer tube 3520. Once the first and second seals 3516, 3517 are closed forming a fluid seal around the proximal end 36 of distal section 34 of catheter 10, the proximal transfer tube 3510 and the distal transfer tube 3520 may be separated by proximally withdrawing the proximal transfer tube 3510, which simultaneously withdrawals the distal section 34 firmly secured to the proximal transfer tube 3510. Once the introducer 3514 is withdrawn from the distal transfer tube 3520, a fluid seal may be performed between the distal section 34 of the catheter 10 and the proximal sealing port 3525 of the distal transfer tube 3520. The proximal sealing port 3525, if a self-sealing port, may automatically form a seal with the distal section 34, which has a smaller outer diameter than the introducer 3514, and may automatically adjust to any changes in the outer diameter of the distal section 34 as it is withdrawn, such as a taper at the distal end 38 of the distal section 34. The fluid seal formed by closing the second seal 3517 of the proximal transfer tube 3510 around the distal section 34 prevents vacuum pressure being lost through the gap between the introducer 3514 and the distal section 34, once the introducer 3514 is separated from the distal transfer tube 3520 and the gap is no longer in fluid communication with the distal aspiration port 3523. The vacuum trap formed around the proximal end 36 of the distal section 34 by the proximal transfer tube 3510 may advantageously prevent any clot that is stuck on the end of the distal section 34 from being lost as the distal section 34 is withdrawn. During and after withdraw of the distal section 34, vacuum pressure is continually maintained on the proximal section 33 of the catheter via the distal aspiration port 3523.


In some embodiments, additional instrumentation may be inserted into the proximal section 33 of the catheter 10 through the proximal port 3525 of the distal transfer tube 3520 before coupling of the proximal transfer tube 3510 or after decoupling of the proximal transfer tube 3510. For instance, an agitator device may be inserted into the lumen of the proximal section 33 to help unclog any clots from the lumen. The agitator may take advantage of an increased lumen size once the distal section 34 is removed to more effectively release a clot from the distal end or lumen of the proximal section 33, allowing the clot to be aspirated via aspiration port 3523. In some embodiments, additional instrumentation may be inserted into the distal section 34 of the catheter 10 through the proximal seal 3515. The proximal seal 3515 may be closed around the additional instrumentation similar to the control wire 42. In some embodiments, the additional instrumentation may be inserted into the proximal transfer tube 3510 via a separate manifold (e.g., another transfer tube) that is configured to couple with the proximal end 3511 (e.g., proximal seal 3515) of the proximal transfer tube 3510. The additional manifold or transfer tube may comprise its own aspiration port for maintaining vacuum pressure. In some embodiments, the pull wire 42 may be a hypotube comprising an internal central lumen 45, as described elsewhere herein. The central lumen 45 may be maintained under vacuum or under positive pressure (e.g., an irrigation fluid) such that it does not provide a pressure release to the transfer tool 3500 or the lumen may be sized such that the any pressure release is insignificant. In some embodiments, additional instrumentation, such as an agitator, may be inserted into the catheter 10 via the central lumen 45. In some implementations, the additional instrumentation may be coupled to a proximal end of the pull wire 42 via a separate manifold. The manifold may be decoupled from the transfer tube 3500 or it may be configured to couple to the proximal end 3511 (e.g., proximal seal 3515) of the proximal transfer tube 3510.


Any of the catheter shaft or sections of the catheter shaft or telescoping extensions in accordance with the present invention, such as inner device 3402 or outer device 3404, may comprise a multi-layer construct having a high degree of flexibility and sufficient push ability to reach deep into the cerebral vasculature, such as at least as deep as the petrous, cavernous, or cerebral segment of the internal carotid artery (ICA).


In one example, referring to FIG. 16, a catheter 3000, which may be the same or similar to device 3400, may have an effective length from the manifold to distal tip from about 70 cm to about 150 cm, from about 80 cm to about 140 cm, from about 90 cm to about 130 cm, from about 100 cm to about 120 cm, or from about 105 cm to about 115 cm. The outer diameter of the catheter 3000 may be from about 0.07 inches to about 0.15 inches, from about 0.08 inches to about 0.14 inches, from about 0.09 inches to about 0.13 inches, from about 0.1 inches to about 0.12 inches, or from about 0.105 inches to about 0.115 inches, and may be lower in a distal segment than in a proximal segment. The inner diameter 3108 of the catheter 3000 in a single central lumen embodiment may be greater than or equal to about 0.11 inches, greater than or equal to about 0.1 inches, greater than or equal to about 0.09 inches, greater than or equal to about 0.088 inches, greater than or equal to about 0.08 inches, greater than or equal to about 0.07 inches, greater than or equal to about 0.06 inches, or greater than or equal to about 0.05 inches. The inner diameter 3108 of the catheter 3000 in a single central lumen embodiment may be less than or equal to about 0.11 inches, less than or equal to about 0.1 inches, less than or equal to about 0.09 inches, less than or equal to about 0.088 inches, less than or equal to about 0.08 inches, less than or equal to about 0.07 inches, less than or equal to about 0.06 inches, or less than or equal to about 0.05 inches. Referring to FIG. 16, an inner liner 3014 may be formed by dip coating a mandrel (not shown) to provide a thin walled tubular inside layer of the catheter body 3000. The dip coating may be produced by coating a wire such as a silver coated copper wire in PTFE. The mandrel may thereafter be axially elongated to reduce diameter, and removed to leave the tubular inner liner. The outside surface of the tubular inner liner 3014 may thereafter be coated with a soft tie layer 3012 such as polyurethane (e.g., Tecoflex™), to produce a layer having a thickness of no more than about 0.005 inches, and in some implementations approximately 0.001 inches. The tie layer 3012 will generally extend along at least about the most distal 10 cm or 20 cm of the catheter shaft 3000 generally less than about 50 cm and may in one implementation extend approximately the distal 30 cm of the catheter shaft 3000, 3100.


A braid such as a 75 ppi stainless steel braid 3010 may thereafter be wrapped around the inner liner 3014 through a proximal zone up to a distal transition 3011. From the distal transition 3011 to the distal end of the catheter 3000, a coil 3024 comprising a shape memory material such as a Nitinol alloy may thereafter be wrapped around the inner liner 3014. In one implementation, the Nitinol coil has a transition temperature below body temperature so that the Nitinol resides in the austinite (springy) state at body temperature. Adjacent loops or filars of the coil 3024 may be closely tightly wound in a proximal zone with a distal section having looser spacing between adjacent loops. In an embodiment having a coil section 3024 with an axial length of at least between about 20% and 30% of the overall catheter length, (e.g., 28 cm coil length in a 110 cm catheter shaft 3000), at least the distal 1 or 2 or 3 or 4 cm of the coil will have a spacing that is at least about 130%, and in some implementations at least about 150% or more than the spacing in the proximal coil section. In a 110 cm catheter shaft 3000 having a Nitinol coil the spacing in the proximal coil may be about 0.004 inches and in the distal section may be at least about 0.006 inches or 0.007 inches or more. In embodiments comprising an extension catheter, the distal extendable section of the catheter may be constructed according to the foregoing. The length of the coil 3024 may be proportioned to the length of the extendable catheter segment or the total (e.g., extended) length of the catheter 3000. The coil 3024 may extend from a distal end of the extendable segment over at least about 50%, 60%, 70%, 80%, or 90% of the length of the extendable segment. In some embodiments, the catheter 3000 or the extendable segment may not comprise a braid and the coil 3024 may extend to the proximal end of the extendable segment (100% of the length).


The distal end of the coil 3024 can be spaced proximally from the distal end of the inner liner 3014, for example, to provide room for an annular radiopaque marker 3040. The coil 3024 may be set back proximally from the distal end, in some embodiments, by approximately no more than 1 cm, 2 cm, or 3 cm. In one embodiment, the distal end of the catheter 3000 is provided with a beveled distal surface 3006 residing on a plane having an angle of at least about 10° or 20° and in one embodiment about 30° with respect to a longitudinal axis of the catheter 3000. The radiopaque marker 3040 may reside in a plane that is transverse to the longitudinal axis. Alternatively, at least the distally facing edge of the annular radiopaque marker 3040 may be an ellipse, residing on a plane which is inclined with respect to the longitudinal axis to complement the bevel angle of the distal surface 3006.


After applying the proximal braid 3010, the distal coil 3024 and the RO marker 3040 an outer Jacket 3020 maybe applied such as a shrink wrap tube to enclose the catheter body 3000. The outer shrink-wrapped sleeve 3020 may comprise any of a variety of materials, such as polyethylene, polyurethane, polyether block amide (e.g., PEBAX™), nylon or others known in the art. Sufficient heat is applied to cause the polymer to flow into and embed the proximal braid and distal coil.


In one implementation, the outer shrink wrap jacket 3020 is formed by sequentially advancing a plurality of short tubular segments 3022, 3026, 3028, 3030, 3032, 3034, 3036, 3038 concentrically over the catheter shaft subassembly, and applying heat to shrink the sections on to the catheter 3000 and provide a smooth continuous outer tubular body. The foregoing construction may extend along at least the most distal 10 cm, and preferably at least about the most distal 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, or more than 40 cm of the catheter body 3000. The entire length of the outer shrink wrap jacket 3020 may be formed from tubular segments and the length of the distal tubular segments (e.g., 3022, 3026, 3028, 3030, 3032, 3034, 3036, 3038) may be shorter than the one or more tubular segments forming the proximal portion of the outer shrink wrap jacket 3020 in order to provide steeper transitions in flexibility toward the distal end of the catheter 3000.


The durometer of the outer wall segments may decrease in a distal direction. For example, proximal segments such as 3022 and 3026, may have a durometer of at least about 60 or 70D, with gradual decrease in durometer of successive segments in a distal direction to a durometer of no more than about 35D or 25D or lower. A 25 cm section may have at least about 3 or 5 or 7 or more segments and the catheter 3000 overall may have at least about 6 or 8 or 10 or more distinct flexibility zones. The distal 1 or 2 or 4 or more segments 3036, 3038, may have a smaller OD following shrinking than the more proximal segments 3022-3034 to produce a step down in OD for the finished catheter body 3000. The length of the lower OD section 3004 may be within the range of from about 3 cm to about 15 cm and in some embodiments is within the range of from about 5 cm to about 10 cm such as about 7 or 8 cm, and may be accomplished by providing the distal segments 3036, 3038 with a lower wall thickness.


Referring to FIGS. 17A-17B, there is illustrated one example of an outer jacket segment stacking pattern for a progressive flexibility catheter of the type discussed in connection with FIG. 15. A distal segment 3038 may have a length within the range of about 1-3 cm, and a durometer of less than about 35D or 30D. An adjacent proximal segment 3036 may have a length within the range of about 4-6 cm, and a durometer of less than about 35D or 30D. An adjacent proximal segment 3034 may have a length within the range of about 4-6 cm, and a durometer of about 35D or less. An adjacent proximal segment 3032 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35D to about 45D (e.g., 40D). An adjacent proximal segment 3030 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 50D to about 60D (e.g., about 55D). An adjacent proximal segment 3028 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35D to about 50D to about 60D (e.g., about 55D). An adjacent proximal segment 3026 may have a length within the range of about 1-3 cm, and a durometer of at least about 60D and typically less than about 75D. More proximal segments may have a durometer of at least about 65D or 70D. The distal most two or three segments may comprise a material such as Tecothane, and more proximal segments may comprise PEBAX or other catheter jacket materials known in the art. At least three or five or seven or nine or more discrete segments may be utilized, having a change in durometer between highest and lowest along the length of the catheter shaft of at least about 10D, preferably at least about 20D and in some implementations at least about 30D or 40D or more.


In another embodiment, the most distal portion of the catheter 3000 may comprise a durometer of less than approximately 35D (e.g., 25D) to form a highly flexible distal portion of the catheter and have a length between approximately 25 cm and approximately 35 cm. In other embodiments, the length may be between approximately 15 cm and approximately 25 cm. The distal portion may comprise one or more tubular segments of the same durometer (e.g., segment 3038) or of different durometers. In some embodiments, one or more of the distal most segments may comprise a polyether-based thermoplastic polyurethane (e.g., Tecothane®). More proximal segments may comprise a polyether block amide (e.g., PEBAX®). A series of proximally adjacent tubular segments to the distal portion may form a transition region between a proximal stiffer portion of the catheter 3000 and the distal highly flexible portion of the catheter. The series of tubular segments forming the transition region may have the same or substantially similar lengths, such as approximately 1 cm. The relatively short length of the series of tubular segments may provide a steep drop in durometer over the transition region. For example, the transition region may have a proximal tubular segment 3036 (proximally adjacent the distal portion) having a durometer of approximately 35D. An adjacent proximal segment 3034 may have a durometer of approximately 55D. An adjacent proximal segment 3032 may have a durometer of approximately 63D. An adjacent proximal segment 3030 may have a durometer of approximately 72D. One or more of the segments within the transition region may comprise a length between about 1 and 4 cm. For example, the transition region may comprise a proximal segment 3036 approximately 4 cm and 35D, an adjacent segment 3034 approximately 3 cm and 37D, an adjacent segment 3032 approximately 1 cm and 47D, an adjacent segment 3030 approximately 1 cm and 55D, an adjacent segment 3028 approximately 1 cm and 63D, and an adjacent segment 3026 approximately 1 cm and 72D. In some embodiments, the length of the distal portion of the catheter 3000, including the highly flexible distal portion and the transition region, may be between about 25-30 cm, between about 30-35 cm, between about 35 to 40 cm, or between about 40-45 cm. More proximal segments may comprise a durometer or durometers greater than approximately 72D and may extend to the proximal end of the catheter or extension catheter segment. For instance, an extension catheter segment may comprise a proximal portion greater than approximately 72D between about 1 cm and about 3 cm. In some embodiments, the proximal portion may be about 2 cm long. In some embodiments, the most distal segments (e.g., 3038-3030) or at least the transition region may comprise PEBAX® and more proximal segments may comprise a generally stiffer material, such as Vestamid®.


The catheters of the present invention may be composed of any of a variety of biologically compatible polymeric resins having suitable characteristics when formed into the tubular catheter body segments. Exemplary materials include polyvinyl chloride, polyethers, polyamides, polyethylenes, polyurethanes, copolymers thereof, and the like. In one embodiment, both the proximal body segment 33 and distal body segment 34 will comprise a polyvinyl chloride (PVC), with the proximal body segment being formed from a relatively rigid PVC and the distal body segment being formed from a relatively flexible, supple PVC. Optionally, the proximal body segment may be reinforced with a metal or polymeric braid or other conventional reinforcing layer.


Although the present invention has been described in terms of certain preferred embodiments, it may be incorporated into other embodiments by persons of skill in the art in view of the disclosure herein. The scope of the invention is therefore not intended to be limited by the specific embodiments disclosed herein, but is intended to be defined by the full scope of the following claims.


It is understood that this disclosure, in many respects, is only illustrative of the numerous alternative device embodiments of the present invention. Changes may be made in the details, particularly in matters of shape, size, material and arrangement of various device components without exceeding the scope of the various embodiments of the invention. Those skilled in the art will appreciate that the exemplary embodiments and descriptions thereof are merely illustrative of the invention as a whole. While several principles of the invention are made clear in the exemplary embodiments described above, those skilled in the art will appreciate that modifications of the structure, arrangement, proportions, elements, materials and methods of use, may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the scope of the invention. In addition, while certain features and elements have been described in connection with particular embodiments, those skilled in the art will appreciate that those features and elements can be combined with the other embodiments disclosed herein.


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. A method of aspirating a clot from a blood vessel using an extendable catheter, comprising: introducing a catheter into the blood vessel;coupling a proximal transfer tube to a distal transfer tube, the proximal transfer tube comprising a proximal end, a distal end, a lumen extending from the proximal end to the distal end, and an aspiration port in fluid communication with the lumen, the aspiration port being positioned between the proximal end and the distal end, andthe distal transfer tube comprising a proximal end, a distal end, a lumen extending from the proximal end of the distal transfer tube to the distal end of the distal transfer tube, and an aspiration port in fluid communication with the lumen of the distal transfer tube, the aspiration port of the distal transfer tube being positioned between the proximal end of the distal transfer tube and the distal end of the distal transfer tube;wherein the distal transfer tube is attached or attachable to a proximal end of the catheter;inserting an extendable catheter segment of the extendable catheter through the proximal transfer tube and into the distal transfer tube;inserting the extendable catheter segment through the distal transfer tube and into the catheter;retracting the extendable catheter segment while aspiration is provided by both the aspiration port of the proximal transfer tube and the aspiration port of the distal transfer tube;positioning a proximal end of the extendable catheter segment within a portion of the proximal transfer tube corresponding to a sealable space;sealing the sealable space of the proximal transfer tube such that a vacuum is maintained by the aspiration port of the proximal transfer tube around the proximal end of the extendable catheter segment;withdrawing the extendable catheter segment from the distal transfer tube by decoupling the proximal transfer tube and the distal transfer tube and moving the proximal transfer tube away from the distal transfer tube while maintaining the vacuum within the distal transfer tube via the aspiration port of the distal transfer tube; andusing a valve to regulate fluid flow through the aspiration port of the distal transfer tube.
  • 2. The method of claim 1, further comprising extending the extendable catheter segment such that a distal end of the extendable catheter segment extends distally beyond a distal end of the catheter.
  • 3. The method of claim 1, further comprising attaching the distal end of the distal transfer tube directly or indirectly to the proximal end of the catheter.
  • 4. The method of claim 1, further comprising capturing the clot on a distal end of the extendable catheter segment prior to retracting the extendable catheter segment.
  • 5. The method of claim 4, further comprising transferring the clot from the distal end of the extendable catheter segment.
  • 6. The method of claim 1, further comprising applying an irrigation fluid to at least one of the aspiration port of the proximal transfer tube or the aspiration port of the distal transfer tube.
  • 7. The method of claim 1, wherein the sealing the sealable space comprises rotating a rotating hemostasis valve proximal to the aspiration port of the proximal transfer tube and rotating a rotating hemostasis valve distal to the aspiration port of the proximal transfer tube.
  • 8. The method of claim 1, wherein the sealing the sealable space secures the extendable catheter segment to the proximal transfer tube such that the extendable catheter segment is not axially translatable relative to the proximal transfer tube.
  • 9. The method of claim 1, further comprising: closing a fluid sealing port on the proximal end of the proximal transfer tube around a pull wire connected to the extendable catheter segment to a first position that forms a fluid seal but allows axial translation of the pull wire through the fluid sealing port;extending the extendable catheter segment through the catheter while the fluid sealing port is in the first position;retracting the extendable catheter segment through the catheter while the fluid sealing port is in the first position; andfurther closing the fluid sealing port around the pull wire to a second position that forms a tighter fluid seal and disallows the axial translation of the pull wire through the fluid sealing port;wherein the withdrawing the extendable catheter segment from the distal transfer tube is performed while the fluid sealing port is in the second position.
  • 10. The method of claim 9, further comprising inserting an agitator through a central lumen in the pull wire while the pull wire extends through the proximal transfer tube.
  • 11. The method of claim 1, further comprising inserting an agitator through the proximal transfer tube after the extendable catheter segment is withdrawn.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 16/503,886, filed on Jul. 5, 2019, and issued as U.S. Pat. No. 11,471,582, on Oct. 18, 2022, which claims the benefit of U.S. Provisional Application No. 62/694,792, filed Jul. 6, 2018, the entirety of each of these applications is hereby incorporated by reference herein.

US Referenced Citations (846)
Number Name Date Kind
3605750 Sheridan et al. Sep 1971 A
3884242 Bazell et al. May 1975 A
3890976 Bazell et al. Jun 1975 A
3965901 Penny et al. Jun 1976 A
4030503 Clark, III Jun 1977 A
4319580 Colley et al. Mar 1982 A
4611594 Grayhack et al. Sep 1986 A
4617019 Fecht et al. Oct 1986 A
4619274 Morrison Oct 1986 A
4628168 Nebergall et al. Dec 1986 A
4762129 Bonzel Aug 1988 A
4762130 Fogarty et al. Aug 1988 A
4767399 Bollish Aug 1988 A
4810582 Gould et al. Mar 1989 A
4844064 Thimsen et al. Jul 1989 A
4898575 Fischell et al. Feb 1990 A
4923462 Stevens May 1990 A
5011488 Ginsburg Apr 1991 A
5040548 Yock Aug 1991 A
5103827 Smith Apr 1992 A
5120323 Shockey et al. Jun 1992 A
5131391 Sakai et al. Jul 1992 A
5217705 Reno et al. Jun 1993 A
5226909 Evans et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5243997 Uflacker et al. Sep 1993 A
5261916 Engelson et al. Nov 1993 A
5290247 Crittenden Mar 1994 A
5308327 Heaven et al. May 1994 A
5328472 Steinke et al. Jul 1994 A
5413560 Solar May 1995 A
5417697 Wilk et al. May 1995 A
5423846 Fischell Jun 1995 A
5439445 Kontos Aug 1995 A
5441051 Hileman et al. Aug 1995 A
5454795 Samson Oct 1995 A
5466222 Ressemann et al. Nov 1995 A
5474563 Myler et al. Dec 1995 A
5527292 Adams et al. Jun 1996 A
5536242 Willard et al. Jul 1996 A
5549119 Solar Aug 1996 A
5569178 Henley Oct 1996 A
5569277 Evans et al. Oct 1996 A
5591187 Dekel Jan 1997 A
5638818 Diab et al. Jun 1997 A
5643254 Scheldrup et al. Jul 1997 A
5658263 Dang et al. Aug 1997 A
5662622 Gore et al. Sep 1997 A
5690613 Verbeek Nov 1997 A
5695483 Samson Dec 1997 A
5702373 Samson Dec 1997 A
5713848 Dubrul et al. Feb 1998 A
5766191 Trerotola Jun 1998 A
5776141 Klein et al. Jul 1998 A
5792124 Horrigan et al. Aug 1998 A
5827242 Follmer et al. Oct 1998 A
5843103 Wulfman Dec 1998 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5882333 Schaer et al. Mar 1999 A
5885209 Green Mar 1999 A
5891114 Chien et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5899892 Mortier et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5935112 Stevens Aug 1999 A
5938645 Gordon Aug 1999 A
5951539 Nita Sep 1999 A
6007530 Dornhofer et al. Dec 1999 A
6056837 Lieber et al. May 2000 A
6059745 Gelbfish May 2000 A
6090118 McGuckin, Jr. Jul 2000 A
6143009 Shiber Nov 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6159230 Samuels Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6171295 Garabedian et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6197014 Samson et al. Mar 2001 B1
6206852 Lee Mar 2001 B1
6217557 Hakansson et al. Apr 2001 B1
6221038 Brisken Apr 2001 B1
6228046 Brisken May 2001 B1
6258052 Milo Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6355027 Le et al. Mar 2002 B1
6394976 Winston et al. May 2002 B1
6400971 Firanov et al. Jun 2002 B1
6451036 Heitzmann et al. Jun 2002 B1
6451005 Saitou et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6468219 Njemanze Oct 2002 B1
6482217 Pintor et al. Nov 2002 B1
6511492 Rosenbluth et al. Jan 2003 B1
6524303 Garibaldi et al. Feb 2003 B1
6520934 Lee et al. Mar 2003 B1
6533751 Cragg et al. Mar 2003 B2
6554820 Wendlandt et al. Apr 2003 B1
6554827 Chandrasekaran et al. Apr 2003 B2
6558377 Lee et al. May 2003 B2
6569148 Bagaoisan et al. May 2003 B2
6579246 Jacobsen et al. Jun 2003 B2
6582440 Brumbach Jun 2003 B1
6591472 Noone et al. Jul 2003 B1
6638268 Niazi Oct 2003 B2
6663613 Evans et al. Dec 2003 B1
6666874 Heitzmann Dec 2003 B2
6669670 Muni et al. Dec 2003 B1
6719717 Johnson et al. Apr 2004 B1
6776770 Trerotola Aug 2004 B1
6805692 Muni et al. Oct 2004 B2
6824550 Pintor et al. Nov 2004 B1
6824553 Samson et al. Nov 2004 B1
6929633 Evans et al. Aug 2005 B2
6977068 Nair et al. Dec 2005 B1
7004954 Voss et al. Feb 2006 B1
7008434 Kurz et al. Mar 2006 B2
7029482 Vargas et al. Apr 2006 B1
7037267 Lipson et al. May 2006 B1
7104979 Jansen et al. Sep 2006 B2
7112298 Kampa et al. Sep 2006 B2
7172572 Diamond et al. Feb 2007 B2
7172620 Gilson Feb 2007 B2
7175653 Gaber Feb 2007 B2
7207980 Christian et al. Apr 2007 B2
7223274 Vargas et al. May 2007 B2
7229461 Chin et al. Jun 2007 B2
7232452 Adams et al. Jun 2007 B2
7235088 Pintor et al. Jun 2007 B2
7250042 Kataishi et al. Jul 2007 B2
7306585 Ross Dec 2007 B2
7309334 von Hoffmann Dec 2007 B2
7335216 Bender et al. Feb 2008 B2
7416555 Krivoruchko Aug 2008 B2
7491210 Dubrul et al. Feb 2009 B2
7507229 Hewitt et al. Mar 2009 B2
7537568 Moehring May 2009 B2
7558622 Tran Jul 2009 B2
7601138 Goebel et al. Oct 2009 B2
7678100 Chin et al. Mar 2010 B2
7713227 Wholey et al. May 2010 B2
7763196 Goebel et al. Jul 2010 B2
7766871 Hirszowicz et al. Aug 2010 B2
7771358 Moehring et al. Aug 2010 B2
7803136 Schatz Sep 2010 B2
7837692 Mulholland et al Nov 2010 B2
7842055 Pintor et al. Nov 2010 B2
7850623 Griffin et al. Dec 2010 B2
7905891 Self Mar 2011 B2
7931659 Bose et al. Apr 2011 B2
7938820 Webster et al. May 2011 B2
7947012 Spurchise et al. May 2011 B2
7955344 Finitsis Jun 2011 B2
7955345 Kucharczyk et al. Jun 2011 B2
7988646 Taber Aug 2011 B2
8021351 Boldenow et al. Sep 2011 B2
8048032 Root et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8062316 Patel et al. Nov 2011 B2
8070694 Galdonik et al. Dec 2011 B2
8079978 Hirszowicz et al. Dec 2011 B2
8084246 Hoon et al. Dec 2011 B2
8114106 Straub Feb 2012 B2
8123769 Osborne Feb 2012 B2
8142413 Root et al. Mar 2012 B2
8114032 Ferry et al. Apr 2012 B2
8157792 Dolliver et al. Apr 2012 B2
8211023 Swan et al. Jul 2012 B2
8235968 Tremaglio Aug 2012 B2
8246641 Osborne et al. Aug 2012 B2
8292850 Root et al. Oct 2012 B2
8298591 Srivastava et al. Oct 2012 B2
8308655 Grigoryants Nov 2012 B2
8361095 Osborne Jan 2013 B2
8366735 Bose et al. Feb 2013 B2
8382739 Walak et al. Feb 2013 B2
8394078 Torrance et al. Mar 2013 B2
8403912 McFerran et al. Mar 2013 B2
8419748 Valaie Apr 2013 B2
8449566 Finitsis May 2013 B2
8460312 Bose et al. Jun 2013 B2
8480697 Kucharczyk et al. Jul 2013 B2
8485969 Grayzel et al. Jul 2013 B2
8506555 Morales Aug 2013 B2
8517955 Keast et al. Aug 2013 B2
8535293 Faherty et al. Sep 2013 B2
8568432 Straub Oct 2013 B2
8603122 Pokorney et al. Dec 2013 B2
8608754 Wensel et al. Dec 2013 B2
8608761 Osborne et al. Dec 2013 B2
8609426 Silver Dec 2013 B2
8663259 Levine et al. Mar 2014 B2
8682411 Kassab et al. Mar 2014 B2
8684963 Qiu et al. Apr 2014 B2
8696698 Chomas et al. Apr 2014 B2
8702680 Jimenez et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8725249 Bar-Yoseph et al. May 2014 B2
8734374 Aklog et al. May 2014 B2
8758325 Webster et al. Jun 2014 B2
8758364 Eckhouse et al. Jun 2014 B2
8764779 Levine et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8864792 Eckhouse et al. Oct 2014 B2
8876854 Christiansen et al. Nov 2014 B2
8900179 Jenson et al. Dec 2014 B2
8900257 Straub et al. Dec 2014 B2
8932320 Janardhan et al. Jan 2015 B1
RE45380 Root et al. Feb 2015 E
8968383 Johnson et al. Mar 2015 B1
8974411 McKinnon Mar 2015 B2
8992506 Gulachenski Mar 2015 B2
8996095 Anderson et al. Mar 2015 B2
8998946 Morero Apr 2015 B2
9005237 Eckhouse et al. Apr 2015 B2
9014786 Carmeli et al. Apr 2015 B2
9017309 Tanikawa et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9034008 Eckhouse et al. May 2015 B2
9039715 Diamant et al. May 2015 B2
9079000 Hanson et al. Jul 2015 B2
9107691 Fojtik Aug 2015 B2
9119625 Bachman et al. Sep 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9144383 Zharov Sep 2015 B2
9144662 DiCaprio et al. Sep 2015 B2
RE45760 Root et al. Oct 2015 E
RE45776 Root et al. Oct 2015 E
9199064 Morero Dec 2015 B2
9211396 Aboytes Dec 2015 B2
9220878 Kajii Dec 2015 B2
9238124 Grayzel et al. Jan 2016 B2
9241699 Kume et al. Jan 2016 B1
9259215 Chou et al. Feb 2016 B2
9259228 Cruise et al. Feb 2016 B2
9265512 Garrison et al. Feb 2016 B2
9278201 Rapaport et al. Mar 2016 B2
9282992 Levine et al. Mar 2016 B2
9295817 Chang Mar 2016 B2
9314268 Cahill Apr 2016 B2
9339282 Green et al. May 2016 B2
9345508 Hendrick May 2016 B2
9345856 Witte May 2016 B2
9351993 Cruise et al. May 2016 B2
9370639 Plassman et al. Jun 2016 B2
9375223 Wallace Jun 2016 B2
9381278 Constant et al. Jul 2016 B2
9398946 Valaie Jul 2016 B2
9399118 Kume et al. Jul 2016 B2
RE46116 Root et al. Aug 2016 E
9408916 Cruise et al. Aug 2016 B2
9414819 Fitz et al. Aug 2016 B2
9421328 Brueckner et al. Aug 2016 B2
9439791 Vong et al. Sep 2016 B2
9440018 Levin et al. Sep 2016 B2
9446216 Olesky et al. Sep 2016 B2
9451884 Palovich et al. Sep 2016 B2
9451963 Cruise et al. Sep 2016 B2
9463006 Forde et al. Oct 2016 B2
9480813 Fukuoka et al. Nov 2016 B2
9486221 Cruise et al. Nov 2016 B2
9492637 Garrison et al. Nov 2016 B2
9504476 Gulachenski Nov 2016 B2
9510854 Mallaby Dec 2016 B2
9510855 Rapaport et al. Dec 2016 B2
9526504 Chang Dec 2016 B2
9526505 Marks et al. Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9546236 Cruise et al. Jan 2017 B2
9561121 Sudin et al. Feb 2017 B2
9561125 Bowman et al. Feb 2017 B2
9561345 Garrison et al. Feb 2017 B2
9597101 Galdonik et al. Mar 2017 B2
9597212 Thompson et al. Mar 2017 B2
9615832 Bose et al. Mar 2017 B2
9622753 Cox Apr 2017 B2
9623228 Ryan et al. Apr 2017 B2
9655633 Leynov et al. May 2017 B2
9655755 Chou et al. May 2017 B2
9655989 Cruise et al. May 2017 B2
9662118 Chang May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662137 Jenson et al. May 2017 B2
9662480 Kume et al. May 2017 B2
9669183 Chang Jun 2017 B2
9669191 Chou et al. Jun 2017 B2
9681882 Garrison et al. Jun 2017 B2
9688788 Plotkin et al. Jun 2017 B2
9693789 Garrison et al. Jul 2017 B2
9693852 Lam et al. Jul 2017 B2
9707380 Qiu et al. Jul 2017 B2
9717500 Tieu et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724491 Solar et al. Aug 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9775730 Waltzman Oct 2017 B1
9789242 Criado et al. Oct 2017 B2
9789283 Richter et al. Oct 2017 B2
9801643 Hansen et al. Oct 2017 B2
9803043 Cruise et al. Oct 2017 B2
9808610 Li et al. Nov 2017 B2
9820761 Garrison et al. Nov 2017 B2
9827047 Fudaba et al. Nov 2017 B2
9828157 Roesler Nov 2017 B2
9855072 Moberg et al. Jan 2018 B2
9861783 Garrison et al. Jan 2018 B2
9877731 Cruise et al. Jan 2018 B2
9877742 Milner et al. Jan 2018 B2
9878076 Gülcher et al. Jan 2018 B2
9883885 Hendrick et al. Feb 2018 B2
9907880 Cruise et al. Mar 2018 B2
9913960 Blanchard et al. Mar 2018 B2
9931129 Walish et al. Apr 2018 B2
9943321 Nita Apr 2018 B2
9987027 Ben-Ami Jun 2018 B2
9987028 Lowinger et al. Jun 2018 B2
9999355 Kirenko Jun 2018 B2
10010698 Watanabe et al. Jul 2018 B2
10028854 Tatalovich et al. Jul 2018 B2
10039906 Kume et al. Aug 2018 B2
10052761 Langenfeld et al. Aug 2018 B2
10070878 Ma Sep 2018 B2
10086169 Grayzel et al. Oct 2018 B2
10105154 Green Oct 2018 B1
10179224 Yang et al. Jan 2019 B2
10183145 Yang et al. Jan 2019 B2
10183146 Yang et al. Jan 2019 B2
10183147 Yang et al. Jan 2019 B2
10207077 Griggin et al. Feb 2019 B2
10213582 Garrison et al. Feb 2019 B2
10219814 Feltyberger et al. Mar 2019 B2
10226277 Smith et al. Mar 2019 B2
10238833 Christian et al. Mar 2019 B2
10258452 Eckhouse et al. Apr 2019 B2
10265086 Vale Apr 2019 B2
10271864 Greenhalgh et al. Apr 2019 B2
RE47376 Pokorney et al. May 2019 E
10278678 Peliks May 2019 B2
10278816 Miller May 2019 B2
10300256 Aboytes May 2019 B2
10327790 Garrison et al. Jun 2019 B2
10335186 Rosenbluth et al. Jul 2019 B2
10342570 Richter et al. Jul 2019 B2
10383691 Hendrick et al. Aug 2019 B2
10383751 Ferrera et al. Aug 2019 B2
10384034 Garrison et al. Aug 2019 B2
10420581 Hehrlein Sep 2019 B2
10441745 Yang et al. Oct 2019 B2
10456552 Goyal Oct 2019 B2
10471233 Garrison et al. Nov 2019 B2
10478535 Ogle Nov 2019 B2
10499944 Mallaby Dec 2019 B2
10524814 Chang et al. Jan 2020 B2
10531883 Deville et al. Jan 2020 B1
10537706 Kanemasa et al. Jan 2020 B2
10569049 Garrison et al. Feb 2020 B2
10610256 Bowman Apr 2020 B2
10610668 Burkholz et al. Apr 2020 B2
10646239 Garrison et al. May 2020 B2
10653426 Yang et al. May 2020 B2
10653434 Yang et al. May 2020 B1
10661053 Yang et al. May 2020 B2
10668192 Raney et al. Jun 2020 B2
10695159 Hauser Jun 2020 B2
10716583 Look et al. Jul 2020 B2
10716880 Culbert et al. Jul 2020 B2
10716915 Ogle et al. Jul 2020 B2
10722251 Garrison et al. Jul 2020 B2
10722253 Deville et al. Jul 2020 B2
10722683 Solar et al. Jul 2020 B2
10743893 Garrison et al. Aug 2020 B2
10751073 Eckhouse et al. Aug 2020 B2
10772647 Ben-Ami Sep 2020 B2
10786268 Ben-Ami Sep 2020 B2
10786270 Yang et al. Sep 2020 B2
10792056 Vale et al. Oct 2020 B2
10835272 Yang et al. Nov 2020 B2
10835278 Wilke et al. Nov 2020 B2
10835711 Yang et al. Nov 2020 B2
10856898 Matsushita et al. Dec 2020 B2
10864351 Garrison et al. Dec 2020 B2
10888280 Newberry Jan 2021 B2
10905850 Christian et al. Feb 2021 B2
10918834 Sudin et al. Feb 2021 B2
11020030 Tao et al. Jun 2021 B2
11020059 Sheth et al. Jun 2021 B2
11039845 Wallace Jun 2021 B2
11065018 Buck et al. Jul 2021 B2
11076876 Vale Aug 2021 B2
11096712 Teigen et al. Aug 2021 B2
11123090 Yang et al. Sep 2021 B2
11134859 Strasser Oct 2021 B2
11147949 Yang et al. Oct 2021 B2
11197683 Teigen et al. Dec 2021 B1
11197771 Ferrera et al. Dec 2021 B2
11207096 To et al. Dec 2021 B2
11207497 Yee et al. Dec 2021 B1
11224434 Yang et al. Jan 2022 B2
11224457 Brinkmann et al. Jan 2022 B2
11234723 Ogle Feb 2022 B2
11243277 Buck et al. Feb 2022 B2
11253292 McGuckin, Jr. et al. Feb 2022 B2
11259821 Buck et al. Mar 2022 B2
11311303 Yang et al. Apr 2022 B2
11318282 Garrison et al. May 2022 B2
11337712 Teigen et al. May 2022 B2
11395665 Yang et al. Jul 2022 B2
11406402 Deville et al. Aug 2022 B2
11439799 Buck et al. Sep 2022 B2
11457936 Buck et al. Oct 2022 B2
11464528 Brady et al. Oct 2022 B2
11471582 Yee Oct 2022 B2
11490909 Look et al. Nov 2022 B2
11504020 Strasser et al. Nov 2022 B2
11517335 Aboytes et al. Dec 2022 B2
11553935 Buck et al. Jan 2023 B2
11565082 Yourgenlow Jan 2023 B2
20010031980 Wensel et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010049486 Evans et al. Dec 2001 A1
20020016565 Zadno-Azizi Feb 2002 A1
20020026145 Bagaoisan et al. Feb 2002 A1
20020074276 Nakashima Jun 2002 A1
20020091372 Cragg et al. Jul 2002 A1
20020156459 Ye et al. Oct 2002 A1
20020156460 Ye et al. Oct 2002 A1
20020169467 Heitzmann et al. Nov 2002 A1
20020173812 McGuckin et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020177899 Eum et al. Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030071285 Tsukernik Apr 2003 A1
20030088266 Bowlin May 2003 A1
20030135193 Hilgers et al. Jul 2003 A1
20030135198 Berhow et al. Jul 2003 A1
20030153847 Sandler et al. Aug 2003 A1
20030153874 Tal Aug 2003 A1
20030195467 Mickley Oct 2003 A1
20030195546 Solar et al. Oct 2003 A1
20030225336 Callister et al. Dec 2003 A1
20040010280 Adams et al. Jan 2004 A1
20040059290 Palasis Mar 2004 A1
20040138693 Eskuri et al. Jul 2004 A1
20040153049 Hewitt et al. Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040215222 Krivoruchko Oct 2004 A1
20040236215 Mihara et al. Nov 2004 A1
20040243102 Berg et al. Dec 2004 A1
20050004523 Osborne et al. Jan 2005 A1
20050004553 Douk Jan 2005 A1
20050021002 Deckman et al. Jan 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059957 Campbell et al. Mar 2005 A1
20050080400 Corcoran et al. Apr 2005 A1
20050103332 Gingles et al. May 2005 A1
20050124985 Takayama et al. Jun 2005 A1
20050137680 Ortiz et al. Jun 2005 A1
20050182386 Aggerholm Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050228417 Teitelbaum Oct 2005 A1
20060020285 Niermann Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060030835 Sherman et al. Feb 2006 A1
20060064036 Osborne et al. Mar 2006 A1
20060074401 Ross Apr 2006 A1
20060089618 McFerran et al. Apr 2006 A1
20060095062 Stephens May 2006 A1
20060100530 Kliot et al. May 2006 A1
20060111649 Zhou May 2006 A1
20060124212 Zhou Jun 2006 A1
20060149355 Mitelberg et al. Jul 2006 A1
20060217664 Hattler et al. Sep 2006 A1
20060247755 Pal et al. Nov 2006 A1
20060264759 Moehring et al. Nov 2006 A1
20070016132 Oepen et al. Jan 2007 A1
20070038225 Osborne et al. Feb 2007 A1
20070043333 Kampa et al. Feb 2007 A1
20070060888 Goff et al. Mar 2007 A1
20070185521 Bui et al. Aug 2007 A1
20070197956 Le et al. Aug 2007 A1
20070225614 Naghavi et al. Sep 2007 A1
20070239182 Glines et al. Oct 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080064984 Pflueger et al. Mar 2008 A1
20080086051 Voegele Apr 2008 A1
20080086110 Galdonik et al. Apr 2008 A1
20080097251 Babaev et al. Apr 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080234715 Pesce Sep 2008 A1
20080262350 Unger Oct 2008 A1
20080294058 Shklarski Nov 2008 A1
20080300544 Palm et al. Dec 2008 A1
20080312639 Weber Dec 2008 A1
20090030400 Bose et al. Jan 2009 A1
20090043330 To Feb 2009 A1
20090093829 Melsheimer et al. Apr 2009 A1
20090138031 Tsukernik May 2009 A1
20090171368 Pearce et al. Jul 2009 A1
20090182370 Volobuyev et al. Jul 2009 A1
20090187143 Vreeman Jul 2009 A1
20090209857 Secretain et al. Aug 2009 A1
20090210048 Amplatz et al. Aug 2009 A1
20090227992 Nir et al. Sep 2009 A1
20090234321 Shapland et al. Sep 2009 A1
20090264785 Causevic et al. Oct 2009 A1
20090264865 Kawai Oct 2009 A1
20090270800 Spurchise et al. Oct 2009 A1
20090270888 Patel et al. Oct 2009 A1
20090275974 Marchand et al. Nov 2009 A1
20090287190 Shippert Nov 2009 A1
20090312699 Pudelkov Dec 2009 A1
20100023033 Mauch et al. Jan 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100049168 Parker et al. Feb 2010 A1
20100057051 Howat et al. Mar 2010 A1
20100114017 Lenker et al. May 2010 A1
20100114022 Hirszowicz et al. May 2010 A1
20100125253 Olson et al. May 2010 A1
20100137793 Hirszowicz et al. Jun 2010 A1
20100217235 Thorstenson et al. Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100331916 Parramon et al. Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110034986 Chou Feb 2011 A1
20110054504 Porter Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110082373 Gurley et al. Apr 2011 A1
20110106200 Ziegler May 2011 A1
20110137399 Chomas et al. Jun 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110152998 Berez et al. Jun 2011 A1
20110172700 Bose et al. Jul 2011 A1
20110178418 Avidor et al. Jul 2011 A1
20110230859 Galdonik et al. Sep 2011 A1
20110238041 Lim et al. Sep 2011 A1
20110295217 Tanaka et al. Dec 2011 A1
20120016407 Sakai Jan 2012 A1
20120040858 Ford et al. Feb 2012 A1
20120041474 Eckhouse Feb 2012 A1
20120065479 Lahiji et al. Mar 2012 A1
20120065490 Zharov et al. Mar 2012 A1
20120078140 Nita Mar 2012 A1
20120083868 Shrivastava et al. Apr 2012 A1
20120123327 Miller May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120179032 Bromander et al. Jul 2012 A1
20120259718 Miller et al. Oct 2012 A1
20120290067 Cam et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120330196 Nita Dec 2012 A1
20130006225 Cucin Jan 2013 A1
20130012924 Davis et al. Jan 2013 A1
20130018318 Ravichandran et al. Jan 2013 A1
20130018359 Coyle Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130035628 Garrison et al. Feb 2013 A1
20130046285 Griffin et al. Feb 2013 A1
20130046374 Jones-McMeans Feb 2013 A1
20130096551 Govari et al. Apr 2013 A1
20130116701 Wang et al. May 2013 A1
20130131499 Chan et al. May 2013 A1
20130131641 Jimenez et al. May 2013 A1
20130131710 Carmeli et al. May 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158511 Aggerholm et al. Jun 2013 A1
20130158578 Ghodke et al. Jun 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20140025043 Wang et al. Jan 2014 A1
20140039461 Anderson et al. Feb 2014 A1
20140046243 Ray et al. Feb 2014 A1
20140046244 Ray et al. Feb 2014 A1
20140074144 Shrivastava et al. Mar 2014 A1
20140100531 Ankrum et al. Apr 2014 A1
20140114287 Beasley et al. Apr 2014 A1
20140118931 Hata May 2014 A1
20140121555 Scott et al. May 2014 A1
20140121746 Kusleika et al. May 2014 A1
20140155932 Bose et al. Jun 2014 A1
20140155980 Turjman et al. Jun 2014 A1
20140163367 Eskuri Jun 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140228808 Webster et al. Aug 2014 A1
20140243882 Ma Aug 2014 A1
20140249508 Wang et al. Sep 2014 A1
20140271718 Alvarez Sep 2014 A1
20140273920 Smith Sep 2014 A1
20140275832 Muehlsteff et al. Sep 2014 A1
20140275852 Hong et al. Sep 2014 A1
20140276167 Dasgupta et al. Sep 2014 A1
20140276618 Di Caprio et al. Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
20140276923 Miller Sep 2014 A1
20140277003 Hendrick Sep 2014 A1
20140288525 Fudaba et al. Sep 2014 A1
20140296889 Avneri et al. Oct 2014 A1
20140309533 Yamashita et al. Oct 2014 A1
20140330286 Wallace Nov 2014 A1
20140343537 Eversull et al. Nov 2014 A1
20140350645 Diller et al. Nov 2014 A1
20140358123 Ueda Dec 2014 A1
20140371718 Alvarez et al. Dec 2014 A1
20150005704 Heisel et al. Jan 2015 A1
20150046148 Oh et al. Feb 2015 A1
20150105729 Valeti et al. Apr 2015 A1
20150119859 Cajamarca et al. Apr 2015 A1
20150126861 Gambhir et al. May 2015 A1
20150133978 Paul, Jr. May 2015 A1
20150157220 Fish et al. Jun 2015 A1
20150157772 Li et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150174363 Sutermeister et al. Jun 2015 A1
20150174368 Garrison et al. Jun 2015 A1
20150257659 Broers et al. Sep 2015 A1
20150269825 Tran Sep 2015 A1
20150290390 Ring et al. Oct 2015 A1
20150335288 Toth et al. Nov 2015 A1
20150335857 Ishikawa Nov 2015 A1
20150359547 Vale Dec 2015 A1
20150366518 Sampson Dec 2015 A1
20160000443 Lilburn et al. Jan 2016 A1
20160008572 Di Capriov Jan 2016 A1
20160030079 Cohen Feb 2016 A1
20160038174 Bruzzi et al. Feb 2016 A1
20160051386 Haarmann-Theimann Feb 2016 A1
20160058459 Bowman Mar 2016 A1
20160058513 Giorgi Mar 2016 A1
20160081825 Sudin et al. Mar 2016 A1
20160100819 Tieu Apr 2016 A1
20160128688 Garrison et al. May 2016 A1
20160129221 Haverkost et al. May 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160144157 Gulachenski et al. May 2016 A1
20160151010 Erez Jun 2016 A1
20160166265 Nita Jun 2016 A1
20160199204 Pung et al. Jul 2016 A1
20160199620 Pokorney et al. Jul 2016 A1
20160206216 Kirenko Jul 2016 A1
20160206322 Fitz et al. Jul 2016 A1
20160213396 Dowell et al. Jul 2016 A1
20160220265 Pokorney et al. Aug 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20160242764 Garrison et al. Aug 2016 A1
20160242893 Joshi et al. Aug 2016 A1
20160243157 Cruise et al. Aug 2016 A1
20160256611 Fitz Sep 2016 A1
20160271315 Chang Sep 2016 A1
20160296690 Kume et al. Oct 2016 A1
20160311990 Cruise et al. Oct 2016 A1
20160317156 Fitz et al. Nov 2016 A1
20160317173 Hendrick Nov 2016 A1
20160317288 Rogers et al. Nov 2016 A1
20160345904 Bowman Dec 2016 A1
20160346508 Williams et al. Dec 2016 A1
20160346515 Buller Dec 2016 A1
20160354532 Olesky et al. Dec 2016 A1
20160361180 Vong et al. Dec 2016 A1
20160361459 Baldwin Dec 2016 A1
20160367274 Wallace Dec 2016 A1
20160367275 Wallace Dec 2016 A1
20170000576 Zirps Jan 2017 A1
20170007264 Cruise et al. Jan 2017 A1
20170007277 Drapeau et al. Jan 2017 A1
20170020540 Chou et al. Jan 2017 A1
20170021172 Perez et al. Jan 2017 A1
20170027604 Wallace Feb 2017 A1
20170028170 Ho Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035446 Rapaport et al. Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170043124 Vreeman Feb 2017 A1
20170056061 Ogle et al. Mar 2017 A1
20170072163 Lim et al. Mar 2017 A1
20170072165 Lim et al. Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170087340 Peralta et al. Mar 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100142 Look et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170143416 Guler et al. May 2017 A1
20170143938 Ogle et al. May 2017 A1
20170147765 Mehta May 2017 A1
20170164964 Galdonik et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170181835 Kleshinski et al. Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170209260 Garrison et al. Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170246014 Rapaport et al. Aug 2017 A1
20170252057 Bonnette Sep 2017 A1
20170259037 Kern et al. Sep 2017 A1
20170265869 Cibulski et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170274180 Garrison et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281204 Garrison et al. Oct 2017 A1
20170283536 Cruise et al. Oct 2017 A1
20170303949 Jacobi et al. Oct 2017 A1
20170333000 Nystrom et al. Nov 2017 A1
20170340867 Accisano Nov 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20170354421 Maguire et al. Dec 2017 A1
20170354523 Chou et al. Dec 2017 A1
20170354803 Kume et al. Dec 2017 A1
20170360450 Tompkins et al. Dec 2017 A1
20170361072 Chou et al. Dec 2017 A1
20170367713 Green et al. Dec 2017 A1
20170367857 Bennett et al. Dec 2017 A1
20170368296 Chang Dec 2017 A1
20170368309 Garrison et al. Dec 2017 A1
20180008294 Garrison et al. Jan 2018 A1
20180008439 Tieu et al. Jan 2018 A9
20180014840 Paniam Jan 2018 A1
20180028205 Chou et al. Feb 2018 A1
20180028209 Sudin et al. Feb 2018 A1
20180036155 Tieu et al. Feb 2018 A1
20180042623 Batiste Feb 2018 A1
20180055364 Pierro Mar 2018 A1
20180055516 Bagaoisan et al. Mar 2018 A1
20180104390 Kilcran Apr 2018 A1
20180169508 Billardello et al. Jun 2018 A1
20180200478 Lorenzo et al. Jul 2018 A1
20180207395 Bulman et al. Jul 2018 A1
20180207399 Chou et al. Jul 2018 A1
20180207412 Malek et al. Jul 2018 A1
20180228502 Shaffer et al. Aug 2018 A1
20180242962 Walen et al. Aug 2018 A1
20180242980 Lubock et al. Aug 2018 A1
20180242989 Nita Aug 2018 A1
20180242999 Thatipelli Aug 2018 A1
20180250013 Wallace et al. Sep 2018 A1
20180263632 Seifert et al. Sep 2018 A1
20180263642 Nita Sep 2018 A1
20180279965 Pandit et al. Oct 2018 A1
20180289340 Trindade Rodrigues et al. Oct 2018 A1
20180296236 Goldfarb et al. Oct 2018 A1
20180304040 Jalgaonkar Oct 2018 A1
20180307362 Komala et al. Oct 2018 A1
20180338770 Mogi et al. Nov 2018 A1
20180353194 Shaffer et al. Dec 2018 A1
20190022363 Grayzel et al. Jan 2019 A1
20190029825 Fitterer et al. Jan 2019 A1
20190030305 Aboytes Jan 2019 A1
20190070387 Goyal Mar 2019 A1
20190105477 Heilman et al. Apr 2019 A1
20190105478 Malek et al. Apr 2019 A1
20190108540 Look et al. Apr 2019 A1
20190125393 Hendrick May 2019 A1
20190167124 Verkruijsse et al. Jun 2019 A1
20190175030 Verkruijsse et al. Jun 2019 A1
20190183517 Ogle Jun 2019 A1
20190200871 De Haan Jul 2019 A1
20190239910 Brade et al. Aug 2019 A1
20190269368 Hauck et al. Sep 2019 A1
20190275290 Yamashita et al. Sep 2019 A1
20190290884 Kanemasa et al. Sep 2019 A1
20190329003 Watanabe Oct 2019 A1
20190336142 Torrie Nov 2019 A1
20190351182 Chou et al. Nov 2019 A1
20190381221 Ogle Dec 2019 A1
20190381223 Culbert et al. Dec 2019 A1
20200009350 Goyal Jan 2020 A1
20200015840 Mallaby Jan 2020 A1
20200022712 Deville et al. Jan 2020 A1
20200023160 Chou et al. Jan 2020 A1
20200046368 Merritt et al. Feb 2020 A1
20200046937 Nakagawa et al. Feb 2020 A1
20200170521 Gupta et al. Jun 2020 A1
20200171276 Onozuka Jun 2020 A1
20200171277 Garrison et al. Jun 2020 A1
20200187979 Bowman Jun 2020 A1
20200188630 Fujita et al. Jun 2020 A1
20200205845 Yang et al. Jul 2020 A1
20200276411 Ogle et al. Sep 2020 A1
20200289136 Chou Sep 2020 A1
20200297362 Deville et al. Sep 2020 A1
20200297972 Yee et al. Sep 2020 A1
20200306501 Yee et al. Oct 2020 A1
20200337716 Garrison et al. Oct 2020 A1
20200345979 Loh et al. Nov 2020 A1
20200352494 Gable et al. Nov 2020 A1
20200368494 Parmar Nov 2020 A1
20200375671 Wenderow et al. Dec 2020 A1
20200397957 Teigen et al. Dec 2020 A1
20210001141 Pfiffner et al. Jan 2021 A1
20210045622 Petroff et al. Feb 2021 A1
20210045758 Garrison et al. Feb 2021 A1
20210052296 Garrison Feb 2021 A1
20210068852 Spence Mar 2021 A1
20210069467 Garrison et al. Mar 2021 A1
20210093336 Roue Apr 2021 A1
20210106792 Rafiee Apr 2021 A1
20210128182 Teigen et al. May 2021 A1
20210146094 Christian et al. May 2021 A1
20210153744 Pierro May 2021 A1
20210186537 Buck et al. Jun 2021 A1
20210187244 Buck et al. Jun 2021 A1
20210228844 Ogle Jul 2021 A1
20210307767 Gifford, III et al. Oct 2021 A1
20210315598 Buck et al. Oct 2021 A1
20210316127 Buck et al. Oct 2021 A1
20210353314 Porter et al. Nov 2021 A1
20210361366 Murphy et al. Nov 2021 A1
20210361909 Cottone et al. Nov 2021 A1
20210378696 Yang et al. Dec 2021 A1
20210393275 Whelan Dec 2021 A1
20210393276 Whelan Dec 2021 A1
20220047849 Yee et al. Feb 2022 A1
20220080158 McLaughlin et al. Mar 2022 A1
20220096104 Ogle Mar 2022 A1
20220151646 Dholakia et al. May 2022 A1
20220168010 Brinkmann et al. Jun 2022 A1
20220211975 Yang et al. Jul 2022 A1
20220218365 Deville et al. Jul 2022 A1
20220218366 Deville et al. Jul 2022 A1
20220240959 Quick Aug 2022 A1
20220280753 Garrison et al. Sep 2022 A1
20220287785 Hassan et al. Sep 2022 A1
20220330960 Buck et al. Oct 2022 A1
20220331085 Buck et al. Oct 2022 A1
20220331509 Buck et al. Oct 2022 A1
20220346814 Quick Nov 2022 A1
20230015259 Buck et al. Jan 2023 A1
20230061728 Davis et al. Mar 2023 A1
20230064188 Davis et al. Mar 2023 A1
20230069826 Keating et al. Mar 2023 A1
20230093602 Higgins et al. Mar 2023 A1
Foreign Referenced Citations (74)
Number Date Country
101123918 Feb 2008 CN
101252958 Aug 2008 CN
101321552 Dec 2008 CN
101340849 Jan 2009 CN
101795631 Aug 2010 CN
201596219 Oct 2010 CN
102159146 Aug 2011 CN
102205161 Oct 2011 CN
102319097 Jan 2012 CN
102573701 Jul 2012 CN
102844071 Dec 2012 CN
102847220 Jan 2013 CN
203263993 Nov 2013 CN
103648574 Mar 2014 CN
103764214 Apr 2014 CN
204158457 Feb 2015 CN
104548316 Apr 2015 CN
104622538 May 2015 CN
104884117 Sep 2015 CN
104918578 Sep 2015 CN
105120776 Dec 2015 CN
105208945 Dec 2015 CN
105208951 Dec 2015 CN
204909516 Dec 2015 CN
107405159 Nov 2017 CN
110916768 Mar 2020 CN
8900059 May 1989 DE
10 2010 053111 Jun 2012 DE
10 2012 112732 Jun 2014 DE
0 330 843 Dec 1993 EP
0 582 533 Feb 1994 EP
0 309 471 Aug 1996 EP
1 349 486 Mar 2008 EP
2 069 528 Mar 2013 EP
2 937 108 Oct 2015 EP
2 928 360 Jan 2017 EP
2 211 732 May 2018 EP
3 539 486 Sep 2019 EP
3 698 740 Aug 2020 EP
2077132 Dec 1981 GB
2002-535049 Oct 2002 JP
2003-527925 Sep 2003 JP
2006-087643 Apr 2006 JP
2006-102222 Apr 2006 JP
2006-521881 Sep 2006 JP
2008-502378 Jan 2008 JP
2013-504388 Feb 2013 JP
2014-515670 Jul 2014 JP
2015-504327 Feb 2015 JP
WO 1995009659 Apr 1995 WO
WO 2000000100 Jan 2000 WO
WO 2004008974 Jan 2004 WO
WO 2006101170 Sep 2006 WO
WO 2009054968 Apr 2009 WO
WO 09125575 Oct 2009 WO
WO 2009132218 Oct 2009 WO
WO 2010126786 Nov 2010 WO
WO 2012052159 Apr 2012 WO
WO 2014151209 Sep 2014 WO
WO 2014203336 Dec 2014 WO
WO 2016001712 Jan 2016 WO
WO 2017025775 Feb 2017 WO
WO 2018121363 Jul 2018 WO
WO 18169032 Sep 2018 WO
WO 2019178165 Sep 2019 WO
WO 2019222518 Nov 2019 WO
WO 2019246583 Dec 2019 WO
WO 2020145928 Jul 2020 WO
WO 20263630 Dec 2020 WO
WO 2021016213 Jan 2021 WO
WO 2021064955 Apr 2021 WO
WO 2021090821 May 2021 WO
WO 2021105658 Jun 2021 WO
WO 2021242734 Dec 2021 WO
Non-Patent Literature Citations (65)
Entry
U.S. Appl. No. 15/862,488 (U.S. Pat. No. 10,653,426), filed Jan. 4, 2018 (May 19, 2020) Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 16/863,723 (U.S. Pat. No. 11,224,434), filed Apr. 30, 2020 (Jan. 18, 2022), Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 17/574,907, filed Jan. 13, 2022, Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 15/442,393 (U.S. Pat. No. 10,183,145), filed Feb. 24, 2017 (Jan. 22, 2019), Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,874 (U.S. Pat. No. 10,835,711), filed Feb. 27, 2017 (Nov. 17, 2020), Telescoping Neurovascular Catheter With Enlargeable Distal Opening.
U.S. Appl. No. 15/443,841 (U.S. Pat. No. 10,661,053), filed Feb. 27, 2017 (May 26, 2020), Method of Pulsatile Neurovascular Aspiration With Telescoping Catheter.
U.S. Appl. No. 15/443,838 (U.S. Pat. No. 10,179,224), filed Feb. 27, 2017 (Jan. 15, 2019), Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 15/443,877 (U.S. Pat. No. 10,183,146), filed Feb. 27, 2017 (Jan. 22, 2019), Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,948 (U.S. Pat. No. 10,441,745), filed Feb. 27, 2017 (Oct. 15, 2019), Neurovascular Catheter With Enlargeable Distal End.
U.S. Appl. No. 16/542,657 (U.S. Pat. No. 11,147,949), filed Aug. 16, 2019 (Oct. 19, 2021), Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 17/502,389, filed Oct. 15, 2021, Neurovascular Catheter With Enlargeable Distal End.
U.S. Appl. No. 15/444,038 (U.S. Pat. No. 10,183,147), filed Feb. 27, 2017 (Jan. 22, 2019), Neurovascular Catheter Extension Segment.
U.S. Appl. No. 16/833,585, filed Mar. 28, 2020, Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 16/503,899 (U.S. Pat. No. 11,517,335), filed Jul. 5, 2019 (Dec. 6, 2022), Sealed Neurovascular Extendable Catheter.
U.S. Appl. No. 18/074,378, filed Dec. 2, 2022, Sealed Neurovascular Extendable Catheter.
U.S. Appl. No. 16/802,317, filed Feb. 26, 2020, Catheter With Seamless Flexibility Transitions.
U.S. Appl. No. 16/503,886 (U.S. Pat. No. 11,471,582), filed Jul. 5, 2019 (Oct. 18, 2022), Vacuum Transfer Tool for Extendable Catheter.
U.S. Appl. No. 18/406,623, filed Oct. 14, 2022, Vacuum Transfer Tool for Extendable Catheter.
U.S. Appl. No. 16/398,626 (U.S. Pat. No. 10,835,272), filed Apr. 30, 2019 (Nov. 17, 2020), Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 16/400,263 (U.S. Pat. No. 11,123,090), filed May 1, 2019 (Sep. 21, 2021), Neurovascular Catheter Having Atraumatic Angled Tip.
U.S. Appl. No. 16/570,084 (U.S. Pat. No. 11,311,303), filed Sep. 13, 2019 (Apr. 26, 2022), Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 16/683,718 (U.S. Pat. No. 10,653,434), filed Nov. 14, 2019 (May 19, 2020), Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 16/704,330 (U.S. Pat. No. 10,786,270), filed Dec. 5, 2019 (Sep. 29, 2020), Neurovascular Aspiration Catheter With Elliptical Aspiration Port.
U.S. Appl. No. 17/410,162, filed Aug. 24, 2021, Neurovascular Catheter Having Angled Tip.
U.S. Appl. No. 16/589,563 (U.S. Pat. No. 11,395,665), filed Oct. 1, 2019 (Jul. 26, 2022), Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 17/036,258, filed Sep. 29, 2020, Embolic Retrieval Catheter.
U.S. Appl. No. 17/070,832 (U.S. Pat. No. 11,134,859), filed Oct. 14, 2020 (Oct. 5, 2021), Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 17/407,852, filed Aug. 20, 2021, Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 17/818,281, filed Aug. 8, 2022, Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 16/728,469, filed Dec. 27, 2019, Neurovascular Access With Dynamic Assistance.
U.S. Appl. No. 17/125,723 (U.S. Pat. No. 11,065,018), filed Dec. 17, 2020 (Jul. 20, 2021), Methods and Systems for Advancing a Catheter to a Target Site.
U.S. Appl. No. 17/125,217, filed Dec. 17, 2020, Methods and Systems for Treating a Pulmonary Embolism.
U.S. Appl. No. 17/125,743 (U.S. Pat. No. 11,253,277), filed Dec. 17, 2020 (Feb. 22, 2022), Systems for Accessing a Central Pulmonary Artery.
U.S. Appl. No. 17/125,742, filed Dec. 17, 2020, Methods and Systems for Accessing and Retrieving Thrombo-Emboli.
U.S. Appl. No. 17/357,490, filed Jun. 24, 2021, Catheter System for Treating Thromboembolic Disease.
U.S. Appl. No. 17/357,558 (U.S. Pat. No. 11,259,821), filed Jun. 24, 2021 (Mar. 1, 2022), Aspiration System With Accelerated Response.
U.S. Appl. No. 17/357,643, filed Jun. 24, 2021, Hemostasis Valve.
U.S. Appl. No. 17/357,672, filed Jun. 24, 2021, Split Dilator Aspiration System.
U.S. Appl. No. 17/357,715, filed Jun. 24, 2021, Methods of Placing Large Bore Aspiration Catheters.
U.S. Appl. No. 17/857,598, filed Jul. 5, 2022, Sterile Field Clot Capture Module for Use in Thrombectomy System.
U.S. Appl. No. 17/857,649, filed Jul. 5, 2022, Manually Rotatable Thrombus Engagement Tool.
U.S. Appl. No. 17/857,919, filed Jul. 5, 2022, Method of Removing Embolic Material With Thrombus Engagement Tool.
U.S. Appl. No. 17/475,202, filed Sep. 14, 2021, Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 17/343,004 (U.S. Pat. No. 11,207,497), filed Jun. 9, 2021 (Dec. 28, 2021), Catheter With Enhanced Tensile Strength.
U.S. Appl. No. 17/398,244, filed Aug. 10, 2021, Catheter With a Preset Curve.
U.S. Appl. No. 29/811,884, filed Oct. 18, 2021, Inline Fluid Filter.
U.S. Appl. No. 17/527,393, filed Nov. 16, 2021, Catheter Drive System for Supra-Aortic Access.
U.S. Appl. No. 17/527,379, filed Nov. 16, 2021, Robotically Driven Interventional Device.
U.S. Appl. No. 17/527,460, filed Nov. 16, 2021, Sterile Packaging Assembly for Robotic Interventional Device.
U.S. Appl. No. 17/527,452, filed Nov. 16, 2021, Method of Robotically Performing a Neurovascular Procedure.
U.S. Appl. No. 17/527,456, filed Nov. 16, 2021, Multi Catheter Method of Performing a Robotic Neurovascular Procedure.
U.S. Appl. No. 17/822,933, filed Aug. 29, 2022, Neurovascular Access Catheter With Microcatheter Segment.
U.S. Appl. No. 17/823,653, filed Aug. 31, 2022, Neurovascular Access Catheter With Microcatheter Segment.
U.S. Appl. No. 17/879,614, filed Aug. 2, 2022, Multi Catheter System With Integrated Fluidics Management.
U.S. Appl. No. 17/879,616, filed Aug. 2, 2022, Fluidics Control System for Multi Catheter Stack.
U.S. Appl. No. 17/879,573, filed Aug. 2, 2022, Methods and Devices for Degassing a Multi Catheter Stack.
U.S. Appl. No. 17/816,669, filed Aug. 1, 2022, Method of Supra-Aortic Access for a Neurovascular Procedure.
Abay et al., 2014, Investigation of photoplethysmography and Near Infrared Spectroscopy for the assessment of tissue blood perfusion, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, pp. 5361-5364, doi: 10.1109/EMBC.2014.6944837.
Bernava et al., Sep. 23, 2019, Direct trhomboaspiration efficacy for mechanical thrombectomy is related to the angle of interaction between the catheter and the clot, J. NeuroIntervent Surg., 0:1-6, doi:10.1136/neurintsurg-2019-015113.
GUIDEZILLA Guide Extension Catheter, Boston Scientific 510k Submission, Feb. 20, 2017.
Korpelainen et al., 1995, Asymmetrical skin temperature in ischemic stroke, Stroke, 26(9):1543-1547.
Merit Medical Systems Acquired Distal Access's SPINR Platform, Jul. 15, 2015, Digital Access, LLC; Merit Medical Systems, 5 pages.
Simon et al., Exploring the efficacy of cyclic vs. static aspiration in a cerebral thrombectomy model: an initial proof of concept study, J. NeuroIntervent Surg 2014, 6 pp. 677-683.
Simon et al., Hydrodynamic comparison of the Penumbra system and commonly available syringes in forced—suction thrombectomy, J. NeuroIntervent Surg 2014, 6, pp. 205-211.
Spiotta et al., Evolution of thrombectomy approaches and devices for acute stroke: a technical review, J. NeuroIntervent Surg 2015, 7, pp. 2-7.
Related Publications (1)
Number Date Country
20230114375 A1 Apr 2023 US
Provisional Applications (1)
Number Date Country
62694792 Jul 2018 US
Divisions (1)
Number Date Country
Parent 16503886 Jul 2019 US
Child 18046623 US