The present invention relates to a VUV excimer lamp, to a photochemical ozone generator and to an excimer lamp system comprising such a VUV excimer lamp.
Excimer lamps are used for generating high-energy ultraviolet (VUV) radiation. The excimer emission is generated by means of silent electric& discharge in a discharge chamber filled with an excimer-forming gas. The discharge chamber has walls formed from a material transparent to ultraviolet (UV) light. A first electrode is disposed within the chamber. A second electrode is arranged outside of the chamber. Due to the electric field generated between the electrodes a discharge occurs, generating excimer molecules. When these excited molecules return to ground state, high-energy ultraviolet light is emitted.
Known excimer lamps have low wall plug efficiencies and a short lifetime. Further, arcing can occur if a certain power density is exceeded.
Accordingly, it is an objective of the present invention to provide an efficient VUV excimer lamp with an extended lifespan.
This problem is solved by a VUV excimer lamp and by a photochemical ozone generator and an excimer lamp system which are realized by a system comprising such a VUV excimer lamp.
In the following Vacuum Ultra-Violet (VUV) radiation is used to describe the UV spectrum below 190 nm. Ultraviolet C (UV-C) is generally referred to a short wavelength (100-280 nm) radiation, which is primarily used for disinfection, inactivating microorganisms by destroying nucleic acids and disrupting their DNA, leaving them unable to perform vital cellular functions.
According to the invention, a VUV excimer lamp comprising a dielectric tube for holding an excimer-forming gas, a first electrode disposed within said tube, a second electrode arranged outside of said tube, is provided wherein said first electrode is elongated and includes a thin wire with an outer diameter of less than 0.5 mm. It was found that the efficiency of the lamp greatly improved with a thin wire electrode. The wire has advantageously a circular cross section and is of cylindrical shape. But it can also have a non-round cross section, for example rectangular. In this context the outer diameter has to be understood as the smallest dimension of the extension of the wire perpendicular to the longitudinal axis, e.g. the shortest side in case of rectangular shape. Multiple wires can be twisted together to form the electrode. The wire has an outer diameter between 0.02 mm and 0.4 mm. The outer diameter of the twisted electrode is preferably less than 0.5 mm. The electrode is preferably formed by a single elongated wire, wherein macroscopic spiral electrode shapes can be excluded.
Preferably, said elongated electrode and/or thin wire is substantially straight and defines a straight axis of elongation. The dielectric tube can have an elongated wall with cylindrical shape and it can extend linearly along the axial direction of the lamp body.
Preferably, the inner electrode has a thickness according to the following equation: (R/ro)/ln(R/ro)>8 wherein 2*R is the inner diameter of the glass tube and 2*ro the outer diameter of the inner electrode. More preferably, the inner electrode has a thickness according to the following equation: (R/ro)/ln(R/ro)>10. Due to the exponential behaviour of the electron multiplication within the gas even a difference of one with respect to prior art is considerable.
The first electrode can be physically connected to each end of the dielectric tube. In an advantageous embodiment the gas filling pressure is in a range between 300 mbar and 50 bar. In one embodiment the gas filling pressure is about 340 mbar for a dielectric tube with an outer diameter of about 16 mm.
Preferably, said gas consists essentially of Xe.
In order to reach high efficiency, said gas should contain less than about 10 ppm of impurities.
Preferably, said dielectric tube is made of quartz glass, which is transparent to VUV radiation.
In a preferred embodiment said elongated thin wire is tensioned and centred with a spring arranged on one side of the elongated thin wire. This allows to avoid shadow over the length of the lamp compared to an inner electrode helically wound over the full length around a rod and to ensure tensioning of the electrode at high temperature, which allows to keep the coaxial symmetry. The inner electrode is preferably physically connected to each end of the dielectric tube.
Further, a photochemical ozone generator with a previous described VUV excimer lamp is provided.
For another application said dielectric tube of the VUV excimer lamp can have a fluorescent coating on the in- or outside with luminescent compounds. Said coating allows generation of radiation with a predefined wavelength. Preferably, this coating is a UV fluorescent coating allowing generation of UV radiation. More preferably, this coating is a UV-C fluorescent coating. The UV-C fluorescent coating has preferably phosphorous compounds. A coating on the outside is beneficial, because it allows the use of less stable compounds and easier coating. If the coating is on the inside expensive glasses transparent to VUV radiation are not required, which reduces cost.
Furthermore, a method for installation of a VUV excimer lamp is provided with the following steps:
This method allows to speed up the backing process, because the lamps internal features do not need to be heated from the outside. The elongated thin wire further improves the efficiency of the excimer lamp.
Preferably, the elongated wire has an outer diameter between 0.02 mm and 0.4 mm.
Preferred embodiments of the present invention will be described with reference to the drawings. In all figures the same reference signs denote the same components or functionally similar components.
The thin high voltage electrode wire 2 is tensioned and centered by means of a spring 6, attached to one end portion of the excimer lamp and to one end of the wire. The spring 6 is preferably made of an austenitic nickel-chromium-based superalloys, like Inconel. Ceramic is also applicable. The spring 6 must withstand temperatures up to 500° C. due to the baking process during lamp filling.
The dielectric 3 is surrounded by the second electrode 4 (ground electrode). This ground electrode 4 can be formed in different ways. The second electrode 4 is made of a conductive material. For instance, to form the second electrode 4, a tape or a conductive wire made of a metal (e.g., aluminum, copper) may be used. The second electrode 4 is in contact with the outer surface of the dielectric tube 3. The second electrode 4 includes linear electrodes 40, 41. The linear electrodes 40,41 are arranged substantially in parallel with each other and they extend along the longitudinal axis of the dielectric tube. In another embodiment the electrodes 4 can be formed in a spiral form on the outer surface of the dielectric tube 3. This configuration allows discharge to be generated uniformly in a circumferential direction of the dielectric tube 3, making it possible to obtain emission with more uniform distribution of brightness. Further, it is possible that the ground electrode 4 is a mesh or formed by water, which can act with minimal conductivity as electrode with a vessel being grounded.
The lifetime of the lamps can be improved by increasing the gas filling pressure.
In particular quartz tubes with an outer diameter of 16 mm and a length of 50 cm were tested. For this lamp configuration, the pressure of the gas filling should be around pXE=300 mbar, preferably between 280 mbar and 370 mbar, more preferably between 300 mbar and 350 mbar. The best results for this configuration were achieved with pXE=340 mbar. For other quartz tube diameters other pressures are optimal.
The emitted VUV light has a wavelength of 172 nm, which is ideal for the production of ozone. In comparison to conventional ozone generation process with the silent discharge oxygen molecules are split by photons instead of electrons. As a result, no nitrogen oxides are produced and clean Ozone in purest Oxygen feed gas can be generated. Moreover extremely high ozone concentrations can be achieved. Further, it is advantageous that there is no upper limit to the feed gas pressure used in such a photochemical ozone generator.
Another application of the VUV excimer lamp is the generation of UV-C radiation. In this case the dielectric has to be coated with a UV-C fluorescent material, e.g. a layer of phosphorus compounds like YP04: Bi. These compounds absorb the 172 nm radiation and reemit light in the UV-C range (Stokes shift). The wavelength of the emitted radiation depends on the composition of the phosphorus layer. It can be adapted to the application.
As shown in
The second electrode 4 includes a plurality of linear or spiral wound electrodes arranged substantially in parallel with each other, they can be formed as a wire or strip, so that only a small section is affected by the discharge. A protecting layer of Al2O3 or MgO can be arranged on the inside of the UV-C fluorescent coat 13 for protecting the coat 13 from the discharge plasma. Optimizing Xenon pressure as discussed above also leads to extended durability of the phosphor coating 13.
With phosphor coatings an efficient mercury-free UV-C lamp can be reached, which has no warm-up time, is fully dimmable (0 to 100% without loss in efficiency) while tolerating a wide range of operational temperature.
Number | Date | Country | Kind |
---|---|---|---|
18204296.0 | Nov 2018 | EP | regional |
This patent application is a U.S. National Phase Patent Application of PCT Application No. PCT/EP2019/080267, filed Nov. 5, 2019, which claims priority to European Patent Application No. EP18204296.0, filed Nov. 5, 2018, each of which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/080267 | 11/5/2019 | WO | 00 |