The present invention relates to methods and apparatus for providing treatment for the symptoms of various diseases, such as depression and epilepsy, and in particular to improved methods and apparatus for providing vagus nerve electrical stimulation.
It is known that stimulation of the vagus nerve in patients can be used as a form of therapy for the treatment of depression, particularly treatment resistant patients. There are approximately 11 million such patients in the world and approximately 4 million such patients in the United States. On Jul. 15, 2005, the United States Food and Drug Administration (FDA) approved the Vagus Nerve Stimulation (VNS) Therapy System sold by Cyberonics, Inc “for the adjunctive long-term treatment of chronic or recurrent depression for patients 18 years of age or older who are experiencing a major depressive episode and have not had an adequate response to four or more adequate antidepressant treatments.” The VNS Therapy System had been previously approved for the treatment of epilepsy. VNS therapy is delivered from a small pacemaker-like generator implanted in the chest that sends preprogrammed, intermittent, mild electrical pulses through the vagus nerve in the neck to the brain. The current device, however, requires the implantation of a relatively large battery and control pack in the body of the patient with subcutaneous wires threaded through the body to implanted probes (one or more) operatively coupled to the vagus nerve in the left side of the neck. The battery and control pack and wires may, in some cases, be a source of irritation and infection, which may require antibiotics or even removal of the device. Furthermore, the current device is susceptible to a limited battery life and magnetic interference. After the lifespan of an implant's battery, another surgery is required to replace the device. Thus, it would be advantageous to be able to provide vagus nerve stimulation in a manner that eliminates the intrusive battery pack and wires, as well as the health risks commonly associated with them.
In one embodiment, the invention provides an apparatus for providing electrical stimulation to the vagus nerve of a patient that includes one or more probes for being implanted in the body of the patient for providing current pulses to the vagus nerve, an implantable device for being implanted in the body of the patient having: (i) control circuitry electrically connected to the one or more probes and structured to generate the current pulses and provide the current pulses to the one or more probes, and (ii) power circuitry electrically connected to the control circuitry for providing a DC power signal to the control circuitry, and a power supply separate from the implantable device and external to the patient's body. The power supply provides power to the implantable device through a near-field technique, such as near-field inductive coupling, between the power supply and the power circuitry when the power circuitry is in proximity with the power supply. The power supply of the apparatus may be provided as part of an article to be worn by the patient, such as a garment. Alternatively, the power supply may be provided at a stationary location separate from the implantable device, such as in a piece of furniture.
The control circuitry of the apparatus may include a programmable processor that controls the generation of the current pulses based upon one or more pulse parameters and a wireless communications device. The apparatus in this embodiment further includes a remote programming device external to the patient's body that is structured to wirelessly transmit programming signals to the wireless communications device for adjusting the one or more pulse parameters. The one or more pulse parameters specify one or more of a frequency, an amplitude, a pulse width, an on/off state, and an application location of the current pulses, the application location being determined by the particular ones of the one or more probes to which the current pulses are provided. The power may be provided to the implantable device and the one or more pulse parameters may be adjusted simultaneously.
Similarly, the invention also provides a method of providing electrical stimulation to the vagus nerve of a patient that includes steps of implanting one or more probes into the body of the patient, wherein the one or more probes are structured to provide current pulses to the vagus nerve, implanting a device in the body of the patient that is electrically connected to the one or more probes, causing the device to generate the current pulses and provide the current pulses to the one or more probes, and providing power to the device from a location external to the body of the patient using a near-field technique such as near-field inductive coupling.
In another embodiment, the invention provides an apparatus for providing electrical stimulation to the vagus nerve of a patient that includes one or more probes for being implanted in the body of the patient for providing current pulses to the vagus nerve and an implantable device for being implanted in the body of the patient. The implantable device in this embodiment includes control circuitry electrically connected to the one or more probes that is structured to generate the current pulses and provide the current pulses to the one or more probes and power circuitry electrically connected to the control circuitry. The power circuitry has an antenna for receiving energy transmitted in space from a far-field source, such as a local radio station or another remote RF source. The power circuitry converts the received energy into a DC power signal and provides the DC power signal to the control circuitry.
As in the embodiment described above, the control circuitry of the apparatus may include a programmable processor that controls the generation of the current pulses based upon one or more pulse parameters and a wireless communications device. The apparatus in this embodiment further includes a remote programming device external to the patient's body that is structured to wirelessly transmit programming signals to the wireless communications device for adjusting the one or more pulse parameters. The energy may be received from the far field source and the one or more pulse parameters may be adjusted simultaneously.
Similarly, the invention provides a method of providing electrical stimulation to the vagus nerve of a patient that includes steps of implanting one or more probes into the body of the patient, wherein the one or more probes are structured to provide current pulses to the vagus nerve, implanting a device in the body of the patient that is electrically connected to the one or more probes, causing the device to generate the current pulses and provide the current pulses to the one or more probes, and providing power to the device by receiving energy transmitted in space from a remote far-field source external to the body of the patient and converting the received energy into a DC power signal.
It is an object of this invention to provide a method and apparatus for providing vagus nerve stimulation that does not require an onboard power supply that is implanted within the body of the patient.
It is a further object of this invention to provide a method and apparatus for providing vagus nerve stimulation that eliminates the problems associated with the subcutaneous wires that are present with prior art devices.
It is still a further object of this invention to provide a method and apparatus for providing vagus nerve stimulation that eliminates the battery life and replacement problems present with prior art devices.
It is still a further object of this invention to provide a method and apparatus for providing vagus nerve stimulation that is powered by a near-field technique, such as near-field inductive coupling.
It is still a further object of this invention to provide a method and apparatus for providing vagus nerve stimulation that is powered by a receiving energy transmitted in space from a far-field source and converting the received energy into a DC power signal.
It is still a further object of this invention to provide a method and apparatus for providing vagus nerve stimulation that allows the current pulse parameters to be readily and non-intrusively adjusted from outside of the body.
It is still a further object of this invention to provide a method of treating a disease such as depression or epilepsy.
The accompanying drawings illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.
As will be appreciated, the electronic components of the implantable device 10 require power in order to operate. The implantable device 10 does not, however, have an onboard power supply such as a battery. Instead, the embodiment of the implantable device 10 shown in
In the embodiment shown in
The implantable device 10 is provided with power circuitry 40 that provides a DC signal of an appropriate level for powering the control circuitry 45 provided as part of the implantable device 10. As described in greater detail herein, the control circuitry 45 controls the generation of the current pulses provided to the probes 15 (and ultimately to the patient's vagus nerve). As seen in
Because of losses that occur in the inductive coupling, it is preferred to increase the voltage of the induced AC signal in order to provide a supply voltage of an appropriate level to the control circuitry 45 (as described hereinafter, the highest voltage necessary for the control circuitry 45 is typically 3 V, and the required voltage ranges from 1.5 V to 3 V, although voltages to 5 V may also be desired). In addition, because a DC signal is employed to power the control circuitry 45, the induced AC signal is also converted to DC. Thus, the induced AC signal is provided to the voltage boosting and rectifying circuit 55, which increases the voltage of and rectifies the received AC signal. In one particular embodiment, the voltage boosting and rectifying circuit 55 is a one or more stage charge pump, sometimes referred to as a “voltage multiplier.” Charge pumps are well known in the art. Basically, one stage of a charge pump increases (e.g. doubles) the amplitude of an AC input voltage and may store the increased DC voltage on an output capacitor. Successive stages of a charge pump, if present, will further increase the voltage from the previous stage. The DC signal that is output by the voltage boosting and rectifying circuit 55 is provided to a voltage regulator 60, which in turn provides a regulated DC voltage signal to the control circuitry 45. The voltage regulator 60 is primarily provided to resist spikes in the DC voltage signal provided to the control circuitry 45 and to resist DC voltage signals that may overdrive the control circuitry 45.
In the particular embodiment of the VNS device 5 shown in
As stated above, the processor 65 (
According to an aspect of the present invention, the implantable device 10 is adapted to preserve power when current pulsing is not required. Specifically, the processor 65 includes a watchdog timer, and the watchdog timer timeout, used as the wakeup mechanism, can be scaled down so that the processor 65 enters a sleep mode between current pulses. In addition, a low power RC oscillator external to the processor 65 may be used with the processor 65 for clocking purposes such that its internal, high speed oscillator can be turned off to further persevere power.
As noted above, it is preferred to be able to selectively adjust the pulsing parameters within the processor 65. Thus, according to a further aspect of the present invention, the VNS device 5 is provided with a mechanism for remotely and wirelessly programming the processor 65 so that the pulse parameters can be selectively adjusted. For this purpose, the control circuitry 45 includes a wireless communications device 85 having an antenna 90 that is in electronic communication with the processor 65 when it is necessary to perform adjustments. The wireless communications device 85 is adapted to receive programming signals sent from a remote programming device 95 shown in block diagram form in
The VNS device 125 includes an antenna 130, which, in the embodiment shown in
In operation, the antenna 130 receives energy, such as RF energy, that is transmitted in space by a far-field RF source 145. The RF source 145 may be, without limitation, a local radio station or a dedicated base station. The RF energy received by the antenna 130 is provided, in the form of an AC signal, to the charge pump 140 through the matching network 135. The charge pump 140 amplifies and rectifies the received AC signal and provides the resulting DC signal to the voltage regulator 60. The voltage regulator 60 provides a regulated DC signal to the control circuitry 45 as a power supply. Thus, the VNS device 125 is able to be powered remotely without the need for an onboard power supply or energy storage device such as a capacitor or rechargeable battery.
The matching network 135 preferably matches the impedance of the charge pump 140 to the impedance of the antenna 130 in a manner such that the DC power output by the voltage regulator is maximized (i.e., the particular components of the matching network 135 are chosen so as to accomplish this goal). For example, the matching network 135 may be an LC tank circuit and the inductance and capacitance values thereof may be specifically chosen so as to maximize the DC power output by the voltage regulator. In one particular embodiment, the matching network is an LC tank circuit formed by the inherent distributed inductance and inherent distributed capacitance of the conducing elements of the antenna 130. Such an LC tank circuit has a non-zero resistance R which results in the retransmission of some of the incident RF energy. This retransmission of energy may cause the effective area of the antenna 130 to be greater than the physical area of the antenna 130.
While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/782,440, entitled “Vagus Nerve Stimulation for Epilepsy and Related Peripheral Nerve Stimulation,” which was filed on Mar. 15, 2006, the disclosure of which is incorporated herein by reference.
This work was supported in part by a grant from the National Science Foundation under Contract No. EEC 0502035. The United States government may have certain rights in the invention described herein.
Number | Date | Country | |
---|---|---|---|
60782440 | Mar 2006 | US |