Vaginal entry surgical devices, kit, system, and method

Information

  • Patent Grant
  • 8608652
  • Patent Number
    8,608,652
  • Date Filed
    Thursday, November 5, 2009
    14 years ago
  • Date Issued
    Tuesday, December 17, 2013
    10 years ago
Abstract
A surgical method, system, kit, and various devices are provided for use in, among other things, vaginal entry during a natural orifice translumenal endoscopic surgical procedure. A system and/or method provide for the rapid creation of a conduit and/or multiple ports in a natural orifice, such as a patient's vagina, while accommodating anatomical variation to reduce the need to excise additional tissue from the patient.
Description
BACKGROUND

The embodiments relate, in general, to medical procedures and devices to enter into a patient's body cavity and, more particularly, to devices for establishing at least one conduit into a patient's body cavity through a patient's orifice, such as a patient's vagina, to accomplish various surgical and therapeutic procedures.


Access to the abdominal cavity may, from time to time, be required for diagnostic and therapeutic endeavors for a variety of medical and surgical diseases. Historically, abdominal access has required a formal laparotomy to provide adequate exposure. Such procedures, which require incisions to be made in the abdomen, are not particularly well-suited for patients that may have extensive abdominal scarring from previous procedures, those persons who are morbidly obese, those individuals with abdominal wall infection, and those patients with diminished abdominal wall integrity, such as patients with burns and skin grafting. Other patients simply do not want to have a scar if it can be avoided.


Minimally invasive procedures are desirable because such procedures can reduce pain and provide relatively quick recovery times as compared with conventional open medical procedures. Many minimally invasive procedures are performed with an endoscope (including, without limitation, laparoscopes). Such procedures permit a physician to position, manipulate, and view medical instruments and accessories inside the patient through a small access opening in the patient's body. Laparoscopy is a term used to describe such an “endosurgical” approach using an endoscope (often a rigid laparoscope). In this type of procedure, accessory devices are often inserted into a patient through trocars placed through the body wall. Trocars must typically pass through several layers of overlapping tissue/muscle before reaching the abdominal cavity.


Still less invasive treatments include those that are performed through insertion of an endoscope through a natural body orifice to a treatment region. Examples of this approach include, but are not limited to, cholecystectomy, appendectomy, cystoscopy, hysteroscopy, esophagogastroduodenoscopy, and colonoscopy. Many of these procedures employ the use of a flexible endoscope during the procedure. Flexible endoscopes often have a flexible, steerable articulating section near the distal end that can be controlled by the user by utilizing controls at the proximal end. Minimally invasive therapeutic procedures to treat diseased tissue by introducing medical instruments to a tissue treatment region through a natural opening of the patient are known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™. Entry through a natural opening, such as a patient's vagina, for example may further reduce the pain a patient experiences after the procedure because the vaginal walls have less pain receptors than do the abdominal walls.


Some flexible endoscopes are relatively small (about 1 mm to 3 mm in diameter), and may have no integral accessory channel (also called biopsy channels or working channels). Other flexible endoscopes, including gastroscopes and colonoscopes, have integral working channels having a diameter of about 2.0 mm to 3.5 mm for the purpose of introducing and removing medical devices and other accessory devices to perform diagnosis or therapy within the patient. As a result, the accessory devices used by a physician can be limited in size by the diameter of the accessory channel of the scope used. Additionally, the physician may be limited to a single accessory device when using the standard endoscope having one working channel.


Certain specialized endoscopes are available, such as large working channel endoscopes having a working channel of about 5-10 mm in diameter, which can be used to pass relatively large accessories, or to provide capability to suction large blood clots. Other specialized endoscopes include those having two or more working channels. Regardless, using an endoscope alone to perform a surgical procedure may be limiting in that multiple tools may not be easily moved apart from one another to perform a surgical procedure.


The above mentioned minimally invasive surgical procedures have changed some of the major open surgical procedures such as gall bladder removal, or a cholecystectomy, to simple outpatient surgery. Consequently, the patient's return to normal activity has changed from weeks to days. These types of surgeries are often used for repairing defects or for the removal of diseased tissue or organs from areas of the body such as the abdominal cavity.


The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.


SUMMARY

In various embodiments, a surgical method is provided for introducing a conduit into a patient's body cavity. In at least one embodiment, the method can comprise inserting a speculum into a patient's vagina, the speculum including two or more blades movable with respect to each other, expanding the speculum by moving the blades apart from each other such that the blades move apart walls of the vagina, obtaining a surgical delivery device coupled to a transorifice device, the transorifice device including a flexible conduit, inserting a portion of the surgical delivery device through the speculum such that a portion of the transorifice device is also inserted through the speculum, creating an incision in the vagina, passing a tip of the surgical delivery device through the incision and into a body cavity of the patient, and releasing the transorifice device from the surgical delivery device such that a distal portion of the flexible conduit is located within the body cavity.


In various embodiments, a speculum is provided. In at least one embodiment, the speculum can comprise a base defining an opening therethrough, a first blade attached to the base, a second blade attached to the base, and at least one locking assembly configured to releasably hold the first blade and the second blade relative to each other in at least one locked position. In these embodiments, the base can comprise a proximal surface, the first blade can comprise a first distal end, and the second blade can comprise a second distal end. Further, in these embodiments, the first blade and the second blade are movable with respect to each other. Moreover, in these embodiments, when the first blade and the second blade are in the at least one locked position, the shortest distance between the first distal end and a plane defined by the proximal surface is substantially equal to the shortest distance between the second distal end and the plane defined by the proximal surface.


In various embodiments, a transorifice device is provided. In at least one embodiment, the transorifice device can comprise a port assembly defining at least one port therein and a flexible conduit extending from the distal side of the port assembly. In these embodiments, the port assembly can include a proximal side and a distal side. Further, in these embodiments, the flexible conduit can include a proximal portion adjacent to the port assembly and a distal portion. Moreover, in these embodiments, the flexible conduit can further comprise a pliable ring located at the distal portion.


In various embodiments, a surgical delivery device is provided. In at least one embodiment, the surgical delivery device can comprise a body including a proximal end and a distal end, a tip movably mounted to the distal end of the body such that the tip can move between an opened position and a closed position, and a balloon surrounding at least part of the body and located adjacent the distal end of the body. In these embodiments, the body can define a tool receiving passageway therein including a proximal opening located at the proximal end and a distal opening located at the distal end.





BRIEF DESCRIPTION OF THE FIGURES

The novel features of the embodiments described herein are set forth with particularity in the appended claims. The embodiments, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 is a side perspective view of a speculum according to a non-limiting embodiment.



FIG. 2 is a perspective view of a surgical delivery device according to a non-limiting embodiment.



FIG. 3 is a perspective view of a transorifice device according to a non-limiting embodiment.



FIG. 4 is a perspective view of a steerable flexible trocar according to a non-limiting embodiment.



FIG. 5A is a top perspective view of the speculum of FIG. 1 in a closed configuration.



FIG. 5B is a top perspective view of the speculum of FIG. 1 in an opened configuration.



FIG. 6A illustrates the speculum of FIG. 1 in a closed configuration being inserted into a patient's vagina.



FIG. 6B illustrates the speculum of FIG. 1 in an opened configuration after being inserted into a patient's vagina, as well as sutures applied to the vaginal walls between blades of the speculum to identify an otomy site.



FIG. 7 illustrates the surgical delivery device of FIG. 2 inserted through a port of the transorifice device of FIG. 3; the surgical delivery device is also shown extending through the transorifice device and connected to a suture at a distal end of the transorifice device; an endoscope, according to a non-limiting embodiment, is also shown inserted partially into a tool receiving passageway of the surgical delivery device.



FIG. 8 illustrates the surgical delivery device, the transorifice device, and the endoscope of FIG. 7 inserted through the opened speculum of FIG. 6B, through the patient's vagina, and into a body cavity via an incision created at an otomy site in the vaginal walls; the speculum is shown in dashed lines for visualization purposes.



FIG. 9A is an enlarged view of the distal portions of the speculum, the surgical delivery device, and the transorifice device of FIG. 8 after the surgical delivery device has created an incision through the vaginal wall at an otomy site and a balloon of the surgical delivery device has been expanded to dilate the incision and to secure the surgical delivery device within the incision.



FIG. 9B illustrates the distal portions of the speculum, the surgical delivery device, and the transorifice device of FIG. 9A after a distal portion of the endoscope has been passed through the surgical delivery device to inspect the body cavity and/or otomy site.



FIG. 10 illustrates the speculum, the surgical delivery device, the transorifice device, and the endoscope of FIG. 8 after advancing the surgical delivery device to position a pliable retention ring of the surgical delivery device within the patient's body cavity; further, the suture of the transorifice device has been released from the distal portion of the surgical delivery device to enable the pliable retention ring to also expand or unfold within the body cavity, adjacent to the otomy site in the vagina.



FIG. 11 illustrates the speculum, the surgical delivery device, the transorifice device, and the endoscope of FIG. 10 after expanding a bladder of the transorifice device into contact with the speculum, inserting the steerable flexible trocar of FIG. 4 through a port of the transorifice device, passing an endoscope through the steerable flexible trocar and into the body cavity, and extending two sleeves associated with two additional ports of the transorifice device into the body cavity to perform a surgical procedure therein.



FIG. 12A is a perspective view of a speculum according to a non-limiting embodiment.



FIG. 12B is a side view of the speculum of FIG. 12A with blade tip attachments connected to blades of the speculum.



FIG. 13A is a perspective view of a speculum in a closed configuration according to a non-limiting embodiment.



FIG. 13B is a top view of the speculum of FIG. 13A in an opened configuration.



FIG. 14A is a perspective view of a speculum according to a non-limiting embodiment; the speculum is shown in an opened configuration.



FIG. 14B is a perspective view of the speculum of FIG. 14B in a closed configuration.



FIG. 15 is a bottom perspective view of a speculum according to a non-limiting embodiment; the speculum is shown in an open configuration and a detachable speculum blade is also shown laid on its side next to the speculum.



FIG. 16A is a perspective view of a speculum according to a non-limiting embodiment; the speculum is shown in a partially opened configuration.



FIG. 16B is a top view of the speculum of FIG. 16A in a closed configuration.



FIG. 16C is a top perspective view of the speculum of FIG. 16A in a partially opened configuration.



FIG. 17 is a perspective view of a speculum according to a non-limiting embodiment; the speculum is shown in a fully closed configuration.



FIG. 18 is an illustration of a speculum according to a non-limiting embodiment.



FIG. 19 is an illustration of a speculum according to a non-limiting embodiment.



FIG. 20A is a front view of a speculum blade according to a non-limiting embodiment.



FIG. 20B is a cross-sectional view of the speculum blade of FIG. 20A, taken along line 20B-20B.



FIG. 21 is a side view of a surgical delivery device according to a non-limiting embodiment.



FIG. 22A illustrates the distal portion of the surgical delivery device of FIG. 21 extending through a distal end of a transorifice device and connected to a suture located at the distal end of the transorifice device; a dilating balloon of the surgical delivery device is in a deflated state and a distal tip of the surgical delivery device is in a closed position.



FIG. 22B illustrates the distal portion of the surgical delivery device of FIG. 22A; the distal tip of the device is shown in an opened position and a dilating balloon of the surgical delivery device is in an expanded state.



FIG. 22C illustrates a distal portion of the surgical delivery device of FIG. 22B with a portion of an endo scope extending past the opened tip.



FIG. 23A is a side view of a transorifice device according to a non-limiting embodiment.



FIG. 23B is an illustration of the transorifice device of FIG. 23A with a port portion of a port assembly detached from a conduit portion of the port assembly.



FIG. 23C is a side view of the transorifice device of FIG. 23A with an extendable sleeve extended out of a flexible conduit of the device.



FIG. 23D is a top perspective view of the transorifice device of FIG. 23A.



FIG. 23E is a side perspective view of the transorifice device of FIG. 23A supported by the speculum of FIG. 13A; an expandable bladder is expanded to support the port assembly of the transorifice device against the speculum; the flexible conduit of the transorifice device is shown passing between the speculum blades.



FIG. 24 is a side perspective view of a port assembly's port portion of a transorifice device with an extendable sleeve extending from the port portion according to a non-limiting embodiment.



FIG. 25 is a side cross-sectional view of a transorifice device according to a non-limiting embodiment, after the transorifice device has been placed through an incision in a patient's tissue.



FIG. 26A is a side cross-sectional view of a portion of a transorifice device according to a non-limiting embodiment; the transorifice device is shown resting on a speculum after the speculum has been inserted into an orifice to expand tissue walls, an incision has been made in the tissue, and a pliable ring of the transorifice device has been positioned distal to the incision.



FIG. 26B is a top view of a push member of the transorifice device of FIG. 26A inserted through a portion of the transorifice device's port assembly.



FIG. 26C is a top view of a support ring of the transorifice device of FIG. 26A.



FIG. 26D is a partial cross-sectional view of the support ring of FIG. 26C, taken along line 26D-26D.



FIG. 27A is a side cross-section view of a portion of a transorifice device according to a non-limiting embodiment.



FIG. 27B is a side cross-sectional view of the portion of the transorifice device of FIG. 29A with a support member extended into contact with a speculum.



FIG. 28A is a side view of a transorifice device according to a non-limiting embodiment.



FIG. 28B is a side view of a surgical delivery device according to a non-limiting embodiment; part of a body of the device is shown cut-away and a tip of the device is shown cross-sectioned.



FIG. 28C is a side view of the transorifice device of FIG. 28A mounted to the surgical delivery device of FIG. 28B; a pliable ring of the transorifice device is received in the tip of the surgical delivery device.



FIG. 28D is a side view of the transorifice device and the surgical delivery device of FIG. 28C after the tip of the surgical delivery device has been moved distally to release the pliable ring of the transorifice device.



FIG. 29A is a side cross-sectional view of a tip located at a distal portion of a shaft of a surgical delivery device according to a non-limiting embodiment.



FIG. 29B is a side view of the tip and shaft of FIG. 26A extending distally from a body of the surgical delivery device with a reverse taper located at a distal end of the body, according to a non-limiting embodiment.





DETAILED DESCRIPTION

Certain embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of these embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the appended claims.


In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that terms such as “forward,” “rearward,” “front,” “back,” “right,” “left,” “upwardly,” “downwardly,” “proximally,” “distally,” and the like are words of convenience and are not to be construed as limiting terms. The description below is for the purpose of describing various embodiments and is not intended to limit the appended claims.


The various embodiments generally relate to various devices, kits, and/or systems for use in connection with endoscopes, including laparoscopes, for performing a surgical procedure or procedures within a patient's body cavity. The terms “endoscopic tools” and “endoscopic surgical instruments” as used herein may comprise, for example, endoscopes, lights, insufflation devices, cleaning devices, suction devices, hole-forming devices, imaging devices, cameras, graspers, clip appliers, loops, Radio Frequency (RF) ablation devices, harmonic ablation devices, scissors, knives, suturing devices, etc. However, such terms are not limited to those specific devices. As the present Description proceeds, those of ordinary skill in the art will appreciate that the unique and novel features of the various instruments and methods for use thereof may be effectively employed to perform surgical procedures by inserting such endoscopic tools through a natural body lumen (e.g., the mouth, anus, and/or vagina) or through a transcutaneous port (e.g., a abdominal trocar, and/or cardiothoracic port) to perform surgical procedures within a body cavity.


The various embodiments described herein are directed to medical devices and, more particularly, to methods and devices which can be useful in minimally invasive endoscopic procedures carried out with an endoscope and/or a similar surgical instrument. Further, the various embodiments can include devices, systems, and/or methods useful in natural orifice translumenal endoscopic surgery (“NOTES”) procedures. As noted above, NOTES procedures may be performed transorally, transgastrically, and/or transvaginally. In at least one such embodiment, and referring to FIGS. 1-3, a surgical system or kit may include a speculum 100, a transorifice device 300, and a surgical delivery device 200, each described in more detail below. Alternatively, a kit may comprise one or more of the above instruments. In any event, a kit may also include an enclosure, such as bag or container, to hold the instrument or instruments of the kit.


Briefly, the speculum 100 may be inserted into and serves to enlarge or dilate a patient's orifice, such as a female patient's vagina. The surgical delivery device 200 may perform several functions, such as applying and/or dilating an incision (an otomy) to a tissue wall of the patient and/or assisting in the proper placement and/or sealing of the transorifice device 300 within a body cavity, such as the patient's abdominal cavity. The transorifice device 300, once properly in position, as described below, may provide a flexible conduit from outside the patient, through the patient's orifice, and into the body cavity. Further, the transorifice device 300 may provide multiple tool ports therethrough, enabling multiple surgical instruments to be placed through a single orifice and be positioned independently of one another. Accordingly, a system may be provided that provides for the rapid creation of multiple ports in a natural orifice, such as a patient's vagina, while accommodating anatomical variation to reduce the need to excise additional tissue from the patient.


Further, in at least one embodiment, referring to FIG. 4, a guide tube or steerable flexible trocar 400 may be provided as part of the system or kit. Such a guide tube or steerable flexible trocar may be as described in U.S. patent application Ser. Nos. 11/894,358 and/or 12/468,462, each entitled “MANIPULATABLE GUIDE SYSTEM AND METHODS FOR NATURAL ORIFICE TRANSLUMENAL ENDOSCOPIC SURGERY,” and/or U.S. patent application Ser. Nos. 11/382,173, 11/382,182, 11/382,196, and/or 11/775,477 each entitled ENDOSCOPIC TRANSLUMENAL SURGICAL SYSTEMS, each herein incorporated by reference in their respective entireties. Additionally, in various embodiments, the surgical system or kit may also include or utilize an endoscope for, among other things, visualizing the surgical procedure. At the same or different points of a surgical procedure, such an endoscope may be guided into the patient's body cavity by the transorifice device 300 and/or the steerable flexible trocar 400. These and other embodiments are described in more detail below.


Focusing now on at least one non-limiting embodiment, a NOTES system is provided for vaginal entry. Referring to FIGS. 6A-6B, in such embodiments, a vaginal speculum 100, for example, may be at least partially inserted into a patient's vagina 10 (FIGS. 6A and 6B) to expand the vaginal walls 11 and provide access to an otomy site 13 therein. As seen in FIGS. 1 and 5A-5B, the speculum 100 may comprise a base 110 defining an opening 111 therethrough. For example, in at least one embodiment, the base may be annular in shape and comprise an inner wall 113 which may define the opening 111. Also, the base 110 may comprise a proximal surface 112 which, as described below, may serve as a support surface for at least one other component of the system.


Further, the speculum 100 may comprise at least two blades, a first blade 120 attached to the base 110 and a second blade 130 also attached to the base 110. Referring to FIGS. 5A and 6A, the blades 120, 130 may be movable with respect to each other such that they may be moved together, or closed, for insertion into the patient's vagina 10 (see FIG. 6A). Referring to FIGS. 5B and 6B, once inserted, the blades 120, 130 may be moved away from each other, or expanded, to stretch, expand, move, or otherwise spread apart the vaginal walls 11 (see FIG. 6B). Also, referring again to FIG. 6B, in the illustrated embodiment, the speculum 100 may further comprise a third blade 140 attached to the base, which may assist in creating a more uniform expanded state of the vaginal walls 13 and reduce the localized stress experience by the vaginal walls 13 where they contact the speculum blades 120, 130, 140. While the present embodiment discloses a speculum 100 including three blades 120, 130, 140, alternatively, in various embodiments, more than three blades may be included in a speculum. As will be appreciated, increasing the number of speculum blades may increase the working area available to a user therebetween and provide various other advantages, such as the reduction of stress experienced by tissue at each blade.


Referring to FIG. 1, the first blade 120 may include a first distal end 121, the second blade 130 may include a second distal end 131, and the third blade 140 may include a third distal end 141, each of which may be configured for insertion into a patient's vagina, as described below. In at least one embodiment, and for reasons explained in more detail below, each blade 120, 130, 140 may be the same length, as measured from the base 110, to each one's distal end 121, 131, 141, for example.


Additionally, the speculum may comprise at least one locking assembly configured to releasably hold the first blade and the second blade relative to each other in at least one locked position. Referring to FIGS. 1 and 5A-5B, in one exemplary embodiment, the locking assemblies may comprise a first ratchet assembly 150 operably engaged with the first blade 120, a second ratchet assembly 160 operably engaged with the second blade 130, and a third ratchet assembly 170 operably engaged with the third blade 140.


In more detail, referring to FIGS. 5A-5B, the first ratchet assembly 150 may comprise a pawl (not shown) that is biased, by a spring or otherwise, against detents, such as first angled teeth 152, formed in or attached to a first support bar 122. The support bar 122 may be linear, or straight, in shape and may be integrally formed with or attached to first blade 120. In any event, the first ratchet assembly 150 is configured to permit the first blade 120 to move away from second blade 130 and/or third blade 140 while preventing or resisting the movement of first blade 120 toward second blade 130 and/or third blade 140. Further, owing to friction between the pawl and the teeth 152, the first blade 120 may further resist free motion away from second blade 130 and/or third blade 140 while the pawl is engaged with the teeth 152. In other words, while the blade 120 may be pushed or pulled readily away from the other blades 130, 140, the first blade 120 may not move away from the other blades 130, 140 on its own accord, i.e., without a user applying a force to blade 120. However, the opposite motion, moving the first blade 120 toward the other blades 130, 140, is generally prevented by the pawl engaging angled teeth 152. The pawl may be disengaged from the teeth 152 by pushing, pulling, twisting, and/or otherwise operating a first button 151 which is operably coupled to the pawl. Accordingly, when a user operates the button 151, the first ratchet assembly 150 may allow the first blade 120 to move freely toward the second blade 130 and/or third blade 140. In various embodiments, the button 151 may be locked into an open position such that the pawl is disengaged from the teeth 152 temporarily even if a user removes his or her finger(s) from the button 151. In such embodiments, the blade 120 may then be moved freely to a desired position, after which the button may be unlocked to a closed position such that the respective pawl reengages the teeth 152 and resists movement of the blade 120, as described above.


Still referring to FIGS. 5A-5B, the second ratchet assembly 160 and the third ratchet assembly 170 may be similar to the first ratchet assembly 150 in that each may comprise a pawl (not shown) that is biased against second angled teeth (not shown) and third angled teeth 172 formed in or attached to a second support bar 132 and a third support bar 142, respectively. The support bars 132, 142, like first support bar 122, may be linear in shape and may be integrally formed with or attached to second blade 130 and third blade 140, respectively. Thus, the second ratchet assembly 160 is configured to permit the second blade 130 to move away from first blade 120 and/or third blade 140 while preventing or resisting the movement of second blade 130 toward first blade 120 and/or third blade 140. Likewise, the third ratchet assembly is configured to permit the third blade 140 to move away from first blade 120 and/or second blade 130 while preventing or resisting the movement of third blade 140 toward first blade 120 and/or second blade 130. Further, owing to friction between the respective pawls and teeth, the second blade 130 and/or the third blade 140 may further resist free motion away from the other blades 120, 140 or 120, 130, respectively, while each pawl is engaged with its associated teeth. In other words, while the blades 130, 140 may be pushed or pulled readily away from the other blades 120, 140 or 120, 130, respectively, the second blade 130 and/or third blade 140 may not move away from the other blades 120, 140 or 120, 130, respectively, on its own accord, i.e., without a user applying a force to either or both of blades 130, 140. However, the opposite motion, moving the second blade 130 and/or third blade 140 toward the other blades 120, 140 or 120, 130, respectively, is generally prevented by each pawl engaging its associated angled teeth.


Each pawl of ratchet assemblies 160, 170 may be disengaged from the second angled teeth and/or third angled teeth 172 by pushing, pulling, twisting, and/or otherwise operating a second button 161 and/or third button 171 which are each operably coupled to their respective pawls. Accordingly, when a user operates the second button 161, the second ratchet assembly 160 may allow the second blade 130 to move freely toward the first blade 120 and/or third blade 140. Likewise, when a user operates the third button 171, the third ratchet assembly 170 may allow the third blade 140 to move freely toward the first blade 120 and/or second blade 130. In various embodiments, the buttons 161, 171 may each be locked into an open position such that each one's associated pawl is disengaged from teeth 162, 172 temporarily even if a user removes his or her finger(s) from the button 161 and/or 171. In such embodiments, the blades 130 and/or 140 may then be moved freely to a desired position, after which the button may be unlocked to a closed position such that the respective pawl reengages the teeth 162 or 172 and resists movement of the blade 130 and/or 140, as described above. Also, in various embodiments, although not illustrated, the pawl of each ratchet assembly 150, 160, 170 may be contained within each assembly 150, 160, 170, through which a portion of support bar 122, 132, 142 and thus teeth 152, 162, 172 may pass to engage each pawl, respectively.


Thus, in the illustrated embodiment of FIGS. 5A-5B, the locking assemblies, e.g., first ratchet assembly 150, second ratchet assembly 160, and third ratchet assembly 170 may be configured to releasably hold the first blade 120, the second blade 130, and/or the third blade 140, respectively, relative to each other in at least one locked position. An exemplary, first locked position is shown in FIG. 5A, where the blades 120, 130, 140 are held closely together, but are prevented from completely moving together because of the ratchet assemblies 150, 160, 170. Further, the locking assemblies may be configured to releasably hold the first blade 120, the second blade 130, and/or the third blade 140 relative to each other in at least two locked positions. An exemplary, second locked position is shown in FIG. 5B, where the blades 120, 130, 140 have been moved apart from the first locked position shown in FIG. 5A. Accordingly, in the second locked position of FIG. 5B, the blades 120, 130, 140 are releasably held apart by ratchet assemblies 150, 160, 170, as described above. Additionally, each blade 120, 130, and 140 may be independently moved to any position between that shown in FIG. 5A and that of FIG. 5B. Further, each blade 120, 130, and/or 140 may be moved to any position within or beyond that shown in FIGS. 5A-5B that the respective support bar 122, 132, or 142 permits. Accordingly, varying vaginal wall dimensions, shapes, and contours can be appropriately engaged by the independent three blade speculum 100 shown in FIGS. 5A-5B.


According to at least one embodiment, a vaginal speculum may be inserted into a patient's vagina and expanded to create access to a desired incision, or otomy, site. By way of example and referring to FIGS. 5A and 6A-6B, speculum 100 may be first closed to an entry position by moving the blades 120, 130, 140 close together, see FIG. 5A. This may be accomplished, as explained above, by operating first button 151 of first ratchet assembly 150 while simultaneously pushing or pulling first blade 120 or support bar 122 such that blade 120 moves towards the other blades 130, 140. This may be likewise repeated for the second blade 130 and the third blade 140 until all of the blades 120, 130, 140 are close together or touching each other. It will be appreciated that any order of moving the blades 120, 130, 140 may accomplish the same goal of bringing the blades together into the closed position as shown in FIG. 5A. Further, where the buttons 151, 161, and 171 are lockable into an open position, as described above, the buttons may be locked open and then each blade 120, 130, 140 may be brought together with at least one other blade or all three blades 120, 130, and 140 may be brought together simultaneously; thereafter, in such embodiments, the buttons 151, 161, 171 may then be unlocked to allow the respective ratchet assemblies 150, 160, 170 to function as discussed above.


Referring now to FIG. 6A, after closing the speculum 100 to the position shown in FIG. 5A, the blades 120, 130, 140 may then be inserted into the patient's vagina 10 until the blades reach a desired depth therein. In at least one embodiment, and as shown in FIG. 6A, the blades 120, 130, 140 may be inserted until at least one of the base 110, the ratchet assemblies 150, 160, 170, and the support bars 122, 132, 142 contact the patient's exterior. Thereafter, as discussed in more detail below, a user can know how deep the blades 120, 130, 140, and their distal ends 121, 131, 141 (see FIG. 1) extend into the patient.


Next, referring to FIG. 6B, the blades 120, 130, 140 are moved away from each other to cause the blades to contact and press against the vaginal walls 11 such that the same expand, stretch, or otherwise spread apart to reveal an otomy site 13. While the walls 11 may resist such movement, the blades 120, 130, 140 are held in the illustrated open position owing to the ratchet assemblies 150, 160, 170, as discussed above. After the applicable surgical procedure is completed, the speculum 100 may be closed by releasing each ratchet assembly via buttons 151, 161, 171 such that the blades 120, 130, 140 may be moved close together and the speculum 100 removed from the patient's vagina 10.


Notably, the first, second, and/or third blades, 120, 130, 140 may be moved with respect to each other without a handle. As used herein, a handle includes a part made specifically to be grasped or held by the hand. In traditional speculums, the blades are typically operated by manipulating at least one handle that is grasped by a user. However, various embodiments herein do not require a handle and thus maximize the working area available around the speculum 100 such that additional instruments, such as a surgical delivery device 200 (FIG. 2), a transorifice device 300 (FIG. 3.), a steerable flexible trocar 400 (FIG. 4), various endoscopic devices, and/or other surgical tools may be inserted and operated therethrough with minimal or no hindrance from the speculum 100.


Still referring to FIG. 6B, after opening the speculum 100, sutures 12a, 12b, and 12c may be stitched into the vaginal walls 11, between the blades 120, 130, 140, using known surgical techniques. Doing such allows the walls to be drawn to make the otomy site 13 in the vaginal walls 11 taught between the first distal end 121, the second distal end (not shown in FIG. 6B; see end 131 in FIG. 1, for example), and the third distal end 141, of the first, second, and third blades 120, 130, 140, respectively. Further, the sutures 12a, 12b, 12c may be secured, at one end, to the base 110 of the speculum 100 and at another end, to the vaginal walls 11. Accordingly, in such embodiments, the sutures may be tightened to create a drum-like effect on the tissue between the distal ends of the blades 120, 130, 140.


Further, as noted above, owing to the uniform length of each blade 120, 130, 140, the depth that each blade's distal end 121, 131, 141 (see FIG. 1) may extend into the patent is made known when a non-blade part of the speculum 100 contacts the patient's exterior. Accordingly, between the known depth of the distal ends 121, 131, 141 and/or the drawn taught otomy site 13, anatomical variations between many patients' vaginal dimensions, shapes, and contours can be removed as a significant variable during the surgical procedure.


Additionally, as will become evident from the disclosure which follows below, the proximal surface 112 of the base 110 may serve as a support surface for at least one additional surgical device of a surgical system, for example, for a transorifice device 300 (see FIGS. 3 and 11). Thus, referring briefly to FIG. 1, and as discussed in more detail below, the speculum 100 may provide that, at least when the ratchet assemblies 150, 160, 170 are locked such that the blades 120, 130, 140 are in a locked position as shown, a shortest distance between the first distal end 121 of blade 120 and a plane defined by the proximal surface 112 may be substantially equal to another shortest distance between the second distal end 131 of blade 130 and the plane defined by the proximal surface 112. Likewise, in such situations, the shortest distance between the first or second distal end 121, 131 may be substantially equal to the shortest distance between the third distal end 141 of blade 140 and the proximal surface 112. It follows that, in such situations, the shortest distances between each of the first, second, and third distal ends 121, 131, 141 and the proximal surface 112 may also be substantially equal therebetween. Accordingly, the proximal surface 112 of base 110 may serve as a support surface for another surgical device, where the entrance to the body, through taught otomy site 13, is at a known distance past the proximal surface 112, thereby alleviating at least one potentially unknown variable from the surgical procedure. Alternatively, the distances from the proximal surface 112 to each distal blade end 121, 131, 141 may be different to accommodate varying angles per patient anatomy or as otherwise desired.


Referring to FIGS. 1-3, after a speculum, such as speculum 100, is inserted into a patient and expanded, a transorifice device, such as transorifice device 300 may be introduced into the patient to create a conduit and/or multiple ports through a single orifice from outside the patient to a body cavity within the patient. Accordingly, in various embodiments, a surgical delivery device, such as surgical delivery device 200 may be used to deliver and/or position the transorifice device 300 through speculum 100 and into a body cavity of the patient, such as the peritoneal cavity 20, see FIG. 8.


In various embodiments, referring to FIG. 2, the surgical delivery device 200 may comprise a body 210, a tip 220, and an expandable member or balloon 230. The tip 220 and balloon 230 will be explained in more detail below. Focusing now on the body 210, the body 210 may include a proximal end 213 and a distal end 212. The body 210 may also define a tool receiving passageway 211 (shown in dotted lines) therein including a proximal opening 215 located at the proximal end 213 and a distal opening 214 (see FIG. 9B, for example) located at the distal end 212. In other words, referring briefly to FIG. 10, for example, the passageway 211 may extend between the proximal opening 215 and the distal opening 214 of the body 210. Accordingly, the body may provide guidance and/or support to a surgical tool inserted therethrough. By way of example, referring to FIG. 7, the surgical delivery device 200 may receive, via proximal opening 215, a tube-like portion 502 of an endoscope 500. Such endoscopes are well known in the field and may also include a control handle 501 connected to the tube like portion 502.


Further, in various embodiments, the body 210 may be rigid. For example, in at least one such embodiment, the rigid body 210 may be made, at least partially, from aluminum or any other suitable metal or other rigid material. Additionally, such a rigid body 210 may define at least one curve corresponding to the passageway 211. For instance, referring to FIG. 2, the rigid body 210 defines at least one curve that matches that of the passageway 211; in FIG. 2, the rigid body 210 is curved upwards, from the left side of the figure, to the right, such that an instrument inserted into proximal opening 215 will be guided down and then up at a different angle at or near distal end 212 than that at which it was inserted at or near proximal end 214.


Referring back to FIG. 2 and focusing now on the tip 220, the surgical delivery device 200 may further comprise a tip 220 movably mounted to the distal end 213 of the body 210 such that the tip 220 can move between an opened position and a closed position. For example, the tip 220 is shown in a closed position in FIG. 9A and the tip is shown in an opened position in FIG. 9B. As explained in more detail below, the tip may conceal a portion of a surgical tool (e.g., endoscope 500 seen in FIG. 7), that is inserted into passageway 211, such that the tool may be revealed and/or delivered to a body cavity within a patient, such as peritoneal cavity 20, see, e.g., FIG. 10.


The tip 220 may be mounted to the distal end 213 of the body 210 in various ways. For example, referring to FIGS. 9A-9B, the tip 220 may be mounted to the distal end 213 by a hinge 222. Accordingly, the tip may move between a closed position (FIG. 9B) and an opened position (FIG. 9A) by rotating about a pivot point defined by hinge 222. Thus, a distal end 503 of an endoscope 500 may be concealed within surgical delivery device 220, with the tip 220 in a closed position, until the tip 220 is at a desired location within a patient, and then the tip 220 may be moved from the closed position seen in FIG. 9A to the open position seen in FIGS. 9B and 10 by advancing the tube-like portion 502 of the endoscope 500 into the surgical delivery device such that the endoscope's distal end 503 pushes the tip 220 open.


Other configurations are possible to allow an endoscope or other surgical tool to protrude through a surgical delivery device. By way of example, in at least one embodiment, a tip of a surgical delivery device may comprise at least one cantilevered arm (not shown). For instance, the tip may include multiple cantilevered arms that are attached to the distal end of the delivery device's body. The cantilevered arms may be biased towards each other to form a closed configuration. Then arms may come together at the distal most point, or the apex, of the tip in a petal-like arrangement. Pressing a distal end of an endoscope against the arms may allow the cantilevered arms to bend away from each other to an opened position and the endoscope to advance beyond the tip. Pulling the endoscope back into the passageway of the surgical delivery device may permit the cantilevered arms to move back towards each other to a closed position. A person skilled in the art will appreciate that the tip can have a variety of configurations to facilitate its opening and closing.


In various embodiments, referring to FIGS. 7-10, the tip 220 may comprise a material that is at least partially transparent to facilitate viewing therethrough. For example, at least a portion or all of the tip 220 may be transparent or clear to allow an image gathering unit at a distal end 503 (see FIG. 10) of the endoscope 500 to view and gather images through the tip 220. This can allow an endoscope 500 to be used to guide the surgical delivery device 200 through a body lumen, such as vagina 10 (see FIG. 6B), and through tissue. The particular configuration of the transparent portion can vary in order to further facilitate viewing through the tip. For example, the materials and shape can be optimized to provide a smooth, clear viewing surface through which the endoscope 500 can view and gather images. Exemplary tip shapes are provided in U.S. patent application Ser. Nos. 11/382,173, 11/382,182, 11/382,196, and/or 11/775,477 each entitled ENDOSCOPIC TRANSLUMENAL SURGICAL SYSTEMS, noted above. A person skilled in the art will appreciate that the tip 220 can have a variety of configurations to facilitate viewing therethrough.


In various embodiments, a tip of a surgical delivery device, such as tip 220 may be configured to incise tissue. For example, referring to FIG. 2, in at least one embodiment, the tip 220 may taper to a point, such that tissue may be cut or incised when tip 220 is pressed against the tissue, such as the tissue at otomy site 13, seen in FIG. 6B.


Accordingly, in various embodiments and referring to FIGS. 6B and 8, after speculum 100 is positioned within vagina 10 and opened to a locked configuration as shown in FIG. 6B, and/or sutures 12a, 12b, and 12c, for example, have been added to draw the otomy site 13 taught, as discussed above, the tip 220 of surgical delivery device 200 may be placed against a patient's tissue, e.g., the vaginal walls 11 at otomy site 13, and pressed to cause the tissue to be cut or incised by the tip 220. Alternatively, the tip 220 may be blunt or otherwise dull and another instrument, such as a needle or knife may be used to make an incision. In any event, because the vaginal walls 11 are relatively thin and/or are drawn taught by the sutures 12a, 12b, 12c and/or speculum blades 120, 130, 140, the vaginal tissue may be slightly raised by tip 220 in a tent-like fashion until the vaginal walls 11 fall away or are otherwise cut such that the tip 220 does not protrude too far into the patient, thereby reducing the probability that the tip 220 may cut or damage any other tissue within the patient.


Referring now to FIGS. 9A-9B, after inserting the surgical delivery device 200 through an incision 14 at otomy site 13 in vaginal walls 11, the delivery device 200 may further dilate the incision 14 to provide for at least one other surgical instrument to enter body cavity 20. In at least one embodiment, the incision 14 may be dilated by advancing the delivery device 200 through the incision 14 such that the tissue, e.g., vaginal walls 11, dilate or are otherwise stretched apart. Further, in at least one embodiment and as shown in FIGS. 9A-9B, the incision 14 may be dilated by expanding a balloon 230. As mentioned above, the surgical device 200 may also comprise balloon 230. Balloon 230 may surround at least part of the body 210 and may be located adjacent the distal end 212 of the body 210. The balloon 230 is shown in an unexpanded and/or deflated configuration in FIGS. 7-8 and in an expanded and/or inflated configuration in FIGS. 9A-9B, for example. Accordingly, in at least one embodiment, after advancing the tip 220 sufficiently into body cavity 20, the balloon may be expanded. In at least one embodiment, referring to FIG. 8, the balloon 230 may be inflated by providing a gas, such as air (e.g., from a syringe), nitrogen, and/or carbon dioxide, through a port 250 operably coupled to the body 210. Alternatively, a liquid, or a liquid mixed with a gas, may be used to expand the balloon 230 through port 250. The port 250 may include a stopcock valve to maintain gas and/or liquid pressure in balloon 230, after liquid and/or gas is introduced into the balloon 230. In any event, a tube or other conduit (not shown) may connect the port 250 with the balloon 230 through body 210 along or within passageway 211.


As illustrated in FIGS. 9A-9B, the balloon 230, when expanded, may have a shape with outward sides that are linear, as viewed from the side. In other words, the balloon 230 may have a uniform, linear shape in a proximal-to-distal (or vice-versa) direction. However, in at least one embodiment (not illustrated), the shape of the outward sides of the balloon may be curved or non-linear when viewed from the side. In other words, the balloon may have a tapered, sloped, and/or partially parabolic shape in a proximal-to-distal (or vice-versa) direction. Such a curved shape may help the balloon better engage tissue at the incision 14 and/or reduce the probability of the balloon slipping or dislodging while at the same time potentially reducing the probability of rupturing or tearing the incision due to stress risers that could result from a linear shape. In any event, various configurations are possible for the balloon 230 to expand and dilate tissue at an incision or other opening into a patient's body and/or body cavity.


The surgical delivery device 200 may perform a number of functions. For example, as discussed above, the delivery device 200 may deliver an incision to an otomy site, the delivery device 200 may conceal, guide, be guided by, and/or deliver a surgical tool (e.g., an endoscope) to a body cavity, and/or the delivery device 200 may dilate an incision or other opening in the patient's body. Additionally, in various embodiments, the surgical delivery device may also serve to assist in the proper placement and/or sealing of a transorifice device 300 within a body cavity.


By way of example and referring to FIG. 7, in at least one embodiment, the surgical delivery device 200 may further comprise a suture holder 240 located near the distal end 212 of the body, wherein the suture holder 240 is configured to releasably hold a suture, such as suture 324, from the transorifice device 300 (discussed below). As shown in FIG. 7, the suture holder 240 may be positioned on or along the body 210, between the balloon 230 and the tip 220. Also, the suture holder 240 may be configured in various ways. For example, as seen in FIG. 7, the suture holder 240 may comprise a notch or a groove that is sized and configured to receive a suture 324. In other embodiments, and as discussed below, the suture holder may comprise a protrusion that is configured to releasably snag a suture. To further facilitate grasping of the suture 324 by holder 240, the suture 324 may be tied or otherwise formed into a loop. In any event, the suture holder 240 may be designed and/or oriented such that it can pull a suture 324 in a distal direction and then release suture 324 when the suture holder 240 and/or the body 210 of the surgical delivery device is moved in a proximal direction. Thus, as explained in more detail below, the suture holder 240 may allow for the surgical delivery device 200 to pull transorifice device 300 via suture 324 and then release the transorifice device 300 at a desired position and/or location within a patient's body cavity.


Moving now to the details regarding a transorifice device, such as transorifice device 300, referring to FIG. 3, in various embodiments, the transorifice device 300 may comprise a port assembly 310 and a flexible conduit 320. In at least one embodiment, the transorifice device may further comprise at least one support member 330. The port assembly 310 may define at least one port therein, such as first port 311, second port 312, and third port 313, and the port assembly 310 may also have a proximal side 314 and a distal side (not shown in FIGS. 1-11; see, however, distal side 1315 of port assembly 1310 for transorifice device 1300 seen in FIG. 24B and discussed below, for example). The flexible conduit 320 may extend from the distal side of the port assembly 310 and may also have a proximal portion 321 adjacent to the port assembly 310 and a distal portion 322. The support member 330 may be movably associated with the distal portion 322 of the flexible conduit 320 and extendable to the distal side of the port assembly 310.


Briefly, and as will be explained in more detail below, the transorifice device may be configured to span an orifice of a patient to create a conduit from outside the patient to inside the patient's body. For example, the transorifice device may be used in a vaginal NOTES procedure. Referring now to FIG. 11, the transorifice device 300 may be positioned at least partially through a speculum 100 that has been positioned and expanded within a patient's vagina. The port assembly 310 and the support member 330 may be positioned outside the patient's body and/or rest against the speculum 100. After placement of the transorifice device 300, the proximal portion 321 of the flexible conduit 320 may also pass through the speculum 100, between blades 120, 130, 140 (see FIG. 1). Also, the distal portion 322 of the flexible conduit 320 may pass through incision 14 at otomy site 13 and into the body cavity 20. Accordingly, a surgical procedure within body cavity 20, for example, may be performed by passing one or more tools through flexible conduit 320 such that the patient's tissue, e.g., the patient's vaginal walls, from the introitus to the abdominal cavity, for example, are protected from damage while passing or moving a surgical tool through the transorifice device 300.


Referring back to FIG. 3, in various embodiments, the port assembly 310 and/or ports 311, 312, 313 may be configured to provide a barrier or resistance to air or other gas, such as carbon dioxide used for insufflation, from passing from outside to inside, or inside to outside, the patient's body and thereby prevent or limit potential infection and/or desufflation. Accordingly, in at least one embodiment, one or more of the ports 311, 312, 313 may further comprise at least one seal. For example, seals 316a, 316b, 316c, associated with ports 311, 312, 313, respectively, may be employed to achieve a substantially airtight/fluidtight seal through each port 311, 312, 313, while still allowing a surgical tool or tools to pass therethrough. A variety of existing seal arrangements may be employed. For example, U.S. patent application Ser. No. 08/199,902, entitled SEAL FOR TROCAR ASSEMBLY, and U.S. patent application Ser. No. 11/014,245, entitled DUCKBILL SEAL PROTECTOR, the disclosures of which are each herein incorporated by reference in their respective entireties, disclose seals that may be employed to establish a substantially airtight/fluidtight seal within each of ports 311, 312, 313. The seals 316a, 316b, 316c may also be configured such that when a port 311, 312, 313 is not being used, the port 311, 312, 313 is sealed off and when a surgical tool is inserted into a port 311, 312, 313, a substantially airtight/fluidtight seal is achieved between the tool and the port 311, 312, 313.


Referring still to FIG. 3, each of the ports 311, 312, 313 may be the same size. Alternatively, each port may be a different size. For example, in at least one embodiment, port 311 may accommodate a 10 mm or smaller diameter tool, port 312 may accommodate a 5 mm or smaller diameter tool, and port 313 may accommodate an 18 mm or smaller diameter tool.


Further, in at least one embodiment, each of the ports 311, 312, 313 may be independently removed from the port assembly 310. Alternatively, and as explained in more detail below, the ports 311, 312, 313 may be collectively removed from the port assembly 310. Further, the port portion or cap supporting the ports 311, 312, 313 may also be removed to additionally increase the diameter of an opening through which an item may passed. The port portion or cap may include the proximal surface 314 seen in FIG. 3, and an example of a port portion's removal is discussed below, see FIG. 24B and port portion 1310a. In any event, removing one or more of the ports 311, 312, and/or 313 and/or the port portion or cap may allow for a larger opening through the port assembly 310 such that a specimen may be removed during a surgical procedure, for example.


Focusing now on the flexible conduit 320, in various embodiments, referring to FIG. 3, the flexible conduit 320 may be made from a thin or membranous polymeric, elastomeric, and/or rubber-based material, for example. In at least one embodiment, the flexible conduit 320 is at least partially transparent. In any event, the flexible conduit 320 is configured to gently contour to a patient's tissue, such as the soft tissue of the vaginal walls 11 (see FIG. 6B, for example) and/or the tissue at incision 14 (see FIGS. 9A-9B and 11, for example). Further, the flexible conduit 320, once positioned, as shown in FIG. 11, for example, may provide a sealed conduit from outside the patient to body cavity 20. The seal, outside the patient, may be provided by port assembly 310 and/or support member 330 as either or both rest against speculum 100, discussed below. However, internally, the transorifice device may seal and/or be retained within the patient, through the patient's vagina and incision 14, for example.


Accordingly, in various embodiments, referring to FIG. 3, the flexible conduit 320 may further comprise a flexible, resilient, or pliable ring 323 located at the distal portion 322 of the conduit 320. The ring 323 may be made from a resilient material such as plastic, rubber, metal, and/or a shape memory alloy, like nitinol, for example. Also, the ring 323 may be integral and/or embedded in a membrane material of the flexible conduit 320 or may be layered between sheets of the conduit 320. Further, as noted above, the flexible conduit 320 may also comprise a suture 324 connected to the pliable ring and/or to the distal portion 322 of the conduit 320. The pliable ring 323 may be configured such that when it is not under external force, the ring 323 assumes the shape shown in FIG. 3, causing the distal portion 322 of the flexible conduit 320 to flare outward. In other words, the pliable ring 323 may be biased toward an annular or open shape. However, the pliable ring 323 may be bent into a folded shape, such as a hyperbolic paraboloid, by the application of an external force. Such external force may come from a user pulling on suture 324.


In more detail, the pliable ring 323 may be constructed as follows. The flexible membrane of the conduit 320 may include a multi-lumen channel therein that allows a nitinol wire, for example, to be wrapped multiple times around the conduit 320, thereby avoiding needing to connect one end of the wire to another, which may prevent problems due to bending of the wire at that point during use. In at least one exemplary embodiment, the pliable ring may be approximately 0.089″ in cross-sectional diameter. Further, the flexible membrane of the conduit 320 may include three lumens, with each lumen being approximately 0.024″ in diameter, and a nitinol wire, which may be approximately 0.019″ or 0.021″ in diameter. As one will appreciate, using thicker wire may provide a stiffer ring and thinner wire may provide a less stiff ring. In any event, the wire may make two complete loops around the conduit 320 which may include a wall of approximately 0.008″ in thickness. Further, the lumens may be have an inner diameter of approximately 0.090″ and may be approximately ⅝″ to approximately ¾″ long to cover the ring once formed in the conduit 320. In a working test, ring inner diameters in the range of about 2⅛″ to about 2¾″ were made and used in prototypes. A benchtop test showed that the 2⅛″ and 2⅝″ rings have relative pull through forces of 9 and 16 lbs respectively. Accordingly, as the ring should be able to completely pass through a vagotomy to be placed inside a patient's body cavity, a shorter ring may have an advantage.


In at least one embodiment, referring now to FIG. 7, and as discussed above, a suture holder, such as suture holder 240 of the surgical delivery device 200, may releasably hold suture 324. Accordingly, after attaching the suture 324 to suture holder 240, the pliable ring 323 may be pulled in a distal direction, toward tip 220 of the surgical delivery device 200, such that the pliable ring 323 collapses, buckles, or otherwise bends into a compact or folded shape. The folded shape of ring 323 may allow the ring 323, and hence, the distal portion 322 of the flexible conduit 320 to move through a smaller opening, such as incision 14 (see FIG. 10) than the ring 323 would fit through if the ring were in an unfolded, annular shape.


Notably, the port assembly 310 and the flexible conduit 320 may be configured to receive a surgical tool therethrough. Specifically, regarding positioning the transorifice device 300 at least partially within a patient, in at least one embodiment and referring to FIG. 7, the body 210 of the surgical delivery device may be placed through a port, such as third port 313, such that the tip 220 protrudes out the distal portion 322 of the flexible conduit 300. The suture 324 of the transorifice device 300 may subsequently be attached, hooked, snagged, or otherwise held by the suture holder 240 of the surgical delivery device 200.


Thus, in at least one embodiment, and as noted above, referring to FIGS. 7 and 11, the suture holder 240 may allow for the surgical delivery device 200 to pull transorifice device 300 via suture 324 and then release the transorifice device 300 at a desired position and/or location within a patient's body cavity 20. For example, the suture holder 240 may pull the suture 324 and, thus the pliable ring 324 and distal portion 322 of the flexible conduit 320, through the incision 14 at otomy site 14. Then, the suture holder 240 may release the suture 324, as described above, such that the pliable ring expands to an annular-like shape as shown in FIG. 10, thereby sealing and retaining the distal portion 322 of the flexible conduit 320 within the patient's body cavity 20 at incision 14. Accordingly, the transorifice device 300 may provide a sealed passageway, through flexible conduit 320, from outside a patient's body to body cavity 20. The pliable ring 323 may also prevent inadvertent removal or dislodgment of the distal portion 322 from a patient's body, thereby retaining the transorifice device 300 within the patient during a surgical procedure.


After a surgical procedure is completed, the transorifice device may be removed by pulling the port assembly 310 away from the patient, thereby forcing the pliable ring 323 to bend and fit through incision 14. Alternatively, the suture 324 may continue in a proximal direction at least to the port assembly such that a user may pull on the suture to collapse or buckle the pliable ring 323 to fit it through the incision prior to pulling on the port assembly 310. Further, a tie off structure such as a protrusion may be part of the port assembly 310 to hold the suture 324 at that position until needed.


Focusing now on the support member 330, in various embodiments, the support member 330 may be configured to provide support for the port assembly 310 and/or the flexible conduit 320 after the transorifice device 300 is positioned at least partially within a speculum, such as speculum 100, see FIGS. 1 and 8. In various embodiments, the support member 330 may comprise an expandable bladder 332 that is expandable or inflatable between an unexpanded and an expanded configuration. For example, FIG. 10 shows the expandable bladder 332 in an unexpanded configuration and FIG. 11 shows the expandable bladder 332 in an expanded configuration. The bladder 332 may be expanded via port 331. Port 331 may comprise a stopcock valve and may allow gas and/or liquid to be passed through port 331 into bladder 332 to inflate and/or expand the same. The port 331 may then be closed to maintain gas and/or liquid pressure within the expanded bladder 332, see FIG. 11. Then, after a surgical procedure is completed, the bladder 332 may be deflated or compressed to an unexpanded configuration by opening port 331 to release gas and/or liquid pressure.


Still referring to FIG. 11, as noted above, while the transorifice device 300 is positioned at least partially through speculum 100, the bladder 332 may provide support to the port assembly 310 and/or to the flexible conduit 320 during a surgical procedure. Accordingly, the expandable bladder 332 may be configured such that at least a portion, e.g., a proximal portion, of the bladder 330 contacts the port assembly 310 when the bladder 332 is expanded.


Further, in at least one embodiment and as seen in FIG. 11, the bladder 332 may also contact at least a portion of the speculum 100 when the bladder 332 is expanded. In such embodiments, the bladder 332 may serve as a flexible shock absorber and/or resilient mount between the transorifice device 300 and the speculum. The expanded bladder 332 thus may provide support to the port assembly 310 and/or the flexible conduit 320 while permitting flexible maneuverability to a surgical tool inserted through the transorifice device 300. Additionally, referring still to FIG. 11, when expanded, the bladder 332 may take up obstructive slack in the flexible conduit, between the distal portion 322 and the proximal portion 321. In other words, a portion of the bladder 332 may move with respect to the distal portion 322 of the flexible conduit 320 such that the port assembly 310 and/or the proximal portion 321 of the conduit 320 move away from the distal portion 322 and/or pliable ring 323, secured through incision 14. Accordingly, the flexible conduit 320 may be made taught by way of expanding bladder 332 and anatomical variation between patients' vaginal lengths may be further removed as a significant surgical factor. In at least one such embodiment, the flexible conduit may be approximately five inches in length and/or the bladder may expand to approximately three inches in height to thereby accommodate a majority of the patient population.


In at least one embodiment, the expandable bladder 332 may be connected to the port assembly 310 and the flexible conduit may pass through the expandable bladder 332. Alternatively, the bladder 332 may be discontinuous with the port assembly 310; however, the flexible conduit 320 may still pass through the expandable bladder. In such embodiments, the bladder 332 may also be movable with respect to the flexible conduit 320. Further, in at least one embodiment, the flexible conduit may be integrally formed with the bladder 332.


Further, referring to FIGS. 6B and 11, in at least one embodiment, the bladder 332 may have an outer diameter that is larger than the flexible conduit 320 and/or the speculum base 110, such that the conduit 320 may pass through the base 110 while the bladder 332 may contact and be supported by the proximal surface 112 of the base 110, as noted above.


The transorifice device 300 may be further configured to provide additional protection to tissue and/or organs within a patient's body during a surgical procedure. For example, in at least one embodiment, the transorifice device 300 may further comprise a first extendable sleeve 340 extending from at least one port, such as first port 311. The extendable sleeve 340 may be further located at least partially within the flexible conduit 320. Further, in another embodiment, the transorifice device 300 may further comprise a second extendable sleeve 350 extending from the second port 312. The second extendable sleeve 350 may further be located at least partially within the flexible conduit 320. As shown in FIG. 3, the first extendable sleeve 340 and the second extendable sleeve 350 may be seen through and residing within flexible conduit 320, each in a retracted configuration. In at least one embodiment, one or both of sleeves 340, 350 may be pleated or crinkled such that each sleeve 340, 350 may rest, accordion-style, in the retracted configuration seen in FIG. 3, for instance.


In at least one embodiment, referring to FIG. 11, one or both of extendable sleeves 340, 350 may be extended into an extended configuration such that first extendable sleeve 340 and/or second extendable sleeve 350 extends beyond the distal portion 322 of the flexible conduit and into a body cavity, such as abdominal cavity 20. In such embodiments, the extendable sleeves 340, 350 may help provide further protection to internal organs and/or tissue during surgical instrument exchanges through first port 311 and/or second port 312. For example, as seen in FIG. 11, after placement of the transorifice device 300 at least partially within the patient, the extendable sleeves 340, 350 have both been extended into an extended configuration within abdominal cavity 20, thereby providing individual and separably positionable conduits through which tools may pass farther into a patient than flexible conduit 320 may provide by itself. In other words, first sleeve 340 may be extended and positioned apart from second sleeve 350 and vice versa. The extendable sleeves 340, 350 allow the surgeon to pass instruments without having the need to distract the surgeon from the procedure and to ensure safe instrument passage.


In various embodiments, one or more of the extendable sleeves 340, 350 may include features to facilitate their extension. For example, referring to FIG. 3, in one embodiment, the first extendable sleeve 340 may comprise a proximal end 341 abutting the first port 311 and a distal end 342, and the second extendable sleeve 350 may likewise comprise a proximal end 351 abutting the second port 312 and a distal end 352. The extendable sleeves 340, 350 may be made of a flexible material such as a plastic or rubber-based material such that they can be easily manipulated and positioned, yet not easily tear or rupture. Further, referring to FIG. 11, first extendable sleeve 340 may also include a first suture 343 located at the distal end 342 of sleeve 340 and/or the second extendable sleeve may include a second suture 353 located at the distal end 352 of sleeve 350.


In at least one embodiment, the extendable sleeves 340, 350, may be extended as follows. Initially, the extendable sleeves 340, 350 may be received by a user in a retracted configuration, see FIG. 3. Then, after placement of the transorifice device 300 within the patient, referring to FIG. 11, an endoscopic or laparoscopic tool, such as a grasper known in the field, may be inserted through first port 311. The grasper may be used to grab the first suture 343 and/or the distal end 342 of the first extendable sleeve 340. Next, the grasper may be moved distally, thereby pulling the distal end 342 through the distal portion 322 of the flexible conduit 320 and into the patient's body cavity 20. Similar such steps may be performed to extend second flexible sleeve 350; e.g., inserting a grasper through second port 312 and grabbing the distal end 352 and/or second suture 353 to pull the second extendable sleeve 350 into an extended configuration, as seen in FIG. 11.


In at least one embodiment, an extendable sleeve may extend from each of the ports 311, 312, 313. Alternatively, and as illustrated in FIGS. 3 and 11, in at least one other embodiment, no extendable sleeve may extend from the third port 313. Accordingly, as shown, two of the ports, e.g., ports 311 and 312, have extendable sleeves 340, 350, respectively associated with them, and port 313 does not have an extendable sleeve associated with it. In such embodiments, port 313 may therefore accommodate relatively larger instruments therethrough, such as a steerable flexible trocar 400 and/or an endoscope 500, owing to port 313's size and/or lack of a protective, extendable sleeve. This may also be desirable, where, as illustrated, a surgical device, such as the steerable flexible trocar 400 and/or endoscope 500 are positioned and left as such during the majority of the surgical procedure (e.g., for viewing purposes through endoscope 500). Therefore, because instrument exchanges through the third port 313 may be kept to a minimum, inclusion of a third extendable sleeve associated with port 313 may be unnecessary and/or undesirable.


By way of overview and with reference above as needed, and/or helpful, in various embodiments, referring to FIGS. 1-3, a surgical system or kit comprising speculum 100, surgical delivery device 200, and transorifice device 300 may be used in a surgical procedure as follows. Referring to FIG. 6A, the speculum 100, in a closed configuration, may first be inserted into a patient's vagina 10. Then, referring to FIG. 6B the speculum 100 may be expanded into an opened configuration such that the speculum blades 120, 130, 140 dilate or otherwise stretch apart vaginal walls 11. Also, sutures 12a, 12b, 12c may be added to the vaginal walls 11 between the blades 120, 130, 140 of the speculum 100 to identify an otomy site 13. Such an otomy site 13 may correspond with the fornix of the vagina, and/or with the rectouterine pouch of the peritoneal cavity, between the uterus and the rectum. Further, the sutures 12a, 12b, 12c, for example, may enhance access to the rectouterine pouch.


Referring to FIG. 7, the surgical deliver device 200 and the transorifice device 300 may now be coupled outside the patient's body. Alternatively, a user may receive or obtain a surgical delivery device 200 pre-coupled to the transorifice device 300. In any event, the surgical delivery device's body 210 may be inserted through port 313 of the transorifice device 300. The surgical delivery device 200 may also thereafter be positioned such that the delivery device's body 210 extends through the transorifice device's flexible conduit 320 and the delivery device's tip 220 extends beyond the distal portion 322 of the flexible conduit 320. The delivery device's suture holder 240 may then be connected to the flexible conduit's suture 324. Further, the tube-like portion 502 of endoscope 500 may also be at least partially inserted into the tool receiving passageway 211 (see FIG. 2) via proximal opening 215 of the surgical delivery device 200.


Next, referring to FIG. 8, the coupled surgical delivery device 200 and transorifice device 300 may be at least partially inserted through the opened speculum 100, and into the patient's vagina 10 (see FIG. 6B). In at least one embodiment, the endoscope's distal end 503 (see FIG. 9B) may be near the transparent tip 220 such that a user can visualize tissue near the tip 220 through the endoscope located at least partially within passageway 211 (see FIG. 2). Thus, the endoscope may help guide the devices into the patient's body to otomy site 13. Then, the tip 220 may be advanced against the vaginal walls at otomy site 13 until an incision 14 (see FIG. 9B) is created. As illustrated, the tip may then protrude into a body cavity 20, which may include the peritoneal cavity. In at least one embodiment, the tip 220 may protrude into the rectouterine pouch of the peritoneal cavity.


Referring to FIG. 9A, which shows an enlarged view of the distal portions of the components of the surgical system near the otomy site 13, after the surgical delivery device's tip 220 has created an incision 14 under vision through the vaginal wall 11 at an otomy site 13, the balloon 230 of the surgical delivery device 200 may be positioned within the incision 14 and expanded to dilate the incision 14. Then, as shown in FIG. 9B, the endoscope's tube-like portion 502 may be advanced to push open the delivery devices' tip 220. Thereafter, the distal tip 503 of the endoscope may be articulated using the endoscope's control handle 501 (see FIG. 8) to inspect the body cavity 20, otomy site 13, and/or incision 14.


Further, in various embodiments, the body cavity 20 may be insufflated prior to, during, and/or after the insertion of surgical delivery device 200 into cavity 20. For example, referring to FIG. 7, the surgical delivery device 200 may further include an insufflation port 251. Port 251 may be configured to deliver a gas, such as carbon dioxide or nitrogen, for example, to the passageway 211 (see FIG. 2) such that when the tip 220 is opened (see FIG. 9B), gas may pass therethrough to insufflate the body cavity. Alternatively, referring still to FIG. 9B, after the tip 220 is opened, insufflation may also occur through the endoscope 500. In other words, gas may be passed through a working channel or other conduit of endoscope 500 to insufflate the body cavity 20. Alternatively, as is know in the field, a veress needle or other laparoscopic tool may be inserted through the patient's body wall, such as their abdominal wall, to provide a gas therethrough and thereby insufflate the body cavity 20. Alternatively, referring to FIG. 10, the port assembly 310 of the transorifice device 300 may include an insufflation port (not shown) to provide gas therethrough and into body cavity 20.


Next, referring to FIG. 10, once the incision 14 has been sufficiently dilated, the surgical delivery device 200 may be advanced distally such that the transorifice device's pliable ring 323 is pulled through the incision 14. In at least one embodiment, the transorifice device's port assembly 310 may contact the speculum 100 prior to the ring 323 passing through the incision 14 such that pulling the ring 323 through the incision results in the flexible conduit 320 elongating along the length of the patient's vagina. In any event, after the pliable ring 323 is pulled through the incision 14, the transorifice device's suture 324 (see FIG. 9A) may then be released from the surgical delivery device 200 by moving the delivery device 200 in a proximal direction, for example. Then, the transorifice device's pliable ring 323 may expand and/or unfold into a retaining position as shown, distal to incision 14. The delivery device's balloon 230 may also be deflated and/or unexpanded and then the surgical delivery device may be removed from the body cavity by pulling it proximally, through the transorifice device's flexible conduit 320, and out port 313.


Referring to FIG. 11, the transorifice device's support member 330 may also be brought into contact with the speculum 100. In at least one embodiment, the support member 330 may include an expandable bladder 332 that may be inflated and/or expanded to bring the bladder 332 into contact with the speculum 100 and/or to raise the port assembly 310 with respect to the speculum and/or to remove slack from the flexible conduit 320. As discussed previously, this may provide additional support for the port assembly 310 and/or enable flexible maneuverability of the transorifice device 300 when surgical tools are passed therethrough.


Ultimately, a surgical procedure, such as an oophorectomy, cholecystectomy, and/or hepatectomy, for example, may be performed through the transorifice device 300. For example, an endoscope 500 may be inserted into a steerable flexible trocar 400 to provide additional control and stability to the endoscope 500. The endoscope 500 and steerable flexible trocar 400 may then be inserted into a port, port 313 for example, which may not have an extendable sleeve associated therewith. A sheath 460 of the flexible trocar 400, the endoscope's tube-like portion 502, and/or the endoscope's distal end 503 may then be at least partially advanced distally, through the flexible conduit 320 and into the body cavity 20. The flexible trocar's sheath 460 may be steered or otherwise articulated via a control handle 461 coupled to the sheath 460 by at least one control wire contained within control cable 463. Adjusting the handle 461 may move the control wires to articulate the sheath 460 and thereby position the endoscope's distal end 503 within the cavity 20. The surgical procedure may thus be visualized through the endoscope 500. Further, in at least one embodiment, the endoscope 500 may have working channels (not shown) for passing endoscopic tools therethrough.


Still referring to FIG. 11, the transorifice device's extendable sleeves 340, 350 may also be extended such that the distal ends 342, 352, respectively, are located past the distal portion 322 of the flexible conduit, within the body cavity 20. Each sleeve 340, 350 may be positioned independently of the other to provide conduits through which surgical tools, such as endoscopic tools, may be passed. Accordingly, an entire surgical procedure may be performed through the transorifice device 300 and, thus, through the patient's natural orifice, e.g., through the patient's vagina.


After completing the surgical procedure, various components of the system may be removed from the patient as described above. Then, the incision 14 may be closed using one or more sutures and/or biocompatible adhesives or sealants as is known in the field.


In various embodiments, additional speculums and speculum features are envisioned which may, among other things, provide similar advantages to that described above with respect to speculum 100 and may also be substituted for speculum 100 in a surgical system, kit, and/or method such as that shown and portrayed in one or more of FIGS. 1-11. Referring now to FIGS. 12A-12B, in at least one embodiment, an exemplary speculum 1100 is provided. Speculum 1100 is similar to speculum 100 described above in that speculum 1100 may include a base 1110 comprising a proximal surface 1112 and an inner wall 1113 defining an opening 1111. Further, the speculum 1100 may comprise a first blade 1120, a second blade 1130, and a third blade 1140, each attached to the base and movable with respect to each other. As with speculum 100, speculum 1100 may include at least one locking assembly in the form of first ratchet assembly 1150, second ratchet assembly 1160, and third ratchet assembly 1170. These ratchet assemblies function similarly to the ratchet assemblies 150, 160, 170 described above in that each may include a pawl (not shown) that operably engages teeth formed in or attached to support bars 1122, 1132, 1142 which are subsequently connected to blades 1120, 1130, 1140, respectively. For example, as shown in FIGS. 12A-12B, third ratchet assembly 1170 operably receives teeth 1172 formed in support bar 1142. In any event, the ratchet assemblies 1150, 1160, and 1170 allow the bars 1122, 1132, 1142, and thus blades 1120, 1130, 1140 to be independently moved apart and locked or held at a desired distance from one another. Further, the ratchet assemblies 1150, 1160, 1170 may, as described above with respect to ratchet assemblies 150, 160, 170, allow blades 1120, 1130, 1140 to move towards each other when buttons 1151, 1161, 1171 are operated thereby unlocking the ratchet assemblies 1150, 1160, 1170.


Additionally, referring to FIG. 12A, each blade 1120, 1130, 1140, may include a distal end 1121, 1131, 1141, respectively, that are each at approximately the same distance from the proximal surface 1112 of base 1110, such that, when inserted into a patient, the proximal surface 1112 may serve as a support surface for another surgical device, where the entrance to the body, through an otomy site found between blades 1121, 1131, 1141, may be at a known distance past the proximal surface 1112, thereby alleviating at least one potentially unknown variable from the surgical procedure. In at least one embodiment, referring to FIG. 12B, attachments, such as blade tip attachments 1124, 1144, for example, may be added to each of the blades 1120, 1140, respectively, to extend their length and/or alter the shape of the blades. In such embodiments, the blades 1120, 1140 may have extended tip ends 1121′, 1141′, respectively. Further, although not shown in FIG. 12B, blade 1130 may likewise have a similar attachment coupled thereto. Referring still to FIG. 12B, each blade tip attachment 1124, 1144 may include a distal portion 1123, 1143 that has a shape which at least partially projects or protrudes outward, away from the other blades to which each attachment 1124, 1144 is attached. For example, in the illustrated embodiment of FIG. 12B, the distal portion 1123 of attachment 1124 attached to first blade 1120 protrudes away from the third blade 1140 (and, although not seen in FIG. 12B, from the second blade as well). Such a shape may facilitate gripping or retention of the speculum in the vaginal walls 11 (see FIG. 6B, for example); for instance, the shape may be configured to press against the pubis bone and/or other tissues through the vaginal walls, thereby securing the speculum 1100 within the vagina. Further, the attachments 1124, 1144 may similarly be detached and replaced with a different attachment if desired. For example, attachments such as blade tip attachments 1124, 1144 may be replaced with an attachment having a different shape such as that of blade tip attachments 2124, 2134, and/or 2144 (see FIG. 13A) described in more detail below. Also, each blade tip attachment may have a shape that contacts or meets another blade tip attachment when the blades are in a fully closed position, thereby providing a closed insertion tip to ease insertion into a patient's vagina, for example. Referring back to FIG. 12A, each blade tip attachment may be releasably secured to one of blades 1120, 1130, and/or 1140 using adhesives, fasteners, and/or snap-fit features, for example. Additionally, each blade tip attachment may be attached to one of the blades 1120, 1130, 1140 at different points than that illustrated in FIG. 12B. In such embodiments, the overall length of each blade may be independently adjusted.


Additionally, while it may be desirable to attach different blade tip attachments to a speculum, it is also possible for each blade to have an integral blade tip portion that includes a shape which protrudes away from the other blade(s) without requiring a separate attachment as shown in FIG. 12B. For example, referring briefly back to FIGS. 1 and 5B, speculum 100 may include, according to at least one embodiment, blades 120, 130, and 140 which respectively include distal portions 123, 133, 143 having shapes which protrude outwardly, away from the other blades of speculum 100.


In any event, regardless of whether one or more blades have an integral blade tip portion or a blade tip attachment, each blade may vary in width length, thickness, contour, and distal shape to address anatomical variation between patients, to provide enhanced position holding or retention of the speculum at a desired location in the vagina, or to address exposure preferences when opening the speculum. By way of example and in at least one embodiment, referring to FIG. 20A, a speculum blade, such as speculum blade 9120, for example, may include a distal portion 9123 that includes an enlarged and/or semi-circular tip at or near a distal end 9121 of the blade 9120. FIG. 20A shows a front view of the blade, which may engage tissue in the direction of a viewer of the figure. Further, FIG. 20B is a cross-sectional view of the speculum blade 9120, taken along line 20B-20B. In at least one embodiment, referring to FIG. 20B, the distal portion 9123 may have a configuration which, moving from a proximal portion to distal end 9121, curves outward, to the left of FIG. 20B over a first length L1, and then inward, to the right of FIG. 20B, over a second length L2. In such embodiments, tissue, e.g., a vaginal wall, may be engaged to the left of FIG. 20B. Accordingly, the shape of distal portion 9123 shown in FIGS. 20A-20B may help retain an opened speculum in a patient by providing a gripping force against tissue provided, in part, by the outward curve of portion 9123 shown in FIG. 20B. However, owing at least partially to the semi-circular shape of distal portion 9123 shown in FIG. 20A and/or the inward curve shown in FIG. 20B, the blade 9120 may be easily inserted into a patient when a speculum is in a closed position. The first and second lengths L1, L2, and the associated curves' radii may be adjusted to maximize gripping and/or insertion capability. Thus, a variety of shapes may be utilized to provide, among other things, the above benefits.


Referring back to FIGS. 12A and 12B, in at least one embodiment, the blades 1120, 1130, 1140 may be substantially parallel with each other (straight with respect to each other from the top to the bottom of the page of FIG. 12B) when the first blade and the second blade are in a locked position, such as the positions shown in FIGS. 12A and 12B, for example. Such parallel uniformity between the blades allow each to more uniformly engage the vaginal walls 11 (see FIGS. 6A-6B) along the length of each of the arms 1120, 1130, 1140 when the arms are moved apart. Uniform engagement of the vaginal walls may help reduce localized stress around and between the arms such that tissue tearing may be avoided and the relative position of the speculum 1100 in the vagina 10 (FIG. 6B) may be maintained. Alternatively, in at least one embodiment, the blades may be at an angle other than 90 degrees with the proximal surface of the base. In such embodiments, the blades may be angled outward, away from each other, such that the blades do not angle inward when expanded or moved apart from each other. Such an outward angling of the speculum blades may help hold the speculum in place during an operation.


Additionally, referring to FIG. 12B, as noted above with respect to speculum 100, the shortest distances between a plane defined by the proximal surface 1112 of base 1110 and each of the blades' distal ends (e.g., first distal end 1121′, second distal end (not shown), and third distal end 1141′) may be substantially equal therebetween. As seen in FIG. 12B, the plane defined by proximal surface 1112 may be defined as a plane which is transverse to the page of FIG. 12B and which passes through the surface 1112. Further, for example, the distance D1 from end 1121′ to the plane of the proximal surface 1112 may be approximately equal to the distance D2 from end 1141′ to the plane of the proximal surface 1112. Accordingly, the proximal surface 1112 of base 1110 may serve as a support or contact surface for another surgical device, where the entrance to the body, through an otomy site 13 (see FIG. 6B) between blades 1120, 1130, 1140, is at a known distance past the proximal surface 1112, thereby alleviating at least one potentially unknown variable from the surgical procedure. Further, referring still to FIG. 12B, in such embodiments, the first blade 1120, the second blade 1130 (see FIG. 12A), and the third blade 1140 may be movable with respect to each other such that the first distal end 1121′, the second distal end (not shown), and the third distal end 1141′ may substantially move in the same plane, e.g., a plane perpendicular to the page of FIG. 12B and passing through the distal ends 1121′, 1141′. Thus, because a user knows the distance that each blade 1120, 1130, 1140 extends into a patient, the user may be confident that each distal end of the blades will move in a known plane and thereby, once otomy site 13 (see FIG. 6B) is drawn taught between the blades 1120, 1130, 1140, as described above, the user will know not only the depth from the proximal surface 1112 of the speculum base 1110 to the otomy site, but he or she will also know the orientation of the tissue at the site.


Continuing, referring to both FIGS. 12A and 12B, in at least one embodiment, proximal surface 1112 may be enhanced as a support surface by limiting other components of speculum 1100 from protruding in a proximal direction (toward the top of the page of FIG. 12B) beyond the proximal surface 1112. In other words, the speculum 1100 may be low in profile. For example, the first blade 1120, second blade 1130, and third blade 1140 and/or the locking assemblies, e.g., ratchets 1150, 1160, 1170, may be configured not to protrude proximally beyond the proximal surface 1112. In other words, if proximal surface 1112 defines a plane, then none of the other various components of speculum 1100 may extend proximally beyond that plane. However, other components may serve to increase the contact area available to another surgical device over that provided by the proximal surface 1112 of the base 1110 alone. For example, in at least one embodiment, and still referring to FIGS. 12A-12B, ratchet assemblies 1150, 1160, 1170 may be configured to be flush with proximal surface 1112 of the base 1110. In other words, ratchet assemblies 1150, 1160, 1170 may include ratchet housing surfaces 1154, 1164, 1174, respectively, that are in the same plane as that of the base's proximal surface 1112.


Referring to FIG. 12B, to facilitate speculum 1100 including such a low profile, speculum base 1110 may include an annular groove 1115 defined in between a proximal lip 1114 and a distal lip 1116 of an outer side of the base 1110. Further, each ratchet assembly 1150, 1160, 1170 may include a protrusion that is received in the groove 1115, such as protrusions 1153, 1173 seen in FIG. 12B as part of ratchet assemblies 1150, 1170, respectively (the protrusion for ratchet assembly 1130 cannot be seen in FIGS. 12A-12B, but it may be similar to the illustrated protrusions 1153, 1173). Accordingly, ratchet assemblies 1150, 1160, 1170 may be attached to the base 1110 in a low-profile fashion.


Moving now to FIGS. 13A-13B, another embodiment of an exemplary speculum, speculum 2100 is shown. Speculum 2100 is similar to speculum 100 described above in that speculum 2100 may include a base 2110 comprising a proximal surface and an inner wall 2113 defining an opening 2111. Further, the speculum 2100 may comprise a first blade 2120, a second blade 2130, and a third blade 2140, each attached to the base via ratchet assemblies 2150, 2160, 2170 and support bars 2122, 2132, 2142, respectively. Also, as discussed previously, the blades 2120, 2130, 2140 may be movable with respect to each other. As with speculum 100, speculum 2100 may include at least one locking assembly in the form of first ratchet assembly 2150, second ratchet assembly 2160, and third ratchet assembly 2170. These ratchet assemblies function similarly to the ratchet assemblies 150, 160, 170 described above in that each may include a pawl (not shown) that operably engages teeth or detents formed in or attached to support bars 2122, 2132, 2142 which are subsequently connected to blades 2120, 2130, 2140, respectively. For example, as shown in FIG. 13A, first ratchet assembly 2150 may operably engage teeth 2152 formed in support bar 2122. In any event, the ratchet assemblies 2150, 2160, and 2170 allow the bars 2122, 2132, 2142, and thus blades 2120, 2130, 2140 to be independently moved apart and locked or held at a desired distance from one another. Further, the ratchet assemblies 2150, 2160, 2170 may, as described above with respect to ratchet assemblies 150, 160, 170, allow blades 2120, 2130, 2140 to move towards each other when buttons 2151, 2161, 2171 are operated thereby unlocking the ratchet assemblies 2150, 2160, 2170. In the embodiment illustrated in FIG. 13A, the ratchet assemblies 2150, 2160, 2170 are each clamped to annular base 2110 via screws 2155, 2165, 2175, respectively. While screws 2155, 2165, 2175 are shown as protruding out from the ratchet assemblies 2150, 2160, 2170, the screws may be set therein such that no part of the screws 2155, 2165, 2175 extends out of the respective ratchet assembly 2150, 2160, 2170 to provide a smooth surface against which the ratchet assemblies 2150, 2160, 2170 may contact a patient's exterior, e.g., a patient's skin.


In at least one embodiment, referring to FIG. 13A, an attachment, such as blade tip attachments 2124, 2134, 2144, for example, may be added to each of the blades 2120, 2130, 2140, respectively, to alter the shape of the blades 2120, 2130, 2140, similar to that described with respect to speculum 1100, above. However, in the embodiment of FIG. 13A, the blades 2120, 2130, 2140 may have tip ends 2121, 2131, 2141, respectively, where the blade attachments 2124, 2134, 2144, do not extend from the blades 2120, 2130, 2140 distally. Referring still to FIG. 13A, as with speculum 1100 discussed above, each blade tip attachment 2124, 2134, 2144 may include a distal portion 2123, 2133, 2143 that has a shape which at least partially projects or protrudes outward, away from the other blades 2120, 2130, 2140 to which each attachment 2124, 2134, 2144 is attached. However, the blade tip attachments 2124, 2134, 2144, as illustrated, may have a shape which extends outward over a greater portion of blades 2120, 2130, 2140 than that shown with respect to speculum 1100 (see, e.g., FIG. 12B). For example, in the illustrated embodiment of FIG. 13A, almost all of attachment 2124 attached to first blade 2120 protrudes away from the second blade 2130 and the third blade 2140. Similarly, almost all of attachment 2134 attached to second blade 2130 protrudes away from the first blade 2120 and the third blade 2140, and almost all of attachment 2144 attached to third blade 2140 protrudes away from the first blade 2120 and the second blade 2130. Such a shape, or series of shapes, may facilitate gripping or retention of the speculum in the vaginal walls 11 (see FIG. 6B, for example) while reducing the localized stress where the vaginal walls contact the blade tip attachments 2124, 2134, 2144. Also, as noted above, the blade tip attachments 2124, 2134, 2144 may similarly be removed and replaced with a different attachment if desired. For example, attachments such as blade tip attachments 2124, 2144 may be replaced with an attachment having a different shape such as that of blade tip attachments 1124 and/or 1144 (see FIG. 12B) described above. Each blade tip attachment may be releasably secured to one of blades 2120, 2130, and/or 2140 using adhesives, fasteners, and/or snap-fit features, for example.


In various embodiments, a speculum may include additional and/or different locking assemblies to those described herein, e.g., the ratchet assemblies. By way of example, a locking assembly may comprise a latch or catch that may work in conjunction with a hinge to allow the speculum blades to move relative to one another and subsequently be locked into an open position. In particular, FIGS. 14A-14B illustrate such a version of a hinged speculum, speculum 3100, that comprises a hinge 3117 disposed between a first blade 3120 and a second blade 3130. In such embodiments, the base 3110 may be divided into a first portion 3110a and a second portion 3110b. Further, referring to FIG. 14A, the speculum 3100 may include a locking assembly which may comprise at least one latch 3150 operably coupled to at least one of the first portion 3110a and the second portion 3110b. The latch 3150 may be configured to releasably hold the first portion 3110a and the second portion 3110b relative to each other in at least one locked position, as shown in FIG. 14A. Accordingly, speculum 3100, like other speculums described above, such as speculum 100, for example, can comprise a base 3110 defining an opening 3111 therethrough, e.g., as further defined by inner walls 3113a, 3113b of first and second base portions 3110a, 3110b, respectively, for insertably receiving at least one surgical device. Similar to speculum 100 and base 110, discussed above, the base 3110 can comprise at least one proximal surface, such as proximal surfaces 3112a and 3112b of first and second portions 3110a, 3110b, respectively. In the illustrated embodiment of FIG. 14A, when the speculum 3100 is in a locked configuration, as described in more detail below, the surfaces 3112a, 3112b may be approximately flush with each other. In other words, the surfaces 3112a, 3112b, as shown in FIG. 14A, can lie in substantially the same plane as defined by each surface 3112a, 3112b. Thus, the base portions 3110a, 3110b can together provide a level surface to support other surgical tools, as explained above.


Further, referring to FIGS. 14A-14B, the speculum 3100 can also comprise a first blade 3120 attached to the first base portion 3110a and a second blade 3130 attached to the second base portion 3110b. The blades 3120, 3130 may be attached to the base portions 3110a, 3110b, respectively, by adhering, fastening, and/or snapping the components together, for example. Further, the blades 3120, 3130 may be integrally formed with the base portions 3110a, 3110b, respectively, such that each are formed from the same material, e.g., a plastic or metal, and are contiguous with each other. In other words, the first blade 3120 may be integral and contiguous with first base portion 3110a and second blade 3130 may be integral and contiguous with second base portion 3110b. In any event, when the latch 3150 is unlocked, as explained below, the base portions 3110a, 3110b and thus the first blade 3120 and the second blade 3130 are movable with respect to each other and may be moved together into a closed position, such as a fully closed position shown in FIG. 14B, for insertion into or removal from a natural orifice, such as vagina 10, seen in FIG. 6A.


As noted above, referring to FIG. 14A, the speculum 3100 may include a locking assembly which may comprise latch 3150 operably coupled to the first portion 3110a and/or to the second portion 3110b. The latch 3150 may be configured to releasably hold the first blade 3120 and the second blade 3130 relative to each other in a locked position, as shown in FIG. 14A. Also, as mentioned previously, the latch 3150 may be unlocked such that the base portions 3110a, 3110b and, accordingly, blades 3120, 3130 may move relative to each other until the blades 3120, 3130 contact each other in a fully closed position as shown in FIG. 14B. Such movement is guided by hinge 3117, which may allow some separation and/or flexibility between base portions 3110a, 3110b such that one base portion slides over the other. For example, as shown in FIG. 14B, the hinge 3117 has permitted the base portions 3110a, 3110b to rotate about hinge 3117 while the second base portion 3110b slides or moves over the first base portion 3110a.


Further, referring to FIG. 14A, portions of latch 3150 may be formed (as shown) or attached to both of base portions 3110a, 3110b. For example, as best seen in FIG. 14B, latch 3150 (see FIG. 14A) can comprise a first latch portion 3150a coupled to first base portion 3110a and a second latch portion 3150b coupled to second base portion 3110b. Respectively, each latch portion 3150a, 3150b may comprise a projected surface 3153a, 3153b, a recessed surface 3152a, 3152b, and a stabilizing surface 3154a, 3154b extending transverse to one or both of surfaces 3152a, 3152b and 3153a, 3153b. Referring to FIGS. 14A-14B, the projected surfaces 3153a, 3153b are configured to engage and/or abut the recessed surfaces 3152a, 3152b, respectively, when the latch 3150 is locked as shown in FIG. 14A. Further, still referring to FIGS. 14A-14B, when the latch is locked (FIG. 14A), the stabilizing surfaces 3154a, 3154b are configured to contact each other to prevent the latch from unlocking undesirably; in other words, the stabilizing surfaces 3154a, 3154b help align the latch portions 3150a, 3150b such that the projected surfaces 3153a, 3153b properly interact with the recessed surfaces 3152a, 3152b. The latch further may comprise finger tabs 3151a, 3151b extending outward, away from each base portion 3110a, 3110b, respectively. The finger tabs 3151a, 3151b may facilitate the unlocking of latch 3150. For example, viewing FIG. 14A, the latch 3150 is shown locked, which, when in such a locked position inside a patient's vagina 10 (see FIG. 6B) may be held in the locked position of FIG. 14A by forces applied by vaginal walls 11 (see FIG. 6B) against blades 3120, 3130 which subsequently presses the base portions 3110a, 3110b together and creates friction between the surfaces 3152a and 3153b and/or surfaces 3152b and 3153a. Alternatively, the stabilizing surfaces 3154a and 3154b may include a tongue and groove feature such that the latch portions 3150a, 3150b are held together by friction created therebetween. In any event, thereafter, such frictional forces may be overcome when a user presses finger tabs 3151a, 3151b apart, thereby unlocking the latch 3150 to allow the base portions 3110a, 3110b and thus blades 3120, 3130 to be moved to a closed position, such as the fully closed position shown in FIG. 14B. Subsequently, the closed speculum 3100 may be removed from a patient after a surgical procedure is completed.


Further, one or both of speculum blades 3120, 3130 may respectively include a distal portion 3123, 3133 including a shape which is partially parabolic. In other words, the distal portions 3123, 3133 of blades 3120, 3130 may curve towards each other to ease insertion into a natural orifice, such as vagina 10, seen in FIG. 6A.


After closing the speculum 3100, as shown in FIG. 14B, the speculum 3100 may be inserted into a vagina 10 (see FIG. 6A), for example. After insertion, the speculum 3100 may be opened and locked into an open or locked position, as shown in FIG. 14A. Opening the speculum 3100 moves the blades 3120, 3130 apart and stretches, expands, or otherwise spreads apart the vaginal walls 11 (see FIG. 6B). Thereafter an otomy site 13 (see FIG. 6B) may be located and a surgical procedure performed therethrough, as described above.


Also, as noted above, speculum 3100 may serve as a support structure for at least one other surgical device. Thus, the proximal surfaces 3112a, 3112b of the base portions 3110a, 3110b may collectively serve as support or contact surfaces for at least one additional surgical device of a surgical system, for example, for a transorifice device 300 (see FIGS. 3 and 11). Referring briefly to FIG. 14A, and as discussed above, when the latch 3150 is locked such that the first and second blades 3120, 3130 are in the locked position as shown, the shortest distance between a first distal end 3121 of blade 3120 and the plane of the proximal surfaces 3112a, 3112b may be substantially equal to the shortest distance between the second distal end 3131 of blade 3130 and the plane of the proximal surfaces 3112a, 3112b. Accordingly, the proximal surfaces 3112a, 3112b of base portions 3110a, 3110b may serve collectively as support surfaces for another surgical device, where the entrance to the body, through taught otomy site 13 (see FIG. 6B), is at a known distance past the proximal surfaces 3112a, 3112b, thereby alleviating at least one potentially unknown variable from a surgical procedure.


The hinged speculum 3100 shown in FIGS. 14A-14B may include blades 3120, 3130 that are oriented with respect to each other such that they are not angled with respect to each other when viewed through opening 3111 and when in the open or locked configuration as shown in FIG. 14A. In other words, the blades 3120, 3130 mirror each other or are at 180 degrees to each other about annular base 3110. Accordingly, as seen in FIG. 14B, when the blades 3120, 3130 are fully closed, the blades are angled with respect to each other. Therefore, when inserted into a vagina, the blades 3120, 3130 may not provide a uniform insertion tip. Accordingly, in various embodiments, the speculum blades may be oriented, when closed, to provide a more uniform insertion tip.


Referring now to FIG. 15, another version of a hinged speculum, speculum 4100 is illustrated. In this embodiment, the blades 4120, 4130 are oriented such that they are angled with respect to each other when viewed through opening 4111 defined by inner walls 4113a, 4113b and when in the open or locked configuration as shown in FIG. 15. However, the blades 4120, 4130 are not angled with respect to each other when the blades 4120, 4130 are rotated about hinge 4117 to a fully closed position. In other words, when a latch 4150 of speculum 4100 is unlocked, base portions 4110a, 4110b and, thus, the blades 4120, 4130 may be moved towards each other such that when the blades 4120, 4130 contact each other in a fully closed position (not shown), the blades 4120, 4130 mirror each other about base 4110. Therefore, in various embodiments, when inserted into a vagina, the blades 4120, 4130 may provide a more uniform insertion tip.


However, when the blades 4120, 4130 of speculum 4100 are opened to the locked position shown in FIG. 15, the two blades 4120, 4130 may not provide a balanced set of forces on vaginal walls into which the blades contact. Accordingly, speculum 4100 may further comprise a third blade 4140 that is attachable to and detachable from the base 4110 (shown detached in FIG. 15). In at least one embodiment, third blade 4140 is operably coupled to a ratchet assembly 4160, similar to ratchet assemblies described above in that ratchet assembly comprises a pawl (not shown) within the assembly that receives and operably engages teeth 4162 formed in support bar 4142 connected to blade 4140. As explained above with respect to ratchet assembly 160, the ratchet assembly may be unlocked and the pawl may be released form the teeth via button 4161. Further, as seen in FIG. 15, the ratchet assembly, and thus the blade 4140 may be attached to the open and locked speculum 4100 by inserting the finger tabs 4151a, 4151b of latch 4150 through a hole 4166 defined through a portion of ratchet assembly 4160 such that the base 4110 is received without a groove 4163 defined at the end of hole 4166. After attaching the ratchet assembly, the third blade 4140 may be moved and locked in a desired position relative to the first and/or second blade 4120, 4130.


Briefly, the speculum 4100 may be used as follows. The speculum 4100 may first be fully closed such that the blades 4120, 4130 mirror each other. Second, the speculum 4100 may then be inserted into a patient's vagina. Third, the speculum 4100 may be opened and the first and second blades 4120, 4130 locked via latch 4150 into the position shown in FIG. 15. Fourth, the third blade 4140 may be adjusted such that the blade 4140 is moved at least partially away from the ratchet assembly 4160, analogous to the closed positions described above with respect to ratcheted speculums 100, 1100, and/or 2100. Fifth, the third blade 4140 may be attached to the base 4110 as described above and the blade 4140 inserted into the vagina. Fifth, the third blade 4140 may be moved away from the other blades 4120, 4130 and toward ratchet assembly 4160 to an open and locked position. Accordingly, vaginal walls of the patient's vagina may be moved apart in a balanced fashion to create space for a surgical procedure therethrough.


After the surgical procedure is completed, the ratchet assembly 4160 may be unlocked by manipulating button 4161 and then the third blade 4140 may be moved away from the ratchet assembly, towards a closed position. Then, the ratchet assembly 4160 and blade 4140 can be detached from the base 4110 in reverse fashion to that with which they were attached thereto. Next, the finger tabs 4151a, 4151b may be pressed apart to release latch 4150 and unlock the speculum 4100 such that the first blade 4120 and the second blade 4140 may move towards each other into a closed position. Finally, the closed speculum 4100 may be removed from the patient.


Additionally, the blades 4120, 4130 of speculum may each comprise a distal portion 4123, 4133, respectively, which has an enlarged semi-spherical shape to assist with both insertion and gripping of the vaginal walls. Alternatively, as described above, the blades 4120, 4130 may have different shapes, including those disclosed herein. Further, while not shown, speculum blades according to various embodiments may include a roughened or textured surface to enhance gripping of the vaginal walls.


As noted above, FIGS. 14A-15 illustrate various embodiments of hinged speculums that are low in profile and do not require a handle to operate. Another embodiment of a hinged speculum, speculum 7100, is shown in FIG. 18. Hinged speculum 7100 can include a base 7110 divided into a first portion 7110a and a second portion 7110b by a hinge 7117. Further, the speculum 7100 may comprise a first blade 7120 extending from the first base portion 7110a and a second blade extending from the second base portion 7110b. The second base portion 7110b may rotate in a proximal direction P and a distal direction D about hinge 7117. Accordingly, movement of the second base portion 7110b in a proximal direction P may rotate the second blade 7130 about hinge 7117 and toward the first blade 7120 to a closed or insertable position as shown in FIG. 18. Moving the second base portion 7110b in a distal direction D may subsequently move the second blade 7130 away from the first blade 7120 until the second base portion 7110b contacts the first base portion 7110a and thus places the blades 7120, 7130 into an open or expanded position. Once the speculum 7100 is opened, it may be locked in a locked position via at least one locking assembly, such as catch 7150 which extends from second base portion 7110b and is configured to snap onto or into a part of first base portion 7110a.


As discussed above, a speculum according to various embodiments may include additional and/or different locking assemblies to those described herein. By way of another example, a locking assembly may comprise a linkage or set of linkages to allow the speculum blades to move relative to one another and subsequently be locked into an open position. In particular, referring to FIGS. 16A-16C, in at least one exemplary embodiment, a linked speculum, such as speculum 5100 is illustrated. Speculum 5100 may be similar to other speculums described herein, in that speculum 5100 can comprise a base 5110 defining an opening 5111 therethrough, e.g., inner wall 5113 of base 5110 may define the opening 5111, and the base 5110 can also comprise a proximal surface 5112 which, similar to that discussed above at least with respect to speculum 100, may serve as a support surface for another surgical device. Further, speculum 5100 may comprise a first blade 5120 attached to the base 5110 and blade 5120 may include a first distal end 5121. Speculum 5100 may additionally comprise a second blade 5130 attached to the base and blade 5130 may also comprise a second distal end 5131. Similar to various embodiments described above, the blades 5120, 5130, may comprise distal portions 5123, 5133, respectively, that include a shape that is at least partially parabolic.


The attachment of the blades 5120, 5130 to the base 5110 may be described as follows. Note, FIG. 16A shows the base 5110 in dashed lines to allow visualization of internal components. Each blade 5120, 5130 may extend from a support bar 5122, 5132 fixedly attached thereto or formed therewith. Further, the support bars 5122, 5132 may be received within a groove 5115 defined within base 5110. Also, the support bars 5122, 5132, as will be explained in more detail below, may cooperate with linkage assemblies 5150, 5160, portions of which may also be received within groove 5115, to attach blades 5120, 5130 to base 5110.


Additionally, the blades 5120, 5130 may also be movable with respect to each other to move between a closed position, as seen in FIG. 16B and an open position; FIGS. 16A and 16B show the blades 5120, 5130 approaching a fully opened position. In at least one embodiment, first blade 5120 may be fixedly attached to the base 5110 and the second blade 5130 may be movably attached to the base 5110. In such embodiments, the first support bar 5122 may be adhered, welded, formed, fastened, or otherwise fixedly connected to the groove 5115 in base 5110. Further, the second support bar 5132 may be configured to slide in and out of the groove 5115; for example, FIGS. 16A and 16C show the support bar 5132 at least partially slid into groove 5115 and FIG. 16B shows the support bar 5132 slid out of the groove 5115.


As with the other exemplary speculums described herein, the speculum 5100 may include one or more locking assemblies, such as first and second linkage assemblies 5150, 5160, that are configured to releasably hold the first blade 5120 and the second blade 5130 relative to each other in at least one locked position. Referring to FIG. 16A, in various embodiments, the first linkage assembly 5150 may be connected to the first blade 5120 and to the second blade 5130, on one side of the speculum 5100, and the second linkage assembly 5160 may be connected to the first blade 5120 and to the second blade 5130, on another side of the speculum 5100, for example.


Further, still referring to FIG. 16A, the first linkage assembly 5150 may comprise a first locking lever 5151 pivotally coupled to the first blade 5120 via support bar 5122 and a first link 5152 pivotally coupled to the second blade 5130 via support bar 5132. The first locking lever 5151 may also be pivotally coupled to the first link 5152. In more detail, the locking lever 5151 may include a finger operable portion 5151a that is configured to be pushed and/or pulled by a user to move the linkage assembly 5150, and, subsequently, to also move the second blade 5130 relative to the first blade 5120. Also, the locking lever 5151 may include a link portion 5151b integrally formed with or fixedly attached to the finger operable portion 5151a. The link portion 5151b may pivotally connect to both the first support bar 5122 and the first link 5152 at or near the ends of link portion 5151b. Likewise, the first link 5152 may be pivotally connected to both the link portion 5151b and the second support bar 5132 at or near the ends of first link 5152.


Moving now to the other side of speculum 5100, second linkage assembly 5160 may be similar to and/or mirror the first linkage assembly 5150 about base 5110. Accordingly, the second linkage assembly 5160 may comprise a second locking lever 5161 pivotally coupled to the first blade via support bar 5122 and a second link 5162 pivotally coupled to the second blade 5130 via support bar 5132. The second locking lever 5161 may also be pivotally coupled to the first link 5152. In more detail, and as with first linkage assembly 5150, the locking lever 5161 may include a finger operable portion 5161a that is configured to be pushed and/or pulled by a user to move the linkage assembly 5160, and, subsequently, to also move the second blade 5130 relative to the first blade 5120. Also, the locking lever 5161 may include a link portion 5161b integrally formed with or fixedly attached to the finger operable portion 5161a. The link portion 5161b may pivotally connect to both the first support bar 5122 and the second link 5162 at or near the ends of link portion 5161b. Likewise, the second link 5162 may be pivotally connected to both the link portion 5161b and the second support bar 5132 at or near the ends of second link 5162.


The first and second linkage assemblies 5150, 5160 and the first and second blades 5120, 5130, thus form a six-bar linkage, that, when the locking levers 5151, 5161, are pulled out, away from base 5110 via finger operable portions 5151a, 5151b, will move the blades 5120, 5130 toward each other, see, e.g., FIG. 16B. Likewise, referring to FIGS. 16A and 16C, when one or both of the locking levers 5151, 5161 are pressed in, toward base 5110 via finger operable portions 5151a, 5151b, the blades 5120, 5130 will move apart from each other. Further pressing down on the locking levers 5151, 5161 to reach a fully locked position will result in the six-bar linkage locking into position. For example, FIG. 16C shows locking lever 5161 in such a fully locked position, whereas locking lever 5151 is approaching the same. To unlock the linkage assemblies 5150, 5160, a user may pull on each lever 5151, 5161 via finger operable portion 5151a, 5161a to move the blades towards each other, see FIG. 16B. Accordingly, the speculum 5100 may be first closed as seen in FIG. 16B, then inserted into a patient's orifice, e.g., vagina 10 seen in FIG. 6A, and then opened and locked into an open position such as that seen in FIGS. 16A and 16C, or a fully open position. Then, a surgical procedure may be performed through the speculum 5100. After the procedure, the speculum 5100 may be unlocked and closed into a closed position, such as that seen in FIG. 16B, and removed from the patient.


The first and second linkage assemblies 5150, 5160 may be operated independently or in unison to move second blade 5130 relative to first blade 5120. It will be readily appreciated that, due to the linkage assemblies 5150, 5160, the second blade 5130 may be moved directly away or towards the first blade 5120 by operating both levers 5151, 5161 at the same time, see, e.g., FIG. 16B, or the second blade 5130 may be moved at an angle away or towards the first blade 5120, see, e.g., FIG. 16C by moving one lever farther towards or away from the base 5110. For example, in FIGS. 16A and 16C, lever 5161 is rotated closer to the base 5110 than is lever 5151, and thus, the blades are at an angle with respect to each other, see again, FIG. 16C. Accordingly, variances in patients' anatomy may be taken into account by adjusting the travel of one blade relative to the other.


Additionally, speculum 5100 may provide various additional advantages. For example, when the blades 5120, 5130 are in a locked position, the shortest distance between the first distal end 5121 and a plane defined by the proximal surface 5112 may be substantially equal to the shortest distance between the second distal end 5131 and the plane defined by the proximal surface 5112. Accordingly, the working distance from the proximal surface 5112, which, again, may serve as a support surface for another surgical instrument, to an otomy site located between the blades 5120, 5130 may be known, thereby helping remove anatomical variation between patients as a significant surgical factor.


As will be appreciated from the disclosure above, FIGS. 16A-16C illustrate at least one embodiment of a linked speculum that is low in profile and does not require a handle to operate. Another embodiment of a linked speculum, speculum 6100, is shown in FIG. 17. Generally, linked speculum 6100 may be similar to speculum 5100. However, notably, while the first blade 5120 of speculum 5100 may be fixedly attached to the base 5110, a first blade 6120 of speculum 6100 may be movable attached to a base 6110. Further, a second blade 6130 may also be movably attached to the base 6110. Accordingly, both blades 6120, 6130 of speculum 6100 may move away or towards each other; FIG. 17 depicts the blades 6120, 6130 after they have been moved together to a fully closed position with each of blades 6123, 6133 contacting each other.


In more detail, and similar to other speculums described herein, such as speculum 5100, speculum 6100 can comprise base 6110 defining an opening 6111 therethrough, e.g., inner wall 6113 of base 6110 may define the opening 6111, and the base 6110 can also comprise a proximal surface 6112 which, similar to that discussed above at least with respect to speculum 100, may serve as a support surface for another surgical device. Further, speculum 6100 may comprise first blade 6120 attached to the base 6110 and blade 6120 may include a first distal end 6121. Speculum 6100 may additionally comprise a second blade 6130 attached to the base 6110 and blade 6130 may also comprise a second distal end 6131. As described above, the blades 6120, 6130, may comprise distal portions 6123, 6133, respectively that have a shape that is at least partially parabolic.


The blades 6120, 6130 may be attached to the base 6110 as follows. Each blade 6120, 6130 may extend from a support bar 6122, 6132 fixedly attached thereto or formed therewith. Further, the support bars 6122, 6132 may be configured to fit, slide, and/or be received within a groove 6115 defined within base 6110. The support bars 6122, 6132 may cooperate with linkage assemblies 6150, 6160, portions of which may also be received within groove 6115, to attach blades 5120, 5130 to base 5110.


As with the other exemplary speculums described herein, such as speculum 5100, for example, the speculum 6100 may include one or more locking assemblies, such as first and second linkage assemblies 6150, 6160, that are configured to releasably hold the first blade 6120 and the second blade 6130 relative to each other in at least one locked position. Referring to FIG. 17, in various embodiments, the first linkage assembly 6150 may be connected to both the first blade 6120 and the second blade 6130, on one side of the speculum 6100, and the second linkage assembly 6160 may be connected to both the first blade 6120 and the second blade 6130, on another side of the speculum 6100, for example.


Further, still referring to FIG. 17, the first linkage assembly 6150 may comprise a first link 6151 pivotally coupled to the second blade 6130 via support bar 6132 and a second link 6152 pivotally coupled to the first blade 6120 via support bar 6122. The first link 6151 may also be pivotally coupled to the second link 6152. In more detail, the first link 6151 may pivotally connect to both the second support bar 6132 and the second link 6152 at or near the ends of link 6151. Likewise, the second link 6152 may be pivotally connected to both the first link 6151 and the first support bar 6122 at or near the ends of second link 6152. Additionally, to maintain a central positioning of blades 6120, 6130 in relation to opening 6111 and to provide a pair of fulcrum points against which the linkage assembly 6150 may be leveraged, the linkage assembly 6150 may further comprise a pair of pins (not shown), one of which may be disposed in each of arced channels 6153, 6154 formed in links 6151, 6152, respectively. The pins may be further sized and configured to slide in at least one slot 6116 formed in base 6110 within groove 6115. Accordingly, movement of either or both of links 6151, 6152 is controlled such that a portion of each arced channel 6153, 6154 remains within groove 6115 of base 6110.


Moving now to the other side of speculum 6100, second linkage assembly 6160 may be similar to the first linkage assembly 6150. Accordingly, the second linkage assembly 6160 may comprise a third link 6161 pivotally coupled to the first blade 6120 via support bar 6122 and a fourth link 6162 pivotally coupled to the second blade 6130 via support bar 6132. The third link 6161 may also be pivotally coupled to the fourth link 6162. In more detail, the third link 6161 may pivotally connect to both the first support bar 6122 and the fourth link 6162 at or near the ends of link 6161. Likewise, the fourth link 6162 may be pivotally connected to both the third link 6161 and the second support bar 6132 at or near the ends of link 6162. Additionally, similar to that described with respect to first linkage assembly 6150, to maintain a central positioning of blades 6120, 6130 in relation to opening 6111 and to provide a pair of fulcrum points against which the second linkage assembly 6160 may be leveraged, the linkage assembly 6160 may further comprise a pair of pins 6165a, 6165b. Pin 6165a may be disposed in an arced channel 6163 formed in link 6161 and pin 6165b may be disposed in an arced channel 6164 formed in link 6162. The pins 6165a and 6165b may be further sized and configured to slide in at least one slot 6116 formed in base 6110 within groove 6115. Accordingly, movement of either or both of links 6161, 6162 is controlled such that a portion of each arced channel 6163, 6164 remains within groove 6115 of base 6110.


Similar to that described above with respect to speculum 5100, the first and second linkage assemblies 6150, 6160 and the first and second blades 6120, 6130 of speculum 6100, thus form a six-bar linkage, that, when the one or both sets of links 6151, 6152 and 6161, 6162 are pulled or pushed out, away from base 6110, will move the blades 6120, 6130 toward each other, see, e.g., FIG. 17. Likewise, when one or both sets of links 6151, 6152 and 6161, 6162 are pressed in, toward base 6110, the blades 6120, 6130 will move apart from each other. Further pressing down on both sets of links 6151, 6152 and 6161, 6162 to reach a fully locked position will result in the six-bar linkage locking into position with the blades 6120, 6130 at their farthest position from each other (not illustrated). To unlock the linkage assemblies 6150, 6160, a user may push on one or both of links 6151, 6152 and 6161, 6162, respectively, from within the opening 6111 to unlock and move the blades towards each other, see FIG. 17. Accordingly, the speculum 6100 may be first closed as seen in FIG. 16B, then inserted into a patient's orifice, e.g., vagina 10 seen in FIG. 6A, and then opened and locked into an open position analogous to that shown with respect to speculum 100 in FIG. 6B. Then, a surgical procedure may be performed through the speculum 6100. After the procedure, the speculum 6100 may be unlocked and closed into a closed position, such as that seen in FIG. 17, and removed from the patient.


Similar to that described above with respect to link speculum 5100, the first and second linkage assemblies 6150, 6160 of speculum 6100 may be operated independently or in unison to move the first and/or second blade 5130 relative each other. It will be readily appreciated that, due to the linkage assemblies 6150, 6160, the second blades 6120, 6130 may be moved directly away or towards each other by operating both linkage assemblies 6150, 6160 at the same time, see, e.g., FIG. 17, or the blades 6120, 6130 may be moved at an angle away or towards each other by moving one linkage assembly 6150, 6160 farther towards or away from the base 6110. For example, although not illustrated, linkage assembly 6150 may be pressed into a locked position, while the other linkage assembly 6160 is not in a locked position and, thus, the blades may be at an angle to each other. Accordingly, variances in patients' anatomy may be taken into account by adjusting the travel of one blade relative to the other.


Additionally, speculum 6100 may provide various additional advantages. For example, when the blades 6120, 6130 are in a locked position, the shortest distance between the first distal end 6121 and a plane defined by the proximal surface 6112 may be substantially equal to the shortest distance between the second distal end 6131 and the plane defined by the proximal surface 6112. Accordingly, the working distance from the proximal surface 6112, which, again, may serve as a support surface for another surgical instrument, to an otomy site located between the blades 6120, 6130 may be known, thereby helping remove anatomical variation between patients as a significant surgical factor.


As noted above, the features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. By way of non-limiting example, and referring now to FIG. 19, a speculum, such as speculum 8100, may include both hinged and linked features to move and/or lock blades 8120, 8130 relative to each other. A side view of speculum 8100 is shown in FIG. 19. Speculum 8100 may include a first blade 8120 pivotally connected to a base 8100 via first hinge 8117a and a second blade 8130 pivotally connected to the base 8100 via second hinge 8117b. The blades 8120, 8130 may be moved in relation to each other and opened to a locked position via a locking assembly in the form of linkage assembly 8150 comprising first and second links 8151, 8152. In more detail, extending from first blade 8120 may be first link 8151 which may also be integrally formed with or otherwise fixedly attached to the blade 8120 such that both the blade 8120 and the link 8151 may rotate in fixed relation about hinge 8117a. Likewise, extending from second blade 8130 may be second link 8152 which may also be integrally formed with or otherwise fixedly attached to the blade 8130 such that both the blade 8130 and the link 8152 may rotate in fixed relation about hinge 8117b. Further, the links may be movably connected by a first pin (not shown) protruding from first link 8151 that is slidably received within a second channel 8154 formed within second link 8152. Similarly, a second pin (not shown) may protrude from the second link 8152 that is slidably received within a first channel 8153 formed within first link 8151. Accordingly, the links 8151, 8152 may be moved, in a proximal direction, away from the base 8110 to a closed position, such as the fully closed position shown in FIG. 19, where the blades 8120, 8130 are contacting each other. Similarly, the links 8151, 8152 may be moved, in a distal direction, toward base 8110 to an open position (not illustrated). Further moving the links 8151, 8152 toward the base 8110 may lock the blades 8120, 8130 in an open or locked position. Such opening and closing of the blades 8120, 8130 may be used to hold open a natural orifice, such as vagina 10 seen in FIGS. 6A-6B, for example, during a surgical procedure, as described herein. Also, the first linkage assembly 8150 may function on one side of the base 8110 and a second linkage assembly (not shown) may function in a similar fashion on another side of the base 8110. In any event, the speculum 8100 may provide various advantages as described with respect to other speculums taught herein.


The various speculum embodiments described herein may include various materials for the speculum components. For example, the various parts of the speculum may be made from a clear plastic to allow visualization of the patient's tissues. Further, the materials may be made of any color to help indicate various portions which are to be operated by a user. Additionally, the materials may be disposable after use. Such disposable materials may include polycarbonate. However, the materials may be re-sterilized after use. Such re-sterilizable materials may include polysulfone. Further, the materials may also be one or more metals, such as stainless steel, aluminum, magnesium, and titanium, for example. Various combinations of materials, such as those outlined above, are also possible. For example, the base may be made from a plastic, while the blades are made from a metal.


Further, additional modifications and/or uses of the speculums described herein are encompassed by various embodiments. By way of a first, non-limiting example, a light port may be added to at least one of the speculum blades to disperse light. In such embodiments, the light dispersing blade(s) may be made from a clear polycarbonate and an independent light source may be coupled to the blade(s) to cause light to travel through the blade and radiate light or glow, thereby providing enhanced lighting of the vagina and/or the otomy site therein, for example. Alternatively, a light tube, e.g., a fiber optic cable, may be added to one or more of the speculum blades to enable light to be fed to a distal portion of the blade. Light of any frequency may be provided. In at least one embodiment, the light frequency may be tuned or chosen to provide enhanced viewing of the tissue, e.g., the vaginal walls. Further, to better enable a user to see through a distal portion of at least one of the blades, one or more blades may include a video camera lens which may provide a signal to an external monitor, for example.


By way of a second, non-limiting example, a suction, a pressure, and/or an irrigation port may be added to one or more of the speculum blades. Such a port may be incorporated into the blade shape itself or independent tubing may run through the blade. Further, the port may be a carbon dioxide port which may assist with insufflation.


By way of a third, non-limiting example; a speculum may be configured for use through a body wall, such as the abdominal wall, and not through a natural orifice. In such embodiments, the speculum may function to help dilate an incision to increase the working area therethrough. In at least one embodiment, one or more of the distal ends of the speculum blades may form a sharp point. Further, all of the distal ends of the speculum blades may forma sharp point, that, when the speculum is in a closed configuration, cooperate together to form an incising point. The incising point may be applied to a patient's body wall, e.g., the abdominal wall, to incise the wall and pass the blades therethrough. Then, the speculum blades may be opened, thereby dilating the incision. In at least one embodiment, the speculum base and/or locking assembly/assemblies may be advanced until at least one of them contacts the exterior of the patient. Thereafter, a plug, such as the transorifice device described above, may be added to permit a sealed, port-based surgical procedure to be completed utilizing endoscopic, including laparoscopic, tools, for example. In such embodiments, a port, such as the suction, pressure, and/or irrigation port mentioned above, may be used to perform additional functions through the speculum (e.g., insufflation) without requiring additional incisions beyond that needed to introduce the speculum through the body wall.


By way of a fourth, non-limiting example, one or more speculum blades may include a conduit that forms a channel other delivery mechanism for providing various energy or signals to and/or from the blades. For instance, the blades may include an energy delivery mechanism for producing radio frequency energy, for example, to assist with coagulation. Additionally, ultrasound and/or laser energy may also be produced from a portion, e.g., a distal portion, of the speculum blade(s). Further, imaging modalities, such as static pictures, or dynamic videos may be recorded at or through the blades and passed to an external recording media. In any event, such energy and/or signal transmission may be passed through wires embedded in or pass along a surface of one or more of the speculum blades.


By way of a fifth, non-limiting example, in embodiments including a port or other conduit, such as those described above, a manifold may be incorporated into the speculum, near the base, for example, to allow multiple inputs and/or outputs. The outputs may be connected to an extension, either rigid or flexible, that allows one to continue to perform the functions of the manifold, such as irrigation, suction, and/or energy deliver, for example.


By way of a sixth, non-limiting example, one or more sensors may be incorporated into one or more of the speculum blades. Such sensors may provide various types of feedback, including, but not limited to, their position relative to one another or their depth in a patient's body, temperature, moisture, heart rate, blood pressure, and the like. Any such sensor(s) may also provide anatomical and/or calibration reference indicators for a user.


By way of a seventh, non-limiting example, one or more of the speculum blades may be configured to deliver a drug. In such embodiments, the blade(s) may provide a port or conduit through which a needle, or extendable needle, may pass through to allow direct injection into a patient's body, through the speculum blade(s).


In various embodiments, additional surgical delivery devices and related surgical delivery device features are envisioned which may, among other things, provide similar advantages to that described above with respect to surgical delivery device 200 and may also be substituted for surgical delivery device 200 in a surgical system, kit, and/or method such as that shown and portrayed in one or more of FIGS. 1-11. For example, FIGS. 21-22C illustrate a non-limiting embodiment of a surgical delivery device 1200. Surgical delivery device 1200 may be similar to surgical delivery device 200. For instance, the surgical delivery device 1200 may also include a body 1210, a tip 1220, and a balloon 1230. The body 1210 may comprise a proximal end 1213 and a distal end 1212. A tool receiving passageway 1211 may be defined by body 1210 and include a proximal opening 1215 located at the proximal end 1213 and a distal opening 1214 (see, e.g., FIG. 22B) located at the distal end 1212. As noted above with respect to surgical delivery device 200, a body, such as body 1210 may be rigid and define at least one curve corresponding to the passageway 1211.


In more detail regarding the curved shape of a surgical delivery device, in various embodiments, referring now to FIG. 21, a side view of a surgical delivery device 1200 is shown. The body 1210 may be further shaped to assist a surgeon using the surgical delivery device 1200 to enter a patient's body cavity, through a vagina, for example, at a desired angle and position. Accordingly, the body 1210 may define multiple curves and/or linear portions. For example, the body 1210 may include a linear, first section 1216a, a curved, second section 1216b, a linear, third section 1216c, a curved, fourth section 1216d, and a linear, fifth section 1216e. Further, in at least one embodiment, referring to FIGS. 21 and 22B, the proximal opening 1214 and/or the proximal end 1212 of body 1210 may define a first plane P1 (transverse to the plane of the page of FIG. 21), and the distal opening 1214 and/or the distal end 1215 of body 1210 may define a second plane P2 (also transverse to the plane of the page of FIG. 21). The first plane P1 and the second plane P2 may intersect, thereby providing an entry angle at the proximal opening 1215 that is different from an exit angle at the distal opening 1214.


Focusing now on tip 1220 and FIGS. 22A-22C, the surgical delivery device 1200, similar to that described with respect to delivery device 200, may further comprise a tip 1220 movably mounted to the distal end 1213 of the body 1210 such that the tip 1220 can move between an opened position (see, e.g., FIG. 22B) and a closed position (see, e.g., FIG. 22A). As explained above with respect to surgical delivery device 200, the tip 1220 of delivery device 1200 may conceal a portion of a surgical tool (e.g., endoscope 500 seen in FIG. 22C), that is inserted into passageway 1211, such that the tool may be revealed and/or delivered to a body cavity within a patient, such as peritoneal cavity 20, see, e.g., FIG. 10.


As explained above with respect to delivery device 200, the tip 1220 may be mounted to the distal end 1213 of the body 1210 in various ways. For example, referring to FIG. 22A, the tip 1220 may be mounted to the distal end 1213 by a hinge 1222. However, during use, it may be undesirable for the surgical delivery device's tip to open prematurely. Accordingly, in various embodiments, a surgical delivery device, such as surgical delivery device 1200 seen in FIGS. 21-22B, may comprise a catch 1260 located at the distal end 1212 of the body and configured to releasably hold the tip 1220 over the distal opening 1214 in a closed position, see FIG. 22A, such that the tip 1220 does not inadvertently open to the position seen in FIG. 22B. In more detail, referring to FIG. 22B, the catch may further include a first magnetic portion 1261 located at the tip 1220 and a second magnetic portion 1262 located at the distal end 1212. The first magnetic material 1261 may be magnetically attracted to the second magnetic portion 1262 such that opening the tip 1220 requires a certain amount of force, that may be provided by advancing endoscope 500 through the surgical delivery device 1200 such that the endoscope's distal end 503 pushes the tip 1220 open, see FIG. 22C.


Also as noted above with respect to surgical delivery device 200, referring now to FIGS. 22A-22C, the tip 1220 of delivery device 1200 may comprise a material that is at least partially transparent to facilitate viewing therethrough. However, in at least one embodiment, the transparent tip 1220 may further include a cavity 1223 that is configured to receive a distal end 503 of an endoscope 500. Accordingly, the distal end 503 of the endoscope 500 may rest inside cavity 1223 such that the tissue and/or organs near the tip 1220 may be visualized during a surgical procedure.


Further, also similar to that described with respect to surgical delivery device 200, the tip 1220 of delivery device 1200 may be configured to incise tissue. For example, referring to FIG. 22A, in at least one embodiment, the tip 220 may taper and/or include incising blades or wings 1221 extending outwardly therefrom. Such incising wings 1221 may be useful for cutting and/or separating tissue, such as the tissue at otomy site 13, seen in FIG. 6B.


Again, similar to that discussed above with respect to surgical delivery device 200, the surgical delivery device 1200 may be configured to dilate an incision by expanding a balloon 1230 that surrounds at least part of the body 1210 and that may be located adjacent the distal end 1212 of the body 1210. The balloon 1230 is shown in an unexpanded and/or deflated configuration in FIG. 22A and in an expanded and/or inflated configuration in FIG. 22C, for example. In at least one embodiment, referring to FIG. 21, the balloon 1230 may be inflated by providing a gas, such as air, nitrogen, and/or carbon dioxide, through a port 1250 operably coupled to the body 1210. Alternatively, a liquid, or a liquid mixed with a gas, may be used to expand the balloon 1230 through port 1250. The port 1250 may include a stopcock valve to maintain gas and/or liquid pressure in balloon 1230, after liquid and/or gas is introduced into the balloon 1230. In any event, a tube or other conduit (not shown) may connect the port 1250 with the balloon 1230 through body 1210 along or within passageway 1211.


Similar to balloon 230 described above with respect to surgical delivery device 200, as illustrated in FIGS. 21 and 22B-22C, the balloon 1230, when expanded, may have a shape with outward sides that are linear, as viewed from the side. In other words, the balloon 1230 may have a uniform, straight shape in a proximal-to-distal (or vice-versa) direction. However, as explained above, various configurations are possible for the balloon 1230 to expand and dilate tissue at an incision or other opening into a patient's body and/or body cavity.


In various embodiments, as with surgical delivery device 200, the surgical delivery device 1200 may also serve to assist in the proper placement and/or sealing of a transorifice device, such as transorifice device 1300 within a body cavity. For example and referring to FIG. 22A, in at least one embodiment, the surgical delivery device 1200 may further comprise a suture holder 1240 located near the distal end 1212 of the body 1210, wherein the suture holder 1240 is configured to releasably hold a suture, such as suture 1324 from the transorifice device 1300 (discussed below). As shown in FIG. 22A, the suture holder 1240 may be positioned on or along the body 1210 proximal to the balloon 1230. Notably, this arrangement is different than that discussed above with respect to surgical delivery device 200. Here, owing to the relative position of suture holder 1240 and balloon 1230, the held suture 1324 need not pass over the balloon 1230 and, therefore, the suture 1324 may be less likely to interfere with the balloon-tissue interface when the balloon 1230 expands within an incision. In more detail, as best seen in FIGS. 22A-22B, the suture holder may comprise a hook or protrusion 1241 that is configured to releasably snag a suture, such as suture 1324. Further, the protrusion may extend from and/or be integrally formed with a collar 1242 that is attached to the body 1210. Accordingly, when the protrusion 1241 is advanced in a distal direction (to the left of FIG. 22A, for example), the suture holder 1240 may snag and releasably hold the suture 1324. Then, the suture 1324 may be released when the protrusion 1241 is moved in a proximal direction (to the right of FIG. 22A, for example). Thus, the suture holder 1240 may allow for the surgical delivery device to pull transorifice device 1300 via suture 1324 and then release the transorifice device 1300 at a desired position and/or location.


In various embodiments, additional transorifice devices and related transorifice device features are envisioned which may, among other things, accomplish similar advantages to that described above with respect to transorifice device 300 and may also be substituted for transorifice device 300 in a surgical system, kit, and/or method such as that shown and portrayed in one or more of FIGS. 1-11. For example, referring to FIGS. 23A-23E, a non-limiting embodiment of an exemplary transorifice device, transorifice device 1300, is shown.


Transorifice device 1300 may be similar to transorifice device 300. For instance, referring to FIG. 23A, which shows a side view of transorifice device 1300, transorifice device 1300 may comprise a port assembly 1310 and a flexible conduit 1320. In at least one embodiment, the transorifice device may further comprise at least one support member 1330. Referring to FIG. 23D, which shows a top perspective view of the transorifice device 1300, the port assembly 1310 may define at least one port therein, such as first port 1311, second port 1312, and third port 1313. Referring to FIGS. 23A and 23B, the port assembly 1310 may also have a proximal side 1314 and a distal side 1315 (see FIG. 23B). The flexible conduit 1320 may extend from the distal side 1315 of the port assembly 1310 and may also have a proximal portion 1321 adjacent to the port assembly 1310 and a distal portion 1322. The support member 1330 may be movably associated with the distal portion 1322 of the flexible conduit 1320 and extendable to the distal side of the port assembly 1310.


Referring briefly to FIGS. 23A and 23B, the port assembly 1310 may additionally comprise a port portion 1310a and a conduit portion 1310b that are detachable from each other. FIG. 23A shows the port portion 1310a coupled to the conduit portion 1310b and FIG. 23B shows the port portion 1310a detached from the conduit portion 1310b. The conduit portion 1310b may be attached to the flexible conduit 1320 and the port portion 1310a may include ports 1311, 1312, 1313. As mentioned above with respect to transorifice device 300, such collective detachment of ports 1311, 1312, 1313 may facilitate removing tissue and/or organ specimens from a patient's body during a surgical procedure. The port portion 1310a may be releasably attached to the conduit portion 1310b by a threaded and/or snap-fit engagement between the portions 1310a, 1310b, for example. Further, one or more release buttons may be included as part of either or both of portions 1310a, 1310b to enable a user to quickly and easily decouple the two portions 1310a, 1310b of the port assembly 1310.


Notably, in at least one embodiment and referring to FIG. 23B, the port portion 1310a may also be connected to extendable sleeves 1340 and 1350. Accordingly, removing the port portion 1310a from the conduit portion 1310b may enable a user to also pull sleeves 1340, 1350 from the patient during a surgical procedure.


Similar to that described above with respect to transorifice device 300, referring to FIG. 23D, each of the ports 1311, 1312, 1313 may be a different size. For example, in at least one embodiment, port 1311 may accommodate a 10 mm or smaller diameter tool, port 1312 may accommodate a 5 mm or smaller diameter tool, and port 1313 may accommodate an 18 mm or smaller diameter tool. Further, each port 1311, 1312, 1313 may include one or more seals as described above with respect to transorifice device 300.


Further, similar to transorifice device 300, the flexible conduit 1320 may also comprise a flexible, resilient, or pliable ring 1323 located at the distal portion 1322 of the conduit 1320. Additionally, the flexible conduit 1320 may also comprise a suture 1324 connected to the pliable ring 1323 and/or to the distal portion 1322 of the conduit 1320. The pliable ring 1323 may be configured such that when it is not under external force, the ring 1323 assumes the shape shown in FIG. 23A, causing the distal portion 1322 of the flexible conduit 1320 to flare outward. In other words, the pliable ring 1323 may be biased toward an annular or open shape. However, the pliable ring 1323 may be bent into a folded shape, such as a hyperbolic paraboloid, by the application of an external force. Such external force may come from a user pulling on suture 1324.


However, in at least one embodiment referring now to FIG. 22A and as mentioned above, a suture holder, such as suture holder 1240 of surgical delivery device 1200, may releasably hold suture 1324. Accordingly, after attaching the suture 1324 to suture holder 1240, the pliable ring 1323 may be pulled in a distal direction, toward tip 1220 of the surgical delivery device 1200, such that the pliable ring 1323 collapses, buckles, or otherwise bends into a compact or folded shape. The folded shape of ring 1323 may allow the ring 1323, and hence, the distal portion 1322 of the flexible conduit 1320 to move through a smaller opening, such as incision 14 (see FIG. 10), than the ring 1323 would fit through if the ring were in an unfolded, annular shape. Additionally, the suture 1324 may be of a varying length. For example, in one embodiment, although not shown, the suture 1324 may be relatively shorter than illustrated in FIG. 22A such that the pliable ring 1323 and/or the transorifice device's distal portion 1322 to be close to and/or tangential to suture holder 1240.


Focusing now on the support member 1330, in various embodiments, the support member 1330 may be configured to provide support for the port assembly 1310 and/or the flexible conduit 1320 after the transorifice device 1300 is positioned at least partially within a speculum, such as speculum 2100, see FIGS. 13A-13B. For example, FIG. 23E shows a side perspective view of the transorifice device 1300 supported by the speculum 2100 with the flexible conduit 1320 positioned between the speculum blades 2120, 2130, 2140 (in FIG. 23E, a view of blade 2140 is obstructed by the conduit 1320). Further, in various embodiments, similar to that described above with respect to transorifice device 300, the support member 1330 may comprise an expandable bladder 1332 that is expandable or inflatable between an unexpanded and an expanded configuration. For example, FIG. 23A shows the expandable bladder 1332 in an unexpanded configuration and FIG. 23E shows the expandable bladder 1332 in an expanded configuration. The bladder 1332 may be expanded via port 1331. Port 1331 may comprise a stopcock valve and may allow gas and/or liquid to be passed through port 1331 into bladder 1332 to inflate and/or expand the same. The port 1331 may then be closed to maintain gas and/or liquid pressure within the expanded bladder 1332, see FIG. 23E. Then, after a surgical procedure is completed, the bladder 1332 may be deflated or compressed to an unexpanded configuration by opening port 1331 to release gas and/or liquid pressure.


Referring to FIG. 23E, while the transorifice device 1300 is positioned at least partially through speculum 2100, the expandable bladder 1332 may provide support to the port assembly 1310 and/or to the flexible conduit 1320 during a surgical procedure. Accordingly, the expandable bladder 1332 may be configured such that at least a portion, e.g., a proximal portion 1333, of the bladder 1330 contacts the port assembly 1310 when the bladder 1332 is expanded.


Further, similar to transorifice device 300, in at least one embodiment and as seen in FIG. 23E, the bladder 1332 may also contact at least a portion of the speculum 2100 when the bladder 1332 is expanded. In such embodiments, the bladder 1332 may serve as a flexible shock absorber and/or resilient mount between the transorifice device 1300 and the speculum 2100. The expanded bladder 1332 thus may provide support to the port assembly 1310 and/or the flexible conduit 1320 while permitting flexible maneuverability to a surgical tool inserted through the transorifice device 1300. Additionally, referring to FIGS. 23A and 23E, when expanded (as shown in FIG. 23E), the bladder 1332 may take up slack in the flexible conduit, between the distal portion 1322 and the proximal portion 1321 (see FIG. 23A). In other words, a portion of the bladder 1332 may move with respect to the distal portion 1322 of the flexible conduit 1320 such that the port assembly 1310 and/or the proximal portion 1321 of the conduit 1320 move away from the distal portion 1322 and/or pliable ring 1323, secured through incision 14 (see FIG. 11). Accordingly, the flexible conduit 1320 may be made taught by way of expanding bladder 1332, and, thus, anatomical variation between patients' vaginal lengths may be further removed as a significant surgical factor. In at least one such embodiment, the flexible conduit may be approximately five inches in length to accommodate a majority of the patient population.


Further, referring still to FIG. 23E, in at least one embodiment, the bladder 332 may have an outer diameter that is larger than the flexible conduit 320 and/or the speculum base 2110, such that the conduit 1320 may pass through the base 2110 while the bladder 1332 may contact and be supported by the proximal surface 2112 (see FIG. 13B) of the base 2110, as noted above.


In at least one embodiment, referring to FIG. 23A, the bladder 1332 may be discontinuous with the port assembly 1310; however, the flexible conduit 1320 may pass through the expandable bladder 1332. In such embodiments, the bladder 1332 may also be movable with respect to the flexible conduit 1320. In other words, the bladder 1332 may form an annular ring-like structure movably surrounding the proximal portion 1332 of the flexible conduit 1320.


The transorifice device 1300 may be further configured to provide additional protection to tissue and/or organs within a patient's body during a surgical procedure. For example, in at least one embodiment, the transorifice device 1300 may further comprise a first extendable sleeve 1340 extending from first port 1311. The extendable sleeve 1340 may be further located at least partially within the flexible conduit 1320, when the port portion 1310a is connected to the conduit portion 1310b. Further, in another embodiment, the transorifice device 1300 may further comprise a second extendable sleeve 1350 extending from the second port 1312. The second extendable sleeve 1350 may further be located at least partially within the flexible conduit 1320, when the port assembly portions 1310a, 1310b are connected to each other. As shown in FIG. 23B, the first extendable sleeve 1340 and the second extendable sleeve 1350 may be seen in retracted configurations. In at least one embodiment, one or both of flexible sleeves 1340, 1350 may be collapsed upon themselves in a random buckling or crinkled configuration such that each flexible sleeve 1340, 1350 may rest, accordion-style, in the retracted configuration seen in FIG. 23B, for instance. Alternatively, the sleeves 1340, 1350 may be pleated. Referring still to FIG. 23B, the extendable sleeves 1340, 1350 may further include at least partially rigid tubular supports 1344, 1354, respectively, that are attached to port portion 1310a and extend inside extendable sleeves 1340, 1350 for a portion of or past their lengths to provide support to the sleeves 1340, 1350 while they are in the retracted configurations as shown. In at least one embodiment, the tubular supports may be partially flexible, yet more rigid than the extendable sleeves such that the tubular supports hold the sleeves until the latter are extended, as discussed below.


Further, in at least one embodiment, referring to FIG. 23C, one or both of extendable sleeves 1340, 1350 may be extended into an extended configuration such that first extendable sleeve 1340 and/or second extendable sleeve 1350 extends beyond the distal portion 1322 of the flexible conduit and into a body cavity. In such embodiments, the extendable sleeves 1340, 1350 may help provide further protection to internal organs and/or tissue during surgical instrument exchanges through first port 1311 and/or second port 1312. For example, as seen in FIG. 23C, the extendable sleeve 1340 has been extended into an extended configuration.


Similar to transorifice device 300, described above, in various embodiments, one or more of the extendable sleeves 1340, 1350 may include features to facilitate their extension. For example, referring to FIG. 23B, in at least one embodiment, first extendable sleeve 1340 may comprise a proximal end 1341 abutting the first port 1311 and a distal end 1342, and the second extendable sleeve 1350 may likewise comprise a proximal end 1351 abutting the second port 1312 and a distal end 1352. Further, first extendable sleeve 1340 may also include a first suture 1343 located at the distal end 1342 of sleeve 1340 and/or the second extendable sleeve may include a second suture 1353 located at the distal end 1352 of sleeve 1350. Thus, the extendable sleeves 1340, 1350 may be extended similar to that described above with respect to transorifice device 300 and as illustrated in FIG. 11. When the sleeves are in the retracted configurations, as seen in FIG. 23B, for example, the sutures may also be positioned and/or releasably held in slits 1345, 1355 formed in the tubular supports 1344, 1354 mentioned above, thereby assisting a user to locate the suture with a grasper by maintaining the position of the sutures near the center of each tubular support, prior to extension.


Varying options are discussed above to allow a user to extend the extendable sleeves of a transorifice device. However, additional options are possible to achieve the same or similar result. For example, in at least one embodiment and referring to FIG. 24, an extension rod or tab, such as extension tab 3344 may be included in a transorifice device comprising a port assembly including a port portion 3310a. Port portion 3310a may be similar to port portion 1310a discussed above in reference to transorifice device 1300. For example, an extendable sleeve 3340 may extend from the first port 3311. While not shown, each of the other ports, e.g., second port 3312 and/or third port 3313, may also be associated with an extendable sleeve extending therefrom. In any event, as shown in FIG. 24, the extendable sleeve 3340 may be in an accordion-like, retracted configuration. To facilitate extension of sleeve 3340, the tab 3344 may be attached to the sleeve 3340 at or near the sleeve's distal end 3340. Further, the tab 3344 may be sized and configured that, when the sleeve is in a retracted configuration as shown, the tab 3344 also extends through the sleeve 3340 and out of port 3311 in a proximal direction. Thus, when the port portion 3310a is in place with a conduit portion (not shown, see however, conduit portion 1310a in FIG. 23B, for example), or otherwise in position during a surgical procedure, the extendable sleeve 3340 may be extended when a user presses on the tab 3344 such that the sleeve's distal end 3342 extends in a distal direction (to the right of FIG. 24). The tab 3344 may be configured such that it rests on a lip or in a pocket (not shown) at distal end 3342 and thus may only apply a force to the sleeve 3340 in a distal direction. Moving the tab 3344 in a proximal direction may thus disconnect or otherwise release the tab 3344 from the sleeve's distal end 3342. In such embodiments, the tab 3344 may be removed from the sleeve 3340, after extending sleeve 3340, by pulling the tab 3344 in a proximal direction, and out through port 3311. Further, the tab 3344 may be rigid or at least partially rigid such that it does not significantly buckle when applying a force to the sleeve's distal end 3342.


Another exemplary embodiment of a transorifice device 4300 including a sleeve 4340 is shown in FIG. 25. FIG. 25 shows a side cross-sectional view of transorifice device 4300 after the device 4300 has been placed through an incision 14 in tissue T. Transorifice device 4300 may be similar to transorifice device 300, described above. The transorifice device 4300 may include a port assembly 4310 defining at least one port, e.g., port 4311, and a flexible conduit 4320 including a distal pliable ring 4323 configured to seal the flexible conduit against tissue T through an incision 14. As noted above with respect to transorifice device 1300, the port assembly 4310 may comprise a port portion 4310a and a conduit portion 1310b that are detachable from each other. Further, the port 4311 or a portion of it may be detached from port portion 4310a. For example, the port 4311 may releasably receive a seal assembly 4345. Seal assembly 4345 may be attached to sleeve 4340. Further, seal assembly may include a luer-like taper 4345a that is configured to releasably engage and/or lock with a luer-like taper 4311a formed in port 4311. Alternatively, the seal assembly 4345 and/or port 4311 may include other interconnective seals or mating arrangements, such as compressive O-rings, gaskets, compressive rubber, and polymers, for example. In any event, the seal assembly 4345 may be attached and detached from port portion 4310a such that gas pressure (for insufflation purposes, for example) may be maintained after connecting the seal assembly 4345 to the port 4311.


Further, referring still to FIG. 25, the port 4311 may further include at least one seal 4316, which may be similar to at least one of the seals described above with respect to transorifice device 300. In at least one embodiment, the seal 4316 may be sized and configured to allow any size instrument shaft from 2-30 mm to pass therethrough. Additionally, the seal 4316 may be sized and configured to allow sleeve 4340 to pass therethrough. For example, in at least one embodiment, the sleeve 4340 may be at least partially rigid owing to a wire, for example, running along its length. Accordingly, after positioning the pliable ring 4323 distal to incision 14 and/or tissue T, the sleeve 4340 may be advanced through the port 4311, through the flexible conduit 4320, past ring 4323, and into body cavity 20, for example. Accordingly a protected pathway for surgical tools through an opening 4347 defined by seal assembly 4345 and sleeve 4340 into cavity 20 may be provided during a surgical procedure. Sleeve 4340 may provide similar other advantages to that described above with respect to transorifice device 300.


Additionally, the seal assembly 4345 may further comprise at least one seal. In at least one embodiment, the seal assembly 4345 may further comprise a first seal 4346a and a second seal 4346b. The first seal 4346a may be a duckbill seal and the second seal 4346b may be a lip seal, or vice versa. A duckbill seal may help maintain pressure for insufflation, while the lip seal may accommodate varying sizes of surgical tools while keeping an edge of the seal flush with a surface of a surgical tool for sterility maintenance, for example.


The seal or seals mentioned herein in respect to any of the surgical system components, such as a transorifice device, may be substituted for various other seals known in the field. For example, each seal may include one or more of the following: a duckbill seal; a lip seal, an S-shaped seal, a foam seal, a gel seal, and a pierceable membrane. Alternatively, the seal(s) may be omitted entirely from the devices described herein.


Various embodiments are also envisioned for a support member associated with a transorifice device. For example, a support member may comprise an expandable bladder 332 or 1332, as describe above with respect to transorifice devices 300 and 1300, respectively. The expandable bladder may provide various advantages, such as assisting in taking up slack left in a flexible conduit 320, 1320, after the conduit has been at least partially inserted through an incision 14 and/or a pliable ring 323, 1323 has been positioned distal to the incision 14 (see FIG. 11, for example). Other support members are envisioned which may also provide similar such advantages to a transorifice device. For example, referring now to FIG. 26A, a side cross-sectional view is provided of a transorifice device 5300 resting on a speculum 5100 after the speculum has been inserted into an orifice to expand tissue walls 11, an incision 14 has been made in the tissue T, and a pliable ring 5323 of the transorifice device has been positioned distal to incision 14. As illustrated in FIG. 26A, only a portion of each device 5300, 10100 is shown, to the left of centerline C. The transorifice device 5300 may be similar to transorifice device 4300, described above. For example, the transorifice device may include a port assembly 5310 defining at least one port, e.g., port 5311, and a flexible conduit 5320 including a distal pliable ring 5323 configured to seal the flexible conduit against tissue T through the incision 14. As noted above with respect to transorifice device 4300, the port assembly 5310 may comprise a port portion 5310a and a conduit portion 5310b that are detachable from each other.


Similar to transorifice device 300, the port assembly 5310 may include a proximal side 5314 and a distal side 5315. Further, the flexible conduit 5320 may extend from the port assembly's distal side 5314 and the conduit 5320 may include a distal portion 5322. Additionally, the transorifice device 5300 may comprise at least one support member 5330 movable with respect to the distal portion 5322 of the flexible conduit and extendable to the port assembly's distal side 5315.


However, transorifice device 5300 may differ from transorifice device 300 in that the support member 5330 may comprise a rotatable push member 5331. Referring briefly to FIG. 26B, which shows a top view of the push member 5331 and a portion of the port assembly 5310, the push member 5331 is configured to rotate between a locked position (shown in solid lines), and an unlocked, pushable position (shown in dotted lines). Referring to FIGS. 26A-26B, when the push member 5331 is rotated to the pushable position, the push member 5331 may be moved or pushed in a distal direction (toward the bottom of FIG. 26A) such that the push member 5331 may contact the speculum's proximal surface 10112 and thus may lift the port assembly 5310 to subsequently take up slack in the flexible conduit 5320, between the port assembly 5310 and the pliable ring 5322, which is secured beyond the incision 14 in tissue T.


In more detail, referring to FIG. 26A, the push member 5331 may include an insertable portion 5334 sized and configured to be received in a locking hole 5318 of the port assembly 5310. The locking hole 5318 may be better seen in FIGS. 26C-26D. FIG. 26C is a top view of a support ring 5317. FIG. 26D shows a partial cross-sectional view of the support ring 5317, taken along line 26D-26D, showing a detail of the locking hole 5318 defined by support ring 5317. Support ring 5317 may be a part of the port assembly's conduit portion 5310b and may be coupled to flexible conduit 5320 and/or releasably attached to port portion 5310a. Briefly, referring to FIG. 26A, part of the conduit's proximal portion 5321 may be sandwich in a serpentine path between components of port portion 2310b, including support ring 5317. Further, the support ring may include a groove and/or O-ring to releasably attach to port portion 5310a such that the port portion 5310a may releasably connect thereto, yet rotate, if desired, 360 degrees about the centerline C.


Moving back to the push member 5331, the push member's insertable portion 5334 may include at least one threaded side 5332 and at least one non-threaded side (not shown). The threaded side(s) 5332 may be the sides to the left and/or right of the insertable portion 5334 as illustrated in FIG. 26A. The non-threaded side(s) may be the sides of the insertable portion 5334 that are parallel to the plane of FIG. 26A. Accordingly, the push member's threaded sides 5332 may be configured to engage the locking hole's threads 5319 when the push member is rotated within the hole 5318 to the locked position. Further, the push member's non-threaded sides may be configured to align with the threads 5319 of the locking hole 5318 when the push member 5331 is rotated therein to the pushable position. Alternatively, the push member may be constructed of a rigid material, such as steel, and the locking hole may be made of a softer material, a plastic, for example, such that the push member may be self tapping within the hole and not require perfect alignment therein.


Further, the locking hole 5318 may include threads 5319 on sides of the hole 5318 that correlate with the threaded sides 5332 of the insertable portion 5334. Further, the sides of the hole that are parallel to the plane of FIG. 26A may, similar to insertable portion 5334, be non-threaded (not shown). Accordingly, the locking hole 5318 may comprise at least one threaded side 5319 and at least one non-threaded side (not shown). The locking hole's threaded sides 5319 may thus be configured to engage the push member's threaded sides when the push member is in the locked position. Further, the hole's non-threaded sides may be configured to align with the push member's non-threaded sides when the push member is in the pushable position. Thus, when the push member 5331 is in the locked position (shown in solid lines in FIG. 26B), the push member 5331 may not readily translate with respect to hole 5318 and/or port assembly 5310. However, when the push member 5331 is rotated to the unlocked, pushable position (shown in dotted lines in FIG. 26B), the push member 5331 may translate in a proximal or distal direction with respect to hole 5318, port assembly 5310, and/or distal portion 5322 of the flexible conduit 5322.


Additionally, in various embodiments, the push member 5331 may be configured to be operable by a user while resisting freely falling out of the locking hole 5318. Accordingly, in at least one embodiment and referring to FIG. 26A, the push member 5331 further comprises a proximal end 5331a, which may be adjacent to the insertable portion 5334. The proximal end 5331a may be configured to be operated by a user. In one such embodiment, the proximal end 5331a may include a finger operable tab projecting away from the insertable portion 5334. Further, the push member 5331 may also comprise a distal end 5331b, which may be adjacent to the insertable portion 5334 and opposite the proximal end 5331a. The distal end 5331b may further comprise threads 5333 that may be aligned with, or on the same side as, the non-threaded portion (not shown, see discussion above) of the insertable portion 5334. Thus, when the push member 5331 is in a translatable or pushable position (see the dotted lines in FIG. 26B), the push member's distal threads 5333 may contact the hole's threads 5319 (see FIG. 26D) if the push member 5331 is moved sufficiently in a proximal direction (towards the top of FIG. 26A), thereby preventing the push member 5331 from freely falling or moving out of the locking hole 5318.


While the above has discussed one push member 5331, it is contemplated that more than one push member 5331 may be associated with port assembly 5310 and/or flexible conduit 5320. Accordingly, in at least one embodiment and referring to FIGS. 26A and 26C, the transorifice device 5300 may further comprise at least three push members 5331, spaced evenly about support ring 5317, thereby providing an even distribution of support members 5330 about port assembly 5310 and/or conduit 5320. While three push members define a plane, more or less push members may be used if desired. Each of the push members 5331 may be similar to that described above and each may also be received within a respective locking hole 5318, which also may be similar to that described above.



FIGS. 27A-27B illustrate another embodiment of an exemplary support member 6330 associate with a transorifice device 6330. As illustrated, only cross-sectional portions of port assembly 6310, flexible conduit 6320, and support member 6330 are shown. Transorifice device 6330 may be similar to transorifice device 5300 described above. However, in at least one embodiment, the support member 6330 may comprise a ratcheted sleeve 6331 operably engaged with the port assembly 6310. In more detail, the ratcheted sleeve 6331 may include teeth that engage teeth formed in a support ring 6317. The teeth of the support ring 6317 may be flexible such that the teeth may deflect as the sleeve 6331 is advanced in a distal direction (toward the bottom of FIG. 27A). Thus, the sleeve 6331 may be in a proximal position as shown in FIG. 27A, then after the transorifice device 6300 is positioned in a surgical site and/or within a speculum 10100, as described above, the sleeve 6331 may be moved in a distal direction, in a ratchet-like fashion, toward speculum 10100 until the sleeve 6331 contacts the proximal surface 10112 of speculum base 10110, for example. As shown in FIG. 27B, the sleeve 6331 may thereby be moved to a distal position to take up slack in conduit 6320. In at least one embodiment, the sleeve 6331 may be annular and/or surround all of support ring 6317. Alternatively, multiple sleeves 6331 may be spaced about support ring 6317. Additionally, the sleeve and/or ring may be threaded such that the sleeve may be moved proximally and/or distally by rotating the sleeve with respect to the ring. Further, the sleeve may be constructed of multiple telescoping segments such that additional extension may be achieved, if desired.


Further, as shown in FIG. 27B, the port assembly 6310 may include port portion 6310a that is detachable from conduit portion 6310b. The port portion 6310a may be screwed on to conduit portion 6310b. Accordingly, the port portion 6310a may be removed from the conduit portion 6310b by unscrewing the former from the later or vice versa.


Additionally, although not shown, a support member may comprise a spring between the port portion and the conduit portion of a port assembly. Alternatively, or additionally, a spring may extend distally beyond the port assembly to engage a speculum, for example, thereby providing the port assembly with the ability to deflect during a surgical procedure, if desired.


Another embodiment of an exemplary transorifice device, transorifice device 2300, is illustrated in FIG. 28A, which shows a side view of the transorifice device 2300. Transorifice device 2300 may be similar to transorifice device 300. For instance, the transorifice device 2300 may comprise a port assembly 2310 defining at least one port 2311 therein. In FIG. 28A, the walls of the port 2311 within port assembly 2310 are shown in dotted lines. The port assembly 2310 may also likewise include a proximal side 2314 and a distal side 2315. The transorifice device 2300 may further include a flexible conduit 2320 extending from the distal side 2315 of the port assembly 2310 and the flexible conduit may also include a proximal portion 2321 adjacent to the port assembly 2310, a distal portion 2322, and a pliable ring 2323 located at the distal portion 2322. The pliable ring 2323 may be configured such that when it is not under external force, the ring 2323 may assume the shape shown in FIG. 28A, thereby causing the distal portion 2322 of the flexible conduit 2320 to flare outward. In other words, the pliable ring 2323 may be biased toward an annular or open shape. However, the pliable ring 2323 may be bent into a folded shape, such as a hyperbolic paraboloid, by the application of an external force. Such external force may come from a user bending the ring with their fingers, for example.


Notably different from transorifice device 300, in at least one embodiment, transorifice device 2300 may not include a support member that may be positioned between the port assembly 2310 and a speculum, when the transorifice device 2300 is inserted at least partially through a speculum. However, in various alternative embodiments, a support member or members, as described herein, may be added to the transorifice device 2300, if desired.


In any event, similar to transorifice device 300, the transorifice device 2300, once properly positioned within a patient (discussed below), may be configured to provide a sealed passageway, through flexible conduit 2320, from outside a patient's body to body cavity. The pliable ring 2323, which may be positioned distal to an incision during a surgical procedure, may also prevent inadvertent removal or dislodgment of the distal portion 2322 from a patient's body, thereby retaining the transorifice device 2300 within the patient during a surgical procedure.


Moving now to FIG. 28B, another embodiment of an exemplary surgical delivery device, surgical delivery device 2200, is shown. FIG. 28B illustrates a side view of the delivery device 2200. Surgical delivery device 2200 may be similar to delivery device 200, described above, in that surgical delivery device 2200 may be configured to assist in the proper placement and/or sealing of a transorifice device, such as transorifice device 2300 (see FIG. 28A, discussed above) within a body cavity. For example and referring to FIG. 28B, in various embodiments, the surgical delivery device 2200 may comprise a foundation 2210, a shaft 2270, and a tip 220. The shaft 2270 may include a proximal end 2271 and a distal end 2272 and the shaft 2270 may also extend through the foundation 2210 such that the shaft 2270 is movable with respect to the foundation 2210. In other words, there may be a hole (not shown) defined by the foundation that slidably engages shaft 2270 therethrough such that the shaft 2270 may be slid or otherwise moved back and forth in a distal direction (toward the top of FIG. 28B) or a proximal direction (toward the bottom of FIG. 28B) through the foundation 2210.


Further, in various embodiments, the delivery device's tip 2220 may be mounted to the distal end 2272 of the shaft 2270 such that movement of the shaft's proximal end 2271 effectuates movement of the tip 2220 relative to the foundation 2210. The tip 2220 may include a distal side 2221 and a proximal side 2222, wherein the proximal side 2222 defines an opening 2223 sized and configured to receive at least a portion of a surgical tool. For example, in at least one embodiment and as discussed in more detail below, the opening 2223 may be sized and configured to receive the pliable ring 2323 of transorifice device 2300, see FIGS. 28A and 28C.


In at least one embodiment, referring back to FIG. 28B, the surgical delivery device 2200 may further comprise a body 2211 extending from the foundation 2210. Further, the body 2211 may be rigid. In such embodiments, the shaft 2270 may extend through the rigid body 2211. For example, the body 2211 may define a lumen (not shown) through which the shaft 2270 may slidably pass. The rigid body 2211 may define a path and/or provide support for the shaft 2270 when the shaft 2270 is moved back and forth, as noted above. Further, in at least one embodiment, the shaft 2270 may be made from a flexible material.


In various embodiments, the rigid body 2211 may also define at least one curve corresponding to the shaft. For instance, the rigid body 2211 may include a straight, linear portion 2212a located adjacent to the foundation 2210 and a curved, non-linear portion 2212b located distal to straight portion 2212 and/or adjacent to the tip 2220. Referring now to FIG. 28B and FIG. 6B, similar to that discussed above with respect to surgical delivery device 200, surgical delivery device 2200 may be inserted at an incision ultimately made at an otomy site 13 located in a patient's vagina 10, for example. The curved portion 2212b may enable the user to insert the tip 2200 through the incision and into a body cavity at a desired angle, e.g., between the rectum and the uterus in the rectouterine pouch.


Additionally, the surgical delivery device 2200, in at least one embodiment, may further comprise a handle 2280 attached to the proximal end 2271 of the shaft 2270. For example, the handle 2280 may be formed on or otherwise fixedly connected to the shaft's proximal end 2280. The handle 2280 may be configured for a user to grasp the handle 2280 and thereby move the shaft 2270 and, subsequently, the tip 2220 in a proximal or distal direction. For example, referring to FIGS. 28C-28D, a user may move the handle 2280 from a proximal position shown in FIG. 28C to a distal position shown in FIG. 28D, thereby also moving the tip 2220 from a proximal position (FIG. 28C) to a distal position (FIG. 28D). The tip 2220 and handle 2280 are also shown in a proximal position in FIG. 28B.


Further, in at least one embodiment, the handle 2280, the body 2211, and the shaft 2270 may cooperate to enable the tip 2220 to be moved a limited distance. In such embodiments, the body 2211 may also comprise a proximal end 2213 adjacent to the foundation 2210 and a distal end 2214. Also, the distance between the handle and the tip may be greater than the distance between the foundation and the distal end of the rigid body. Thus, referring still to FIG. 28B, the shaft 2270 may move in a distal direction (toward the top of FIG. 28B) until the handle contacts the foundation 2210. The handle 2280 may not pass through the foundation 2210 because the handle 2280 may be larger in diameter than shaft 2280 and/or the handle 2280 may be also larger than the foundation hole (not shown) through which the shaft 2270 passes. In more detail, for example, as seen in FIG. 28C, the shaft 2270 may extend a distance proximally beyond the foundation 2210, toward handle 2280. Moving the handle 2280 into contact with the foundation 2210, as seen in FIG. 28D, causes the tip 2220 to also move the distance that shaft 2270 was exposed beyond foundation 2210 in FIG. 28C. Accordingly, the tip 2220 may be moved a limited distance, as defined by the amount of shaft 2270 exposed proximally beyond foundation 2210 when the handle 2280 and/or tip 2220 are in a proximal position, see, again, FIG. 28C.


Additionally, the body 2211 may limit how far the tip 2220 may move in a proximal direction. In at least one embodiment, moving the handle 2280 in a proximal direction, e.g., toward the bottom of FIG. 28B, may cause the tip 2220 to contact body 2211. The tip 2220 may be larger than the body 2211, and thus, may not pass therethrough. Accordingly, the tip 2220 may be limited to moving from a proximal position where the tip 2220 contacts the body 2211 to a distal position, such as that shown in FIG. 28D, where the handle 2280 contacts the foundation 2210.


In various embodiments, and as illustrated in FIG. 28B, the tip 2220 may be blunt. For example, the tip 2220, as shown in FIG. 28B, may be curved or parabolic in shape. In such embodiments, the surgical delivery device 2220 may not, itself, make an incision at an otomy site 13, see FIG. 6B. Therefore, where the tip 2220 is blunt, another tool, such as surgical delivery device 200, a scalpel, needle, or other incision-making device may be used to create an incision in the patient's tissue. Thereafter, the tip 2220 may be advanced through the incision. Further, owing to the curved shape of the tip 2220, the tip 2220 may dilate or expand the incision as the tip 2220 is advanced therethrough.


As mentioned above, the surgical delivery device 2200 may be configured to deliver a portion of a surgical device to a patient's body cavity. In various embodiments, the surgical delivery device 2200 may be configured to deliver a transorifice device, such as transorifice device 2300. In more detail, referring now to FIGS. 28C-28D, the transorifice device 2300 may first be mounted to the surgical delivery device 2200. In at least one embodiment, the delivery device's tip 2200 may be passed through the transorifice device's flexible conduit 2320. Further, the transorifice device's port assembly 2310 may be brought into contact with and/or releasably connected to the delivery device's foundation 2210. For example, the foundation 2310 and/or the port assembly 2310 may include snap-fit features, screws, tabs, or other mechanisms to releasably connect the two components together.


As shown in FIG. 28C, after passing the tip 220 through the flexible conduit 2320, the transorifice device's pliable ring 2323 may be folded or otherwise compacted to fit within the tip's opening 2223 such that the pliable ring 2323 may be held or biased against an inner wall 2224 of tip 2220 (see FIG. 28B). To aid in later deployment of the ring 2323 from the tip 2220, medical lubricants may be added to either inner wall 2224 and/or to ring 2323 before inserting the ring 2323 into tip 2220.


Next, the coupled transorifice device 2300 and surgical delivery device 2200 may be at least partially inserted into a patient as described above with respect to transorifice device 300 and delivery device 200, see FIGS. 8-11, for example. Notably, if the tip 2220 is blunt, then the incision 14 (see FIG. 9A) may be made before inserting the coupled devices into the patient, as discussed above. If another device is used to make the incision 14, then a guidewire may be placed into the incision during its creation, e.g., where an endoscope is used to assist in the creation of the incision 14, the guide wire may be placed through a working channel of an endoscope. The guidewire may assist a user in placing the tip 2220 of the surgical deliver device 2200 through the incision 14. In any event, referring to FIG. 28C and FIG. 9A, the tip 2220 may ultimately be passed through incision 14 such that the tip 2220 is located within body cavity 20.


After inserting the tip 2220 into body cavity 20, the handle 2280 may be advanced in a distal direction to a distal position, such as that shown in FIG. 28D. As discussed above, moving the handle 2280 as such may cause the tip 2220 to also move to a distal position. However, because the port assembly 2310 may be connected to the foundation 2210, the pliable ring 2323 may not move as far as the tip 2220. Accordingly, the pliable ring 2323 may be thereby released from the tip 2220 through opening 2223, thereby causing the ring 2323 and the distal portion 2322 of flexible conduit 2320 to flare outward, away from tip 2220 and/or shaft 2270. The transorifice device 2300 may now be in a similar configuration to that shown in FIG. 10 with respect to transorifice device 2300, forming a sealed conduit from outside the patient's body to body cavity 20 through the patient's vagina, for example.


Next, the surgical delivery device 2200 may be removed from the patient. First, the foundation 2210 may be detached from the port assembly 2310. Then, the delivery device 2200 may be pulled in a proximal direction such that the tip 2220 is pulled through the flexible conduit 2320 and out port assembly 2310. In such embodiments, the outer diameter of the tip 2220 may thereby be smaller than the inner diameter of the flexible conduit 2320 and/or a port defined within port assembly 2310.


After removing the surgical delivery device 2200 from the transorifice device 2300, a surgical procedure may be performed through the transorifice device, as described above with respect to transorifice device 300 and FIG. 11, for example.


As noted above, the transorifice device's tip 2220 may be blunt. Alternatively, in various embodiments, the tip 2220 may be at least partially sharp and/or otherwise configured to make an incision in a patient's tissue, such as at otomy site 13, see FIG. 6B. In such embodiments, the tip 2220 may be similar to that described above with respect to tip 220 of delivery device 200. Further, another example of a tip configured to incise tissue, tip 3220, is shown in FIG. 29A. FIG. 29A illustrates a side cross-sectional view of tip 3220 located at a distal portion of shaft 3270. Tip 3220 and/or shaft 3270 may be substituted for tip 2220 on transorifice device 2200 shown in FIG. 28B, for example. Tip 3220 may include an incising portion 3220b extending distally from a curved portion 3220a. The incising portion 3220b may include incising wings 3221. The incising portion 3220b and/or wings 3221 may incise tissue similar as described above with respect to surgical delivery device 1200. The curved portion 3220a may function similar to that described above with respect to tip 2220 in that curved portion 3220a may include a proximal side 3222 that defines an opening 3223 sized and configured to receive at least a portion of a surgical tool. For example, in at least one embodiment, the opening 3223 may be sized and configured to receive a pliable ring of a transorifice device, such as pliable ring 2323 of transorifice device 2300, see FIG. 28A. Further, referring to FIGS. 28A and 29A, the pliable ring 2323 may be folded or otherwise compacted to fit within the tip's opening 3223 such that the pliable ring 3323 may be held or biased against an inner wall 3224 of curved portion 3220a. Accordingly, the tip 3200 may both incise tissue at an otomy site and deliver a portion of a transorifice device to a body cavity, as discussed above.


Additionally, the shaft 3270 may be similar to shaft 2270 described above. However, shaft 3270 may extend through the tip's curved portion 3220a to the incising portion 3220b. A lumen or tool receiving passageway 3211 may be defined by the inner surfaces of shaft 3270. The shaft 3270 and/or passageway 3211 may extend proximally past a foundation (not shown), similar to foundation 2210 shown in FIG. 28B and discussed above. In such embodiments, the incising portion 3220b may be at least partially transparent such that a portion of an endoscope (not shown) may be inserted into passageway 3211 until a distal end of the endoscope reaches the incising portion 3220b. In such embodiments, the endoscope may provide visual feedback or signals to a user operating a surgical delivery device including tip 3220 and/or shaft 3270 such that the user may view tissue near the incising portion 3220b during a surgical procedure.


The tip 3220 may function as a part of a surgical delivery device to deliver a surgical device to a body cavity, as described above with respect to delivery device 2200. Additionally, tip 3220 may cooperate with other features in a surgical delivery device to assist with delivering a surgical tool (e.g., as transorifice device 2300, see FIG. 28A) to a surgical site. For example, in at least one embodiment, referring to FIG. 29B, a surgical delivery device may further include body 3211, similar to body 2211, described above. Further, the shaft 3270 may be slidably received through the body 3211. However, a reverse taper 3290 may extend from the body's distal end 3214. The taper 3290 may form a curved or parabolic shape, similar to curved portion 3220b (see FIG. 29A). The taper 3290 may serve several functions. First, when the tip 3220 is drawn into a proximal position as shown in FIG. 29B, a pliable ring, such as pliable ring 2323 (see FIG. 28A), may be folded and held between the tip's inner wall 3224 and an inner wall or walls 3294 of taper 3290. Accordingly, the walls 3224, 3294 may define a cavity to hold a pliable ring 2323, for example. In such embodiments, less of the ring 2323 may need to be inserted into tip 3220 than may be required for tip 2220, described above. Thus, because less of the ring 2323 may need to be exposed to release the ring 2323 from the tip 3220, the tip 3220 may not require as long of a distance between a proximal position and a distal position to release the pliable ring 2323. Second, the taper 3290 may allow a surgical delivery device, with which taper 3290 is a part, to center itself during removal through a flexible conduit and/or an incision. Third, owing to the shape of taper 3290, the taper 3290 may dilate or expand tissue during removal of a surgical delivery device through the incision. In this way, the tip 3220 may not snag or otherwise be restricted from moving back through the incision, after delivery of a transorifice device to a body cavity, for example.


In various embodiments, the devices may be made from various materials. By way of example, a surgical delivery device may be made from medical grade plastics and/or stainless steel. Further, a surgical delivery device may be disposable or reusable. Additionally, referring to a transorifice device, the flexible conduit and/or the extendable sleeves may be made from any biocompatible material or combination of materials such as, but not limited to, silicone, a polymer such as polyurethane, thermal plastic rubber (TPR), and/or a biocompatible metal such as stainless steel. Also, any other component of the devices described herein may also be made from one or more of the above materials. Further, surface treatments of the various device surfaces are possible. Such surface treatments may include altering the surface texture or adding a biocompatible coating such as silicone and/or a water-soluble personal lubricant, such as K-Y® jelly, to increase lubricity for easy passage of instruments, for example.


Further, while various embodiments disclosed herein contemplate using various components together as part of a surgical system, kit, and/or method, the individual components may be used independently as well. For example, a speculum, transorifice device, and/or surgical delivery device, according to any of the various embodiments, may be used independent of the other devices disclosed herein. Also, any or all of the instruments may be used in a non-NOTES procedure. For example, the various devices may be used through an incision made in the abdominal wall.


While the embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to the embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the various embodiments. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the appended claims.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device can utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


The devices described herein may be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. Alternatively a sterilizing gas or other sterilizing procedure may be used. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A speculum, comprising: a base defining an opening therethrough, the base comprising a first base portion and a second base portion pivotably coupled about a hinge to increase or decrease a size of the opening defined by the base;a first blade attached to the first base portion, the first blade extending transverse to the first base portion and comprising a first distal end;a second blade attached to the second base portion, the second blade extending transverse to the second base portion and comprising a second distal end, wherein the first blade and the second blade are movable with respect to each other about the hinge; andat least one locking assembly configured to releasably hold the first blade and the second blade relative to each other in at least one locked position, wherein, when the first blade and the second blade are in the at least one locked position, a shortest distance between the first distal end and a plane defined by the proximal surface is substantially equal to another shortest distance between the second distal end and the plane defined by the proximal surface, and wherein, when the first blade and the second blade are in the at least one locked position, the at least one locking assembly is structured to prevent the first blade from moving toward the second blade.
  • 2. The speculum of claim 1, wherein the first blade and the second blade are movable with respect to each other without a handle.
  • 3. The speculum of claim 1, wherein when the first blade and the second blade are in the at least one locked position, the first blade and the second blade are substantially parallel with respect to each other.
  • 4. The speculum of claim 1, wherein the first blade and the second blade are movable with respect to each other such that the first distal end and the second distal end substantially move in the same plane.
  • 5. The speculum of claim 1, further comprising a third blade attached to one of the first base portion and the second base portion, wherein the at least one locking assembly comprises a latch assembly that, when locked via a latch operatively coupled to at least one of the first base portion and the second base portion, prevents pivotable movement about the hinge, and wherein the at least one locking assembly further comprises a ratchet assembly to releasably hold the third blade with respect to the base.
  • 6. The speculum of claim 1, wherein the at least one locking assembly comprises at least one ratchet assembly or at least one linkage assembly.
  • 7. The speculum of claim 1, wherein when the first blade and the second blade are in the at least one locked position, the first blade and the second blade are held at a substantially fixed angle with respect to the base, and wherein the at least one locking assembly comprises at least one latch operatively coupled to at least one of the first base portion and the second base portion.
  • 8. A transorifice device, comprising: a port assembly defining at least one port therein, the port assembly including a proximal side and a distal side;a flexible conduit extending distally from the distal side of the port assembly, the flexible conduit including a proximal portion adjacent to the port assembly and a distal portion flexibly positionable relative to the proximal portion between a first distal position and a second distal position, the first distal position more proximate to the proximal portion, wherein the flexible conduit further comprises a pliable ring located at the distal portion, wherein the pliable ring is positioned about a perimeter of the distal portion and is configured to bias the perimeter toward an open configuration, and wherein the flexible conduit is structured to extend within a body opening; andat least one support member structured to raise the port assembly with respect to the body opening such that a distance between the distal side of the port assembly and the body opening increases when the port assembly is raised, wherein, when the distal portion of the flexible conduit is located at the first distal position and the at least one support member raises the port assembly with respect to the body opening, the proximal portion of the flexible conduit is movable proximally with respect to the distal portion of the flexible conduit to locate the distal portion at the second distal position.
  • 9. The transorifice device of claim 8, further comprising an extendable sleeve extending from the at least one port and located at least partially within the flexible conduit.
  • 10. The transorifice device of claim 8, wherein the flexible conduit further comprises a suture connected to one of the pliable ring and the distal portion.
  • 11. The transorifice device of claim 8, wherein the at least one support member is movably associated with the distal portion of the flexible conduit and extendable to the distal side of the port assembly.
  • 12. The transorifice device of claim 8, wherein the flexible conduit extends through the at least one support member, and wherein the at least one support member comprises an expandable bladder.
  • 13. A surgical delivery device, comprising: a body including a proximal end and a distal end, the body defining a tool receiving passageway therein including a proximal opening located at the proximal end and a distal opening located at the distal end;a tip movably mounted to the distal end of the body such that the tip can move between an opened position and a closed position, wherein the tip is configured to incise tissue; andan expandable member surrounding at least part of the body and located adjacent the distal end of the body and proximal to the tip, wherein the expandable member comprises an expandable dimension, and wherein the expandable member is proximal to the distal opening when the tip is in the open position.
  • 14. The surgical delivery device of claim 13, further comprising a suture holder located near the distal end of the body, wherein the suture holder is configured to releasably hold a suture.
  • 15. The surgical delivery device of claim 13, wherein the tip comprises a material that is at least partially transparent.
US Referenced Citations (1524)
Number Name Date Kind
645576 Telsa Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1039354 Bonadio Sep 1912 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1625602 Gould et al. Apr 1927 A
1916722 Ende Jul 1933 A
2028635 Wappler Jan 1936 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3069195 Buck Dec 1962 A
3070088 Brahos Dec 1962 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3595239 Petersen Jul 1971 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3961632 Moossun Jun 1976 A
3965890 Gauthier Jun 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4085743 Yoon Apr 1978 A
4164225 Johnson et al. Aug 1979 A
4174715 Hasson Nov 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4269174 Adair May 1981 A
4278077 Mizumoto Jul 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4396021 Baumgartner Aug 1983 A
4406656 Hattler et al. Sep 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4655219 Petruzzi Apr 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4677982 Llinas et al. Jul 1987 A
4685447 Iversen et al. Aug 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4727600 Avakian Feb 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4815450 Patel Mar 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4867140 Hovis et al. Sep 1989 A
4869238 Opie et al. Sep 1989 A
4869459 Bourne Sep 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4953539 Nakamura et al. Sep 1990 A
4960133 Hewson Oct 1990 A
4977887 Gouda Dec 1990 A
4979950 Transue et al. Dec 1990 A
4984581 Stice Jan 1991 A
4994079 Genese et al. Feb 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5108421 Fowler Apr 1992 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5192300 Fowler Mar 1993 A
5197963 Parins Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5245460 Allen et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5257999 Slanetz, Jr. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5275614 Haber et al. Jan 1994 A
5275616 Fowler Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5287852 Arkinstall Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5297687 Freed Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312416 Spaeth et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318589 Lichtman Jun 1994 A
5320636 Slater Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334168 Hemmer Aug 1994 A
5334198 Hart et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5342396 Cook Aug 1994 A
5344428 Griffiths Sep 1994 A
5345927 Bonutti Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5377695 An Haack Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5386817 Jones Feb 1995 A
5387259 Davidson Feb 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395386 Slater Mar 1995 A
5401248 Bencini Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445648 Cook Aug 1995 A
5449021 Chikama Sep 1995 A
5454827 Aust et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5478347 Aranyi Dec 1995 A
5478352 Fowler Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5518501 Oneda et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5533418 Wu et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5549637 Crainich Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5591179 Edelstein Jan 1997 A
5591205 Fowler Jan 1997 A
5593420 Eubanks, Jr. et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5601602 Fowler Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607406 Hernandez et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5613975 Christy Mar 1997 A
5616117 Dinkler et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5626578 Tihon May 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653690 Booth et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5657755 Desai Aug 1997 A
5662621 Lafontaine Sep 1997 A
5662663 Shallman Sep 1997 A
5667527 Cook Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690606 Slotman Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5702438 Avitall Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5711921 Langford Jan 1998 A
5716326 Dannan Feb 1998 A
5716375 Fowler Feb 1998 A
5728094 Edwards Mar 1998 A
5730740 Wales et al. Mar 1998 A
5735849 Baden et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749826 Faulkner May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5762604 Kieturakis Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5803903 Athas et al. Sep 1998 A
5808665 Green Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5823947 Yoon et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5827276 LeVeen et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5843017 Yoon Dec 1998 A
5843121 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902238 Golden et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916146 Allotta et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951547 Gough et al. Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5971995 Rousseau Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5984950 Cragg et al. Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5993474 Ouchi Nov 1999 A
5995875 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6016452 Kasevich Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6030384 Nezhat Feb 2000 A
6030634 Wu et al. Feb 2000 A
6033399 Gines Mar 2000 A
6036640 Corace et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6053927 Hamas Apr 2000 A
6053937 Edwards et al. Apr 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6090129 Ouchi Jul 2000 A
6096046 Weiss Aug 2000 A
6102909 Chen et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6139555 Hart et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6148222 Ramsey, III Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6169269 Maynard Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210409 Ellman et al. Apr 2001 B1
6214007 Anderson Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6231506 Hu et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322578 Houle et al. Nov 2001 B1
6325534 Hawley et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355013 van Muiden Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6368340 Malecki et al. Apr 2002 B2
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6387671 Rubinsky et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6398708 Hastings et al. Jun 2002 B1
6402735 Langevin Jun 2002 B1
6402746 Whayne et al. Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409727 Bales et al. Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6419641 Mark et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6443970 Schulze et al. Sep 2002 B1
6443988 Felt et al. Sep 2002 B2
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6458076 Pruitt Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6470218 Behl Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491627 Komi Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6514239 Shimmura et al. Feb 2003 B2
6520954 Ouchi Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6530922 Cosman et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6554766 Maeda et al. Apr 2003 B2
6554823 Palmer et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562034 Edwards et al. May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6581889 Carpenter et al. Jun 2003 B2
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6613038 Bonutti et al. Sep 2003 B2
6613068 Ouchi Sep 2003 B2
6616632 Sharp et al. Sep 2003 B2
6620193 Lau et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6626919 Swanstrom Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6645225 Atkinson Nov 2003 B1
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6663655 Ginn et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673058 Snow Jan 2004 B2
6673087 Chang et al. Jan 2004 B1
6673092 Bacher Jan 2004 B1
6679882 Kornerup Jan 2004 B1
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6692493 McGovern et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6709188 Ushimaru Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6731875 Kartalopoulos May 2004 B1
6736822 McClellan et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743166 Berci et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6758857 Cioanta et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6761722 Cole et al. Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6776787 Phung et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786905 Swanson et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6824548 Smith et al. Nov 2004 B2
6830545 Bendall Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6837847 Ewers et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6866628 Goodman et al. Mar 2005 B2
6869394 Ishibiki Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6881213 Ryan et al. Apr 2005 B2
6881216 Di Caprio et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6889089 Behl et al. May 2005 B2
6896683 Gadberry et al. May 2005 B1
6896692 Ginn et al. May 2005 B2
6899710 Hooven May 2005 B2
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6918908 Bonner et al. Jul 2005 B2
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
6939327 Hall et al. Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6944490 Chow Sep 2005 B1
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6955683 Bonutti Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7008419 Shadduck Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7029450 Gellman Apr 2006 B2
7032600 Fukuda et al. Apr 2006 B2
7035680 Partridge et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052489 Griego et al. May 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083629 Weller et al. Aug 2006 B2
7083635 Ginn Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7088923 Haruyama Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108696 Daniel et al. Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7115124 Xiao Oct 2006 B1
7117703 Kato et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
7130697 Chornenky et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150655 Mastrototaro et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7152488 Hedrich et al. Dec 2006 B2
7153321 Andrews Dec 2006 B2
7160296 Pearson et al. Jan 2007 B2
7163525 Franer Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7188627 Nelson et al. Mar 2007 B2
7195612 Van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204820 Akahoshi Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211092 Hughett May 2007 B2
7220227 Sasaki et al. May 2007 B2
7223272 Francere et al. May 2007 B2
7229438 Young Jun 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7241290 Doyle et al. Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7250027 Barry Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7270663 Nakao Sep 2007 B2
7291127 Eidenschink Nov 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7308828 Hashimoto Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7390324 Whalen et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435229 Wolf Oct 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7468066 Vargas et al. Dec 2008 B2
7476237 Taniguchi et al. Jan 2009 B2
7485093 Glukhovsky Feb 2009 B2
7488295 Burbank et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7498950 Ertas et al. Mar 2009 B1
7507200 Okada Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7515953 Madar et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7559887 Dannan Jul 2009 B2
7559916 Smith et al. Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561907 Fuimaono et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7575548 Takemoto et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7588557 Nakao Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7611479 Cragg et al. Nov 2009 B2
7618398 Holman et al. Nov 2009 B2
7621936 Cragg et al. Nov 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7648519 Lee et al. Jan 2010 B2
7650742 Ushijima Jan 2010 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7670336 Young et al. Mar 2010 B2
7674259 Shadduck Mar 2010 B2
7678043 Gilad Mar 2010 B2
7680543 Azure Mar 2010 B2
7684599 Horn et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7697970 Uchiyama et al. Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7713189 Hanke May 2010 B2
7713270 Suzuki May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749161 Beckman et al. Jul 2010 B2
7753933 Ginn et al. Jul 2010 B2
7758577 Nobis et al. Jul 2010 B2
7762949 Nakao Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763012 Petrick et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7771416 Spivey et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7780691 Stefanchik Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7794409 Damarati Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7828186 Wales Nov 2010 B2
7833156 Williams et al. Nov 2010 B2
7837615 Le et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7842068 Ginn Nov 2010 B2
7846171 Kullas et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7879004 Seibel et al. Feb 2011 B2
7892220 Faller et al. Feb 2011 B2
7896804 Uchimura et al. Mar 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7905828 Brock et al. Mar 2011 B2
7909809 Scopton et al. Mar 2011 B2
7914513 Voorhees, Jr. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7927271 Dimitriou et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7945332 Schechter May 2011 B2
7947000 Vargas et al. May 2011 B2
7953326 Farr et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
7965180 Koyama Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7969473 Kotoda Jun 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7976552 Suzuki Jul 2011 B2
7985239 Suzuki Jul 2011 B2
7988685 Ziaie et al. Aug 2011 B2
8034046 Eidenschink Oct 2011 B2
8048067 Davalos et al. Nov 2011 B2
8057510 Ginn et al. Nov 2011 B2
8062311 Litscher et al. Nov 2011 B2
8066632 Dario et al. Nov 2011 B2
8075587 Ginn Dec 2011 B2
8088062 Zwolinski Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8118821 Mouw Feb 2012 B2
8147424 Kassab et al. Apr 2012 B2
8157813 Ko et al. Apr 2012 B2
8182414 Handa et al. May 2012 B2
8206295 Kaul Jun 2012 B2
8221310 Saadat et al. Jul 2012 B2
8303581 Arts et al. Nov 2012 B2
8430811 Hess et al. Apr 2013 B2
20010023333 Wise et al. Sep 2001 A1
20010029388 Kieturakis et al. Oct 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020165592 Glukhovsky et al. Nov 2002 A1
20020173805 Matsuno et al. Nov 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030014090 Abrahamson Jan 2003 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030078471 Foley et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030124009 Ravi et al. Jul 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030139646 Sharrow et al. Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040002683 Nicholson et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040054322 Vargas Mar 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040104999 Okada Jun 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040167545 Sadler et al. Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040206859 Chong et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040225323 Nagase et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230097 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243108 Suzuki Dec 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040254572 McIntyre et al. Dec 2004 A1
20040260198 Rothberg et al. Dec 2004 A1
20040260337 Freed Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059964 Fitz Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065509 Coldwell et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119613 Moenning et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050222576 Kick et al. Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050274935 Nelson Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060015131 Kierce et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060064083 Khalaj et al. Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069425 Hillis et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095031 Ormsby May 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149131 Or Jul 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200121 Mowery Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247576 Poncet Nov 2006 A1
20060247663 Schwartz et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070010801 Chen et al. Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070066869 Hoffman Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070083195 Werneth et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106118 Moriyama May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112384 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070142710 Yokoi et al. Jun 2007 A1
20070142780 Van Lue Jun 2007 A1
20070154460 Kraft et al. Jul 2007 A1
20070156028 Van Lue et al. Jul 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070162101 Burgermeister et al. Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070198057 Gelbart et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 Macnamara et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070250038 Boulais Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070260302 Igaki Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282165 Hopkins et al. Dec 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow et al. Jan 2008 A1
20080015413 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080021416 Arai et al. Jan 2008 A1
20080022927 Zhang et al. Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080058854 Kieturakis et al. Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080071264 Azure Mar 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080097159 Ishiguro Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080140069 Filloux et al. Jun 2008 A1
20080140071 Vegesna Jun 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080177135 Muyari et al. Jul 2008 A1
20080188710 Segawa et al. Aug 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080221619 Spivey et al. Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner et al. Oct 2008 A1
20080249567 Kaplan Oct 2008 A1
20080262513 Stahler et al. Oct 2008 A1
20080262524 Bangera et al. Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080269782 Stefanchik et al. Oct 2008 A1
20080269783 Griffith Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090005636 Pang et al. Jan 2009 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090112059 Nobis Apr 2009 A1
20090112062 Bakos Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090125042 Mouw May 2009 A1
20090131751 Spivey et al. May 2009 A1
20090131932 Vakharia et al. May 2009 A1
20090131933 Ghabrial et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090143818 Faller et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090198253 Omori Aug 2009 A1
20090210000 Sullivan et al. Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090221873 McGrath Sep 2009 A1
20090227828 Swain et al. Sep 2009 A1
20090228001 Pacey Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090259105 Miyano et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287206 Jun Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090299135 Spivey Dec 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090299362 Long et al. Dec 2009 A1
20090299385 Stefanchik et al. Dec 2009 A1
20090299406 Swain et al. Dec 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306658 Nobis et al. Dec 2009 A1
20090306683 Zwolinski et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20090326561 Carroll, II et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100010510 Stefanchik Jan 2010 A1
20100010511 Harris et al. Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056861 Spivey Mar 2010 A1
20100056862 Bakos Mar 2010 A1
20100056864 Lee Mar 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100057108 Spivey et al. Mar 2010 A1
20100063538 Spivey et al. Mar 2010 A1
20100076451 Zwolinski et al. Mar 2010 A1
20100076460 Taylor et al. Mar 2010 A1
20100081877 Vakharia Apr 2010 A1
20100087813 Long Apr 2010 A1
20100091128 Ogasawara et al. Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130975 Long May 2010 A1
20100131005 Conlon May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152609 Zwolinski et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100179510 Fox et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198005 Fox Aug 2010 A1
20100198149 Fox Aug 2010 A1
20100198244 Spivey et al. Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331758 Davalos et al. Dec 2010 A1
20100331774 Spivey Dec 2010 A2
20110077476 Rofougaran Mar 2011 A1
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110106221 Neal, II et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110124964 Nobis May 2011 A1
20110152609 Trusty et al. Jun 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152612 Trusty et al. Jun 2011 A1
20110152858 Long et al. Jun 2011 A1
20110152859 Long et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190764 Long et al. Aug 2011 A1
20110193948 Amling et al. Aug 2011 A1
20110245619 Holcomb Oct 2011 A1
20110285488 Scott et al. Nov 2011 A1
20110306971 Long Dec 2011 A1
20120004502 Weitzner et al. Jan 2012 A1
20120029335 Sudam et al. Feb 2012 A1
20120088965 Stokes et al. Apr 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120089093 Trusty Apr 2012 A1
20120116155 Trusty May 2012 A1
20120179148 Conlon Jul 2012 A1
20120191075 Trusty Jul 2012 A1
20120191076 Voegele et al. Jul 2012 A1
20120220998 Long et al. Aug 2012 A1
20120220999 Long Aug 2012 A1
20120221002 Long et al. Aug 2012 A1
20120238796 Conlon Sep 2012 A1
20120330306 Long et al. Dec 2012 A1
20130090666 Hess et al. Apr 2013 A1
Foreign Referenced Citations (162)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19713797 Oct 1997 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0621009 Jul 1997 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
1281356 Feb 2003 EP
0947166 May 2003 EP
0836832 81 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
0941128 Oct 2004 EP
1411843 81 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 Aug 2008 EP
1582138 Sep 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
0723462 Mar 2009 EP
1769749 Nov 2009 EP
2135545 Dec 2009 EP
1493397 Sep 2011 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2335860 Oct 1999 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
63309252 Dec 1988 JP
4038960 Feb 1992 JP
8-29699 Feb 1996 JP
2000245683 Sep 2000 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
2006297005 Nov 2006 JP
2006-343510 Dec 2006 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9900060 Jan 1999 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0035358 Jun 2000 WO
WO 0068665 Nov 2000 WO
WO 0110319 Feb 2001 WO
WO 0126708 Apr 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03081761 Oct 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004037149 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2005122866 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006012630 Feb 2006 WO
WO 2006040109 Apr 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007013059 Feb 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2007143200 Dec 2007 WO
WO 2007144004 Dec 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008033356 Mar 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008079440 Jul 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008108863 Sep 2008 WO
WO 2008151237 Dec 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2009036457 Mar 2009 WO
WO 2009121017 Oct 2009 WO
WO 2010027688 Mar 2010 WO
WO 2010056716 May 2010 WO
WO 2010080974 Jul 2010 WO
WO 2010088481 Aug 2010 WO
Non-Patent Literature Citations (108)
Entry
International Search Report and Written Opinion for PCT/US2010/055257, May 25, 2011 (18 pages).
Zadno et al., “Linear Superelasticity in Cold-Worked NI-TI,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).
U.S. Appl. No. 12/752,701, filed Apr. 1, 2010.
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011.
U.S. Appl. No. 13/013,147, filed Jan. 25, 2011.
U.S. Appl. No. 12/900,132, filed Oct. 7, 2010.
U.S. Appl. No. 12/939,441, filed Nov. 4, 2010.
U.S. Appl. No. 12/902,531, filed Oct. 12, 2010.
U.S. Appl. No. 12/902,550, filed Oct. 12, 2010.
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo—port—modular—laparo...; accessed Jan. 5, 2010 (4 pages).
Hakko Retractors, obtained Aug. 25, 2009 (5 pages).
U.S. Appl. No. 12/468,462, filed May 19, 2009.
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006).
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994).
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No, 1, pp. 23-30, Mar. 2006.
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.
Ogando, “Prototype Tools That Go With The Flow,” Design News, 2 pages, Jul. 17, 2006.
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998).
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Enclose., vol. 8, pp. 28-32, 2006.
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Dec. 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recuell De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Interv Radiol, (1995), vol. 6(4), pp. 539-545.
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317.
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784.
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475.
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101.
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490.
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767.
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632.
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676.
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages).
Printout of web page—http://www.vacumed.com/zoom/product/Product.do?compId=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholanglopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages).
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869.
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259.
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP—Overview&navRe1Id=1000.1003&method=D..., accessed Jul. 18, 2008 (4 pages).
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.
K.E. Mönkmüller, M,D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Accepted Mar. 31, 1998).
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406.
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007).
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007).
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008).
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000).
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000).
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001).
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000).
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422—152000; accessed Aug. 28, 2009 (3 pages).
“Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603—120000; accessed Aug. 28, 2009 (3 pages).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using A Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using A Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
U.S. Appl. No. 12/207,306, filed Sep. 9, 2008.
U.S. Appl. No. 12/243,334, filed Oct. 1, 2008.
U.S. Appl. No. 12/234,425, filed Sep. 19, 2008.
U.S. Appl. No. 12/277,975, filed Nov. 25, 2008.
U.S. Appl. No. 12/277,957, filed Nov. 25, 2008.
U.S. Appl. No. 12/332,938, filed Dec. 11, 2008.
U.S. Appl. No. 12/337,340, filed Dec. 17, 2008.
U.S. Appl. No. 12/352,451, filed Jan. 12, 2009.
U.S. Appl. No. 12/359,824, filed Jan. 26, 2009.
U.S. Appl. No. 12/352,375, filed Jan. 12, 2009.
U.S. Appl. No. 12/359,053, filed Jan. 23, 2009.
U.S. Appl. No. 12/362,826, filed Jan. 30, 2009.
U.S. Appl. No. 12/363,137, filed Jan. 30, 2009.
U.S. Appl. No. 12/364,172, filed Feb. 2, 2009.
U.S. Appl. No. 12/364,256, filed Feb. 2, 2009.
U.S. Appl. No. 12/413,479, filed Mar. 27, 2009.
U.S. Appl. No. 12/607,252, filed Oct. 28, 2009.
U.S. Appl. No. 12/580,400, filed Oct. 16, 2009.
U.S. Appl. No. 12/607,388, filed Oct. 28, 2009.
U.S. Appl. No. 12/614,143, filed Nov. 6, 2009.
U.S. Appl. No. 12/617,998, filed Nov. 13, 2009.
U.S. Appl. No. 12/635,298, filed Dec. 10, 2009.
U.S. Appl. No. 12/640,440, filed Dec. 17, 2009.
U.S. Appl. No. 12/640,469, filed Dec. 17, 2009.
U.S. Appl. No. 12/640,476, filed Dec. 17, 2009.
U.S. Appl. No. 12/640,492, filed Dec. 17, 2009.
U.S. Appl. No. 12/641,823, filed Dec. 18, 2009.
U.S. Appl. No. 12/641,853, filed Dec. 18, 2009.
U.S. Appl. No. 12/641,837, filed Dec. 18, 2009.
U.S. Appl. No. 12/651,181, filed Dec. 31, 2009.
U.S. Appl. No. 12/696,598, filed Jan. 29, 2010.
U.S. Appl. No. 12/696,626, filed Jan. 29, 2010.
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article—id=218392121; accessed online Nov. 1, 2011 (2 pages).
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.html (7 pages).
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).
Rutala et al. “Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008” (available at http://www.cdc.gov/hicpac/Disinfection—Sterilization/13—11sterilizingPractices.html).
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011.
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011.
U.S. Appl. No. 13/399,358, filed Feb. 17, 2012.
U.S. Appl. No. 13/420,818, filed Mar. 15, 2012.
Bewlay et al., “Spinning” in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006).
Related Publications (1)
Number Date Country
20110105850 A1 May 2011 US