The present invention relates to vacuum cleaners. More specifically, the present invention relates to a high efficiency vacuum cleaner and a system for cleaning the filter on the vacuum cleaner.
Vacuums are commonly used in both residential and industrial applications. Canister style vacuums with rigid filters in particular may be used for common applications such as vacuuming cars or cleaning in shops and garages as well as for more demanding applications such as for capturing dust from tools, cleaning fireplace ash, etc. Canister vacuums often have a pleated cylindrical filter inside of the debris canister. Large debris is deposited into the canister while dust is separated from the air by the filter.
Non-limiting and non-exhaustive examples of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Unless otherwise noted, the figures are drawn to scale to better illustrate the depicted elements. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. For example, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The examples shown each accomplish various different advantages. It is appreciated that it is not possible to clearly show each element or advantage in a single figure, and as such, multiple figures are presented to separately illustrate the various details of the examples in greater clarity. Similarly, not every example need accomplish all advantages of the present disclosure.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
Reference throughout this specification to “one embodiment”, “an embodiment”, “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples.
The disclosure particularly describes a vacuum cleaner with a filter cleaning device. The present disclosure describes how filter cleaning device may be used to clean debris from a vacuum filter without removal of the filter from the vacuum. Cleaning the vacuum filter reduces pressure drop in air flow through the filter and maintains the performance and cleaning efficiency of the vacuum. Cleaning the filter without removal of the filter from the vacuum keeps the captured dust and debris inside of the vacuum. This keeps the surrounding area clean and minimizes exposure to the dust and debris captured by the vacuum. The resulting vacuum cleaner is a highly efficient vacuum cleaner which may be operated for longer periods of time between service. The vacuum cleaner maintains high airflow and works well for thorough cleaning as well as for demanding jobs such as collecting dust and debris from power tools.
Turning now to
The inlet valve 22 may be mounted to the frame 38 or onto the vacuum body 14, and may include a short inlet section of vacuum hose 50 or conduit connecting the inlet valve to the inlet of the vacuum body 14 (i.e. the inlet to the vacuum filtration system). Alternatively, the inlet hose 50 may be omitted and the inlet valve 22 may be mounted directly to the vacuum body 14 at the inlet to the vacuum filter. The inlet valve 22 may be opened and closed to selectively allow or block airflow through the vacuum and is primarily used as part of the filter cleaning system.
The vacuum body 14 is formed from a main body section 54, a lid 58, and an air cleaner inlet 62. The main body section 54 and the lid 58 together house a high efficiency cyclone separator and a high efficiency particulate air (HEPA) filter. The main body 54 and the lid 58 attach together and enclose the filtration system (the cyclone and the filter). The debris canister 46 is attached to the bottom of the main body 54 and receives debris from the main body. The debris canister 46 is isolated from the interior of the vacuum during vacuum operation by a dump plate. Accordingly, the vacuum 10 may be operated with a garbage bag instead of the debris canister 46. In some applications, this may make it easier to dispose of the debris collected by the vacuum 10. The exterior of the vacuum 10 also includes a filter cleaning handle 66 which is pivotably attached to the vacuum 10 and a filter cleaning valve/striker 70 which is attached to the vacuum 10 and operated by the filter cleaning handle 66.
Air exiting through the cyclone air outlet 90 enters into a first, upper plenum 98 which is formed between the cyclone 74 and the lid 58, between the cyclone 74 and the filter 102, as well as between the upper portion of the debris collection bin 94 and the filter 102. This upper plenum 98 is generally cylindrical and is located in an annular space surrounding the cyclone 74 and the debris collection bin 94 and inside of the lid 58 and filter 102.
The filter 102 is a rigid filter and is generally cylindrical and disposed with its central axis in a vertical orientation. The filter 102 tapers vertically and has an upper diameter which is smaller than its lower diameter. Air flows through the filter 102 from the inside of the filter 102 to the outside of the filter 102. Accordingly, debris in the air is deposited on the inside surface of the filter 102. Because the upper end of the filter 102 is smaller in diameter than the lower end of the filter 102, debris falling from the filter does not impact a lower section of the filter; instead falling cleanly away from the filter 102. The filter 102 seals against a bottom portion of the lid 58 and also seals against a bottom portion of the main body section 54 and is held rigidly between these while in use. As shown, the lid 58 may include a generally horizontal lower plate that seals against the upper opening of the main body section 54 and a generally cylindrical upper portion that extends around the upper portion of the cyclone 74 and creates an annular space around the cyclone 74 between the lid 58 and the cyclone 74. This cylindrical upper portion may extend downwardly and seal against the top of the filter 102.
A second, lower plenum 106 is formed between the filter 102 and the main body section 54. The second, lower plenum 106 is separated from the first, upper plenum 98. Air flows from the first plenum 98 into the second plenum 106 by passing through the filter 102. The filter 102 ensures that any air exiting the cyclone is thoroughly cleaned before being exhausted into the atmosphere. Air exits the second plenum 106 through an exit port 110 and passes into the vacuum motor 18. The vacuum motor 18 powers the vacuum and includes a motor and blower unit forming an air pump (typically a centrifugal cage type blower), cords, switches and electronics necessary to operate the motor, ducting to handle the movement of the air, and an air outlet to the atmosphere. The motor draws air through the vacuum 10 and its air cleaning system.
The filtration system is arranged in a coaxial arrangement, with the cyclone 74 placed vertically over the debris collection bin 94 and with the vertical axes of these two components aligned. The filter 102 is placed coaxially around the cyclone 74 and debris collection bin 94. The lid 58 is arranged coaxially around the cyclone 74 with aligned axes and forms an annular first plenum around the cyclone 74. The main body section 54 is arranged coaxially around the cyclone 74, filter 102, and debris collection bin 94 and these share a common axis. The second plenum 106 is arranged annularly around the filter 102.
The air cleaner inlet 62 is located at the top of the vacuum lid 58. The air cleaner inlet 62 includes a valve that may be selectively opened and closed to allow ambient air from around the vacuum into the vacuum filtration system. In one embodiment, the air cleaner inlet 62 may allow air from the environment to enter directly into the upstream plenum 98. This air is then passed through the filter 102 and into the downstream plenum 106. Since the air surrounding the vacuum often has a small amount of entrained dust, it may not be necessary to pass this air through the cyclone 74. In another embodiment, the air cleaner inlet 62 may include a valve and a conduit connecting the valve to the cyclone air inlet 86. Environmental air entering through the air cleaner inlet 62 is then passed into the cyclone 74 with the other air moving through the vacuum 10. This may be desirable if the environmental air surrounding the vacuum 10 has a higher degree of entrained dust. In such a configuration, the inner side of the air cleaner inlet 62 is fluidly connected to the air inlet 86 of the cyclone 74. For example, the inside of the air cleaner inlet could be formed into a pipe or conduit and could merge into the inlet hose 50 or cyclone inlet 86 with a Y-connector. When the room air cleaner inlet 62 is open, a portion of the airflow through the vacuum 10 flows into the vacuum 10 through the inlet valve 22 (indicated by arrow 114) and a portion of the airflow through the vacuum 10 flows into the vacuum 10 through the room air cleaner inlet 62 (indicated by arrow 118). If the air cleaner inlet 62 is closed, no air enters through the air cleaner inlet 62 and all air enters the vacuum through the inlet valve 22.
In operation of the vacuum, the inlet valve 22 is connected to a vacuum hose 108 (shown partially in
The air cleaner inlet 62 is a bypass inlet which allows air from the room or area surrounding the vacuum 10 to enter into the vacuum 10 independent of the air inlet 22 which is typically used in conjunction with a dust producing tool or for a particular cleaning task.
Typically, the majority of the airflow will enter the vacuum through the inlet valve 22 as this air is used to collect debris from a tool or is otherwise being actively used by a person to collect dust and debris. The room air cleaner inlet valve 62 may be sized according to the amount of air that should pass through it. If the air cleaner inlet 62 is made sufficiently large, a large amount of air could pass through the room air cleaner inlet 62. This may be desirable to allow for quick cleaning of ambient air if the room air becomes unexpectedly dirty. The air cleaner inlet 62 may be adjusted proportionately, allowing a person to select between a large amount of air, a small amount of air, and no room air entering into the vacuum 10 through the air cleaner inlet 62.
Debris collected by the cyclone 74 is retained in the debris collection bin 94 until this bin is emptied into the debris canister 46. The bottom of the debris collection bin 94 is closed by a dump plate 138. The dump plate 138 is attached to the body 54 of the vacuum 10 by a pivot 142. The dump plate 138 may pivot downwardly and away from the debris collection bin 94 about the pivot 142 to allow debris from the debris collection bin 94 to move into the debris canister 46. A spring 146, such as a coil spring, may be disposed about the pivot 142 and attached to the vacuum body 54 and dump plate 138. The spring 146 may be selected to support the weight of the dump plate 138 so that the dump plate is largely balanced in a horizontal position by the spring. When the vacuum 10 is operating, the negative pressure within the vacuum 10 holds the dump plate 138 securely closed. When the vacuum 10 is not operating, debris weight on the dump plate 138 will cause the dump plate 138 to open and deposit debris into the debris canister 46. Once the debris is off of the dump plate 138, the dump plate closes due to the bias of the spring 146.
The main body section 54 and debris collection bin 94 are shaped so that an annular space 168 is present between the debris collection bin 94 and the main body section. The main body section 54 may be formed with a tapering lower section 170 which is spaced apart from the bottom of the debris collection bin 94. The dump plate 138 may close both the bottom of the debris collection bin 94 and the bottom opening of the tapering lower section 170. A mounting collar 174 which is larger in diameter than the bottom of the tapering lower section 170 may be attached to the tapering lower section 170. The mounting collar 174 is used to attach the debris canister 46 to the vacuum 10. In one configuration, the mounting collar 174 may include a stationary collar attached to the lower section 170 of the vacuum and a movable mounting collar which can rotate about the stationary collar and also move vertically about the stationary collar. This rotating collar can be rotated to lock the debris canister 46 to the vacuum 10 and can be moved vertically to facilitate removal and emptying of the debris canister 46.
When the vacuum is in use, debris in the debris collection bin 94 falls on top of the dump plate 138. Debris which is collected by the filter 102 may also fall from the filter into the annular space 168 on top of the dump plate. When the vacuum motor 18 is not operating, the dump plate 138 may swing downwardly to open and dump debris from both the filter 102 and the debris collection bin 94 into the debris canister 46.
In order to clean the filter 102, the inlet valve 22 and room air cleaner inlet 62 are closed while the motor 18 is operating. This evacuates air from the interior of the vacuum 10 and places the part of the vacuum 10 indicated in
The cleaning valve 70 is advantageous as it cleans the filter better than previous vacuum designs. The filter cleaning valve 70 strikes the filter 102 precisely while airflow is reversed through the filter 102 due to the vacuum condition present in the vacuum 10. The reversed air flow lasts only momentarily and the filter cleaning valve 70 causes the reversed airflow and the filter striking to occur substantially simultaneously. This significantly improves filter cleaning over reversed airflow or filter striking alone (or not simultaneously occurring).
Prior art vacuums which strike the filter do this without simultaneous airflow reversal. Prior art vacuums which reverse the airflow do this without simultaneously striking the filter. Additionally, prior art vacuums which reverse the airflow do so at the expense of filter cleaning or room cleanliness. Known single filter designs which reverse airflow through the filter will vent airflow and debris out of the vacuum as the motor flow is redirected through the filter backwards to clean the filter. Since the motor airflow is used to clean the filter, a corresponding airflow must be vented out of the vacuum in order to permit flow through the filter. This defect has been addressed by using two filters and two motors. One motor is reversed while the other motor operates normally. This recirculates air in the vacuum and avoids venting during filter cleaning, but filter cleaning is degraded as debris from the filter being cleaned deposits on the filter operating normally. Additionally, the vacuum suffers from increased cost and complexity as two motors and filters as well as additional plumbing are required.
The present design avoids these drawbacks. Because the reversal of airflow through the filter 102 is caused by an initial vacuum drawdown of the vacuum 10 and subsequent venting of air into the vacuum 10, no air is vented from the vacuum. The vacuum motor 18 operates normally at all time drawing air from the vacuum 10 and all air exiting the vacuum 10 is from the clean side of the filter 102. All collected debris is maintained in the vacuum 10. Even if the valve 22 were opened during cleaning, no air would be vented as the vacuum 10 is under negative pressure and not positive pressure. Filter cleaning would be lessened, but the environment around the vacuum 10 would not be dirtied by venting air and debris. The near simultaneous reversal of airflow through the filter 102 and the striking of the filter 102 by the filter cleaning valve 70 greatly improves the removal of debris from the filter 102. This manner of reversing airflow through the filter 102 is provided by the upstream first plenum 98 and the downstream second plenum 106 separated by the filter 102. The filter cleaning valve 70 vents air into the second, downstream plenum between the vacuum motor 18 and the filter 102. In one embodiment, two filter cleaning valves are located on opposite sides of the vacuum lid 58 and are both operated by a filter cleaning handle/lever 66 which extends around the center of the vacuum lid 58 and operates both filter cleaning valves simultaneously.
If desired, the filter 102 may be cleaned multiple times simultaneously. If the filter cleaning lever 66 is elevated, the filter cleaning valve 70 closes and the motor 18 again evacuates air from the vacuum 10 and creates a negative pressure in the vacuum 10. Depression of the filter cleaning lever 66 again opens the filter cleaning valve 70, reversing air flow through the filter 102 and striking the filter 102 near simultaneously. The design avoids the complexity of prior art vacuums, and only requires the operator to close the vacuum inlet valve 22 and, when ready, move the filter cleaning lever 66 as often as desired to clean the filter 102.
The debris collection canister 46 may be attached to the mounting collar 174 in an air-tight manner to keep dust and debris contained while being transferred between the vacuum 10 and the debris collection canister 46. The dump plate 138 isolates the debris canister 46 from the interior of the vacuum 10 during normal operation of the vacuum 10; allowing the debris canister 46 to be removed from the vacuum 10 and emptied while the vacuum 10 remains is used.
The above description of illustrated examples of the present invention, including what is described in the Abstract, are not intended to be exhaustive or to be limitation to the precise forms disclosed. While specific examples of the invention are described herein for illustrative purposes, various equivalent modifications are possible without departing from the broader scope of the present claims. Indeed, it is appreciated that specific example dimensions, materials, etc., are provided for explanation purposes and that other values may also be employed in other examples in accordance with the teachings of the present invention.