All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Embodiments of the invention relate generally to apparatuses (e.g., devices, systems) and methods for vagus nerve stimulation to treat neurodegenerative and neuroinflammatory disorders, and more specifically apparatuses and methods for vagus nerve stimulation to reduce demyelination and/or to promote remyelination to treat various neurodegenerative disorders such as multiple sclerosis.
A variety of central nervous system (CNS) demyelinating disorders, including multiple sclerosis, acute disseminated encephalomyelitis and neuromyelitis optica spectrum disorders, are difficult to effectively treat. For example, multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination of nerves in the central nervous system. Although the root cause of demyelination is not well understood, it generally is associated with the formation of lesions on the myelin sheaths and inflammation. Currently, there is no known cure for MS. Current treatments, with modest success, are primarily directed to treating acute attacks and reducing the frequency of attacks in the relapsing-remitting subtype of the disease or treating the symptoms. However, current therapies at best only slow the progression of the disease, and no therapy to date has demonstrated an ability to remyelinate nerves.
Therefore, it would be desirable to provide additional treatment methods and systems that can be used independently or in conjunction with other therapies to reduce the rate or amount of demyelination. Furthermore, it would desirable to provide a therapy that remyelinates nerves and reverses the progression demyelination. In addition, it would be desirable to reduce inflammation in the nervous system.
The present invention relates generally to vagus nerve stimulation to treat neurodegenerative disorders, and more specifically to vagus nerve stimulation to reduce demyelination and/or to promote remyelination to treat various neurodegenerative disorders such as multiple sclerosis.
For example, described herein are apparatuses (e.g., devices and/or systems) for reducing demyelination and/or increase remyelination by stimulation of a vagus nerve. These apparatuses may be implants or implanted into the patient's body. Any of these apparatuses may include: a biosensor configured to detect one or more biomarkers; a stimulator configured to apply stimulation to the vagus nerve; and a controller coupled to the biosensor and the stimulator and configured to apply stimulation to the vagus nerve from the stimulator sufficient to reduce demyelination and/or increase remyelination of nerves within the patient when the biosensor detects a biomarker indicative of demyelination. In some variations, these apparatuses include an implant comprising a stimulator (e.g., a waveform and/or pulse generator, an oscillator, a power supply and/or power regulation circuit, etc.), a stimulation applicator (e.g., one or more electrodes, mechanical transducers, etc.), and a controller. The controller may be configured as a microcontroller and may be in electrical communication with the stimulator so as to control operation of the stimulator. The controller may include one or more processors, a memory and/or a timer. The stimulator and/or controller may be in electrical communication, one or more stimulation applicators. In some variations the controller may include or be in communication with wireless communications circuitry for wirelessly communicating with one or more remote processors. The remote processor may be a hand-held device (e.g., smartphone, wearable electronics, etc.). The controller may optionally be in communication with one or more biosensors that may be included with the implant or may be remote from the implant (e.g., may be wearable, single-use, etc.). In some variations the biosensors are wirelessly connected to the apparatus.
In some variations the apparatus may be used without a biosensor. For example, the apparatus may be configured to periodically and/or on demand apply VNS treatment to prevent or reduce demyelination. The apparatus may be configured to apply VNS treatment doses once multiple times per day (e.g., 1× day, 2×, day, 3×, day, 4× day, 5× day, 6× day), or every other day, or every 3 days, etc. In some variations the apparatus may be configured to both automatically apply a VNS treatment dose on a predetermined and/or adjustable scheduled, as well as provide VNS treatment doses based on input from a user (e.g., patient, physician, etc., including “on demand” doses) and/or based on detection of a biomarker indicative of an actual or potential increase in demyelination.
In any of these variations, a biosensor may be configured to detect one or more markers (e.g., biomarkers) from the patient's body, including from the patient's blood and/or cerebrospinal fluid. Examples of biomarkers may be found herein. The biosensor may be part of the implanted apparatus, or it may be connected to the apparatus (e.g., the controller) via a wired or wireless communication. The biosensor may be configured to detect any biological marker, including chemical markers (e.g., a protein, nucleotide, e.g., RNA, DNA, microRNA, etc., lipid, carbohydrate, etc.), as well as functional markers (nerve conduction, etc.), body temperature, and the like. For example, in some variations, the biosensor is configured to detect temperature.
In general, the apparatuses described herein may be configured to be inserted or implanted into the body. For example, the apparatus may be configured to be implanted. The apparatus may include a stimulation applicator (also referred to as simply a stimulator or a VNS treatment stimulator) that may be a mechanical and/or electrical stimulator. A mechanical stimulator may be a piezoelectric driver that may vibrate and/or apply pressure to the tissue, including to the vagus nerve, in the VNS treatment parameters, such as mechanical stimulation of the vagus nerve at between 1-2 kHz for a treatment time (e.g., between 1 ms and 5 minutes, e.g., 10 ms-10 sec, etc.). Alternatively or additionally, the stimulation applicator may be an electrical stimulation applicator and may include one or more (e.g., two or more) electrodes configured to apply electrical stimulation to the vagus nerve. For example, electrical stimulation of about 0.1 mA to 10 mA (e.g., between 1 mA-5 mA), at a frequency of between about 1 Hz and about 2 kHz (e.g., between about 1-100 Hz), where the pulses applied have a pulse width of between about (50-500 usec, e.g., between about 100-300 usec). The controller may be configured to enforce an ‘off-time’ following a VNS treatment dose of between about 10 minute and 12 hours (e.g., between about 2 hours and 10 hours, between about 3 hours and 6 hours, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, etc.). For example, the stimulator may include an electrode configured to apply electrical energy to the vagus nerve.
In some variation the apparatus is configured to apply VNS treatment to the patient in which the VNS treatment is electrical stimulation. For example, the VNS treatment may include the application of electrical energy at between about 1-100 Hz (e.g., between about 1-50 Hz, between about 1-20 Hz, between about 5-30 Hz, between about 5-15 Hz, approximately 5 Hz, approximately 10 Hz, approximately 15 Hz, etc.). The energy may have a peak amplitude of between about 0.1 mA and about 2 mA (e.g., between about 0.2 mA and about 1.8 mA, between about 0.5 mA and about 1.5 mA, between about 0.5 mA and about 1 mA, between about 0.1 mA and about 1 mA, approximately 0.5 mA, approximately 0.75 mA, approximately 1 mA, etc.). Alternatively the applied energy may have an average amplitude of between about 0.1 mA and about 2 mA (e.g., between about 0.2 mA and about 1.8 mA, between about 0.5 mA and about 1.5 mA, between about 0.5 mA and about 1 mA, between about 0.1 mA and about 1 mA, approximately 0.5 mA, approximately 0.75 mA, approximately 1 mA, etc.). The applied energy is typically pulsed, and may be pulsed square waves, sinusoidal waves, triangular waves, etc. The applied energy may be biphasic or monophasic. For example, the applied energy maybe biphasic. The applied VNS treatment may be a constant biphasic pulse train having a frequency of between 1-100 Hz (e.g., 10 Hz) and a peak amplitude of between about 0.5 mA and 2 mA (e.g., approximately 0.75 mA). Any of the methods for treatment described herein may be configured to apply this type of VNS treatment.
Any of the apparatuses (e.g., devices, systems, etc.) described herein may be configured to be implanted on the vagus nerve. Thus, any of these apparatuses may be implanted via a nerve sheath or nerve cuff configured to secure the apparatus onto the nerve and/or prevent movement of the apparatus relative to the nerve and/or insulate the apparatus from other tissues. The implanted apparatus may be implanted in any appropriate location on the nerve, including one or around the vagus nerve at the upper chest, or on or around the vagus nerve at a sub-diaphragmatic location. The implant may be a leadless implant that is connected to the vagus (see, e.g., U.S. Pat. Nos. 8,412,338, 8,612,002, 8,886,339, and 8,788,034, each of which is herein incorporated by reference in its entirety). For example, any of these apparatuses may include a nerve cuff configured to secure the stimulator to the vagus nerve. Alternatively, any of these apparatuses may include a lead connecting the micro stimulator and/or other components to the stimulation applicator on/around the vagus nerve via one or more leads.
As mentioned, any of these apparatuses may be configured to apply VNS treatment comprising a low duty-cycle electrical stimulation of between about 0.25 mA and about 5 mA to the vagus nerve for less than about 2 minutes. The apparatus may be configured to provide an off-time of at least x minutes/hours (e.g., 10 minutes, 20 minutes, 30 minutes, 40 minutes, 60 minutes, 2 hours, 3 hours, 4 hours, etc.).
Any of the apparatuses described herein may be configured to perform a method of reducing demyelination in a patient diagnosed with or at risk of a disorder involving demyelinated nerves (e.g., including but not limited to methods of treating a disorder and/or disease associated with demyelination, such as multiple sclerosis). For example, a method of reducing demyelination (and/or a method of increasing remyelination) may be a method comprising detecting a marker for demyelination and applying stimulation to the vagus nerve to reduce demyelination of nerves within the patent.
Applying stimulation to the vagus nerve includes applying VNS treatment and may comprise, for example, applying electrical stimulation of between about 0.25 and about 5 mA to the vagus nerve for less than about 2 minutes. In some variations this may include waiting for an off-time (e.g., an off-time of at least 10 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, etc.).
Any of these methods may include applying non-invasive stimulation to the vagus nerve. For example, the simulation may be through a transdermal (e.g., via a surface electrode and/or mechanical stimulation, including ultrasound) route over a portion of the vagus nerve. The vagus nerve includes a number of branches or extensions that may be accessed and/or targeted from outside of the body either mechanically and/or electrically. For example, non-invasive application may include ultrasound stimulation of the vagus nerve. Any of these methods may include applying transdermal electrical stimulation (TENS), or the like.
Any of the methods described herein may include monitoring, e.g., periodically, on demand, and/or continuously, one or more markers (e.g., biomarkers) for demyelination or a risk of demyelination. As mentioned, any appropriate method or apparatus for monitoring demyelination or a risk of demyelination may be used. For example any of these methods may include detecting a marker for demyelination comprising monitoring the patient's temperature. A change (including an increase) in core body temperature has been linked to an increase in symptoms in demyelination disorders, including but not limited to MS.
Any of the methods and apparatuses described herein may be used with or linked to markers for the integrity of the blood-brain barrier. The methods and apparatuses described herein generally improve the integrity of the blood-brain barrier. Thus, any marker linked to leakage or loss of integrity of the blood-brain barrier may be used to trigger VNS therapy as described herein. Examples of markers may include Serum S100β, as well as imaging modalities such as contrast-enhanced magnetic resonance imaging, CT-scan and lumbar puncture.
A detection of one or more markers (e.g., biomarkers) for demyelination may include determining a level of tumor necrosis factor in a blood or cerebrospinal fluid sample.
For example, described herein are methods (e.g., methods of treating a demyelination disorder, such as but not limited to MS, and/or methods of reducing or reversing demyelination) that include: detecting demyelination in a patient, and applying stimulation to the vagus nerve to increase the remyelination of nerves within the patent.
For example, any of these methods may include repeatedly applying a low duty-cycle electrical stimulation of between about 0.25 and about 5 mA to the patient's vagus nerve for less than about 2 minutes, followed by an off-time (e.g., of between about 10 minutes and about 48 hours) before the next stimulation.
Any of these methods and apparatuses may also include or be adapted to include the concurrent (immediately before, during or after, including systemically and/or locally) treatment with one or more pharmacological agents, particularly those that are believed to help with a demyelinating condition, such as (but not limited to) MS. For example, any of these method may include concurrently treating with a pharmacological agent such as one or more of: interferon beta-1a, interferon beta-1b, glatiramer acetate, glatiramer acetate, peginterferon beta-1a, daclizumab, teriflunomide, fingolimod, dimethyl fumarate, alemtuzumab, mitoxantrone, ocrelizumab, natalizumab.
As mentioned, any of the methods and apparatuses described herein may include continuously monitoring the patient for demyelination or a condition implicated in demyelination. For example, any of these methods and apparatuses described herein may include monitoring the patient for a marker related to a diseased selected from the group consisting of neurodegenerative diseases, neuroinflammatory diseases, and neuropathies. In some examples, the method includes detecting demyelination in a patient by detecting a marker related to MS. For example, the marker (e.g., biomarker) may be selected from the group including: neurofilament, glial fibrillary acidic protein, the monocyte macrophage marker CD163, the glial activation marker YKL-40, the B cell chemoattractant CXCL13, miRNA, mRNA, myelin reactive t cells, Kir4.1 antibodies, osteopontin, and microbiome associated lipopeptides.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Electrical and/or mechanical stimulation of the cholinergic anti-inflammatory pathway (NCAP) by stimulation of the carotid vagus nerve been well described. For example, see U.S. Pat. Nos. 6,838,471, 8,914,114, 9,211,409, 6,610,713, 8,412,338, 8,996,116, 8,612,002, 9,162,064, 8,855,767, 8,886,339, 9,174,041, 8,788,034 and 9,211,410, each of which is herein incorporated by reference in its entirety. It has not previously been suggested that vagus nerve stimulation may be used to prevent or reduce demyelination and/or improve remyelination. Vagus nerve stimulation, through activation of both efferent and afferent pathways (or primarily through one of the efferent or afferent pathway), may be able to reduce the inflammation associated with inflammatory diseases and disorders, thereby reducing the severity of the symptoms and/or slowing, stopping, or reversing the progression of the disease. Applicants have surprisingly found that the apparatuses (e.g., systems, devices, etc.) and methods described herein may be used to stimulate the vagus nerve to reduce demyelination and/or to increase or promote remyelination. Furthermore, although the use of VNS treatment to modulate inflammation has been thought to involve afferent pathways, remyelination and demyelination may involve the efferent pathway or both the afferent and efferent pathways.
Diseases (e.g., diseases and disorder of myelination) which may benefit from VNS include, but are not limited to, multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis (ALS), chronic inflammatory demyelinating polyneuropathy (CIDP), and Batten disease. Neuropathies that may benefit from VNS include peripheral neuropathies, cranial neuropathies, and autonomic neuropathies.
Vagus Nerve Stimulation Systems and Devices
In some variations the devices described herein are electrical stimulation devices that may be implanted, and may be activated to apply current for a proscribed duration, followed by a period without stimulation. As described in the examples that follow, the stimulation protocol may comprise a very limited period of stimulation (e.g., an on-time of less than 5 minutes, 2 minutes, 1 minute, etc.) followed by an off-time (during which stimulation is not applied, and may be prevented from being applied) of extensive duration (e.g., greater than 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hour, 1.5 hours, 2 hours, 4 hours, 12 hours, greater than 20 hours, greater than 24 hours, greater than 36 hours, greater than 48 hours, etc.). The applied energy may be electrical energy that is a fixed current having a frequency that is within the range of about 0.5 mA to 5 mA (e.g., approximately 2 mA), at a frequency of between about 1 Hz and about 1000 Hz (e.g., between 1 Hz and 100 Hz, between 1 Hz and 30 Hz, between 10 Hz and 200 Hz, etc.), where the pulses applied have a pulse width of approximately (50-500 usec, e.g., a 200 usec pulse). Thus, the duty-cycle of the applied current may be extremely low, where duty cycle may refer to the ratio of on-time/(on-time plus off-time). The stimulation is applied at an extremely low duty cycle, where duty cycle may refer to the percent of on-time to the total on-time and off-time for the ongoing treatment. For example, low duty cycle may be less than about 10, 5, 4, 3, 2, 1, or 0.5 percent of on-time to the total on time and off-time. The effect may be seen relatively quickly, and may persist over the entire off-time.
In particular, the methods and apparatuses described herein may be applied as needed, e.g., when the patient expresses or is likely to express an increased risk for demyelination and/or is experiencing (or has experienced) demyelination. Alternatively or additionally, the methods an apparatuses may be applied as needed when the patient expresses or is likely to express, and/or is experiencing (or has experienced) a leakage through the blood-brain barrier.
For example, we show herein that a low level, low duty cycle stimulation protocol (as described herein) reduces demyelination and/or increases remyelination, and prevents and/or reduces leakage through the blood-brain barrier. The effectiveness of low level, low duty cycle vagus nerve stimulation (VNS therapy) administered on even a single day results in a reduction in demyelination and an increase in remyelination seen over the course of two to three weeks. This type of stimulation contrasts with the use of a high duty cycle stimulation used by others to modulate vagus-nerve mediated functions (such as heart rate, etc.), or treat disorders such as epilepsy and depression. An important finding here is that demyelination can be reduced and even more surprisingly, remyelination can be increased. This effect is corroborated at these low duty cycle parameters by examining the histology of the spinal cord as described later below. Although low duty cycle vagus nerve stimulation is effective and highly efficient at reducing inflammation, in some embodiments, a higher duty cycle stimulation can be used, such as a duty cycle that is greater than about 1, 2, 3, 4, 5, 10, 20, 30, 40, or 50 percent of on-time to the total on-time and off-time.
MS patients may experience circadian pattern disruptions to symptoms that may be associated with or caused in part by the circadian patterns of IL-6 levels. Optionally, drugs, such as steroids, can be used along with VNS to suppress nighttime spiking of IL-6. Similarly, VNS can be modulated, by altering the timing of the stimulations for example, to suppress nighttime spiking of IL-6 more effectively. However, one advantage of VNS is the relatively long duration of the effect after a single stimulation, which may allow suppression of IL-6 levels during both night and day, which may render unnecessary the need for supplementary drug treatment or alternative timings. In some embodiments, VNS can be given in the evening before sleep, such as 15, 30, 45, 60, 90, 120, 150, or 180 minutes before sleep, and may also be given at night during sleep, to ensure nighttime suppression of IL-6 levels. In some embodiments, the amplitude of stimulation during sleep can be lowered (e.g., less than 2, 1.5, or 1 mA) to avoid waking the patient. In some embodiments, IL-6 levels can be measured and/or monitored, and VNS can be modulated based on the measured and/or monitored IL-6 levels. Other cytokines may also be measured and/or monitored, such as IL-1, TNF, IFN-gamma, IL-12, IL-18, and GM-CSF. These other cytokines may be used instead of or in addition to IL-6, either in combination or singly.
The methods, devices and systems herein may be applied specifically to treat any disorder for which a reduction of demyelination and/or an increase in remyelination would be beneficial. For example, described herein are electrodes (e.g., cuff electrodes, microstimulators) that may be placed around the vagus nerve and may communicate with one or more stimulators configured to apply appropriate stimulation of the vagus nerve to modulate demyelination and/or remyelination. The stimulator may be implanted. In some variations the stimulator is integral to the electrodes, and may be charged externally. The extremely low duty-cycle of the technique described herein may allow the device to be miniaturized to a greater degree than previously suspected for the treatment of chronic disorders via an implantable device.
In general, a device or system for modulating demyelination and/or remyelination may include a stimulator element (e.g., an electrode, actuator, etc.) and a controller for controlling the application of stimulation by the stimulator element. A stimulator element may be configured for electrical stimulation (e.g., an electrode such as a cuff electrode, needle electrode, paddle electrode, non-contact electrode, array or plurality of electrodes, etc.), mechanical stimulation (e.g., a mechanical actuator, such as a piezoelectric actuator or the like), ultrasonic actuator, thermal actuator, or the like. In some variations the systems and/or devices are implantable. In some variations the systems and/or device are non-invasive. In general, the controller may include control logic (hardware, software, firmware, or the like) to control the activation and/or intensity of the stimulator element. The controller may control the timing (e.g., on-time, off-time, stimulation duration, stimulation frequency, etc.). In variations in which the applied energy is electrical, the controller may control the applied waveform (amplitude, frequency, burst duration/inter-burst duration, etc.). Other components may also be include as part of any of these device or system, such as a power supply (e.g., battery, inductive, capacitor, etc.), transmit/receive elements (e.g., antenna, encoder/decoder, etc.), signal generator (e.g., for conditioning or forming the applied signal waveform), and the like. In some embodiments, a rechargeable battery that may be inductively charged allows the stimulator to deliver numerous electrical stimulations before needing to be recharged. In other embodiments, one or more capacitors that can also be inductively charged can be used to store a limited amount of energy that may be sufficient to deliver a single stimulation or a daily amount of stimulations. This dramatically reduces the size and cost of the stimulator, but requires that the user charge the stimulator daily or before each use.
In one example, an implantable device for modulating demyelination and/or remyelination (and/or reducing or preventing leaking of the blood-brain barrier) includes an electrode for electrically stimulating the vagus nerve. The electrode may be, for example, a cuff electrode. The electrode may be connected (directly or via a connector) to a controller and signal generator. The signal generator may be configured to provide an electrical signal to the electrode(s). For example, the electrical signal may be an electrical waveform having a frequency of between about 0.1 Hz and about 1 KHz (e.g., 10 Hz), where the pulses applied have a pulse width of approximately (50-500 usec, e.g., a 200 usec pulse). The signal generator may be battery (and/or inductively) powered, and the electrical signal may be amplitude and/or voltage controlled. For example in some variations the device or system may be configured to apply a current that is between about 0.05 mA to 25 mA (e.g., approximately 0.5 mA, 1 mA, 2 mA, 3 mA, etc.). The electrical signal may be sinusoidal, square, random, or the like, and may be charge balanced. In general, the controller (which may be embodied in a microcontroller such as a programmed ASIC), may regulate turning on and off the stimulation. For example, stimulation may be applied for an on-time of between about 0.1 sec and 10 minutes (e.g., between 1 sec and 5 minutes, between 1 sec and 2 minutes, approximately 1 minute, etc.); the stimulation may be configured to repeat automatically once every x hours or days, e.g., every other day (off time of approximately 48 hours), once a day (e.g., with an off-time of approximately 24 hours), twice a day (off-time of approximately 12 hours), three times a day (off time of approximately 8 hours), four times a day (off time of approximately 6 hours), or the like. In some variations the implant may be configured to receive control information from a communications device. The communications device may allow modification of the stimulation parameters (including off-time, on-time, waveform characteristics, etc.). The communications device may be worn, such as a collar around the neck, or handheld.
In use, an implant may be configured to be implanted so that the electrodes contact or approximate the vagus nerve or a portion of the vagus nerve. In one variation the implant includes a cuff that at least partially surrounds the vagus (e.g., near the carotid region). The controller and/or signal generator (including any power source) may be formed as part of the cuff or may be connected to by a connector (e.g., wire).
In some variations the device may be non-invasive. For example, the device may be worn outside the body and may trigger stimulation of the vagus nerve from a site external to the body (e.g., the ear, neck, torso, etc.). A non-invasive device may include a mechanical device (e.g., configured to apply vibratory energy). In some variations the device is configured to apply ultrasound that may specifically target the vagus nerve and apply energy to activate the vagus nerve. In some variations, transcutaneous magnetic stimulation of the vagus nerve may be used.
In any of the variations described herein, the devices, system and methods may be configured to prevent desensitization of the signal in a way that would reduce or inhibit the modulation of demyelination and/or remyelination. For example in some variations, “over stimulation” of the vagus nerve, e.g., simulation at intensities that are too great or applied for too long, or outside of the frequency ranges described herein, may result in desensitization of the effect, thus further modulation may be limited or inhibited. Therefore, in some embodiments, the amplitude of stimulation may be restricted from exceeding (i.e., be less than) about 3 mA, 4 mA, or 5 mA, and/or the duty cycle may be restricted from exceeding about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25%. In some embodiments, the amplitude is also at least 0.25 mA, 0.5 mA, 0.75 mA, or 1.0 mA.
The examples illustrated above may provide insight into the devices, systems and methods of use for stimulation of the vagus nerve to modulate demyelination and/or remyelination. These methods and devices may be used to treat any indication for which modulation of demyelination and/or remyelination would be beneficial. Non-limiting examples of indications include neurodegenerative and neuroinflammatory diseases such as multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis (ALS), and Batten disease. Other examples include peripheral neuropathies, cranial neuropathies, and autonomic neuropathies. In general, these devices may offer alternative and in some ways superior treatment as compared to pharmacological interventions aimed at modulating demyelination and/or remyelination, and therefore may be used for any indication for which such pharmacological treatments are suggested or indicated. In some embodiments, the VNS treatments described herein can be used in conjunction with pharmacological treatments, particularly when the pharmacological treatment has a different mechanism of action than the VNS, which may lead to synergistic results.
Thus, the methods of modulating demyelination and/or remyelination as described herein may be used in conjunction with one or more pharmacological interventions, and particularly interventions that treat diseases associated with demyelination, neurodegeneration or neuroinflammation. For example, it may be beneficial to treat a subject receiving stimulation of the vagus nerve to modulate demyelination and/or remyelination by also providing agent such as intravenous corticosteroids (e.g., methylprednisolone), oral corticosteroids, interferons beta-1a and beta-1b, monoclonal antibodies (e.g., natalizumab, alemtuzumab, daclizumab and ocrelizumab), and immunomodulators (e.g., glatiramer acetate, mitoxantrone, fingolimod, teriflunomide, and dimethyl fumarate).
Thus, described herein are devices (VNS devices) for the treatment of neurodegenerative and/or neuroinflammatory disorders. Such devices are generally configured to apply low duty-cycle stimulation to the vagus nerve of a subject, as described in any of the variations (or sub-combinations) of these variations. In some embodiments, the patient is first diagnosed or identified with a neurodegenerative or neuroinflammatory disorder, particular a disorder characterized by demyelination or need for remyelination, before being implanted and treated with the VNS device.
In use, any of the methods described herein may include a step of monitoring for demyelination or demyelination-associated disorders, which may be determined through detection of a biomarker from blood and/or cerebrospinal fluid, and/or through medical imaging techniques such as MRI or CT scans. For example, as assay for an inflammatory cytokine (e.g., tumor necrosis factor) may be used to detect acute inflammatory episodes. Monitoring may be continuous or discrete (e.g., at one or more times, or time intervals). In addition or alternatively, biomarkers associated with multiple sclerosis or other neurodegenerative or neuroinflammatory diseases or neuropathies can be used for monitoring, depending on the disease being treated. See Housley, W. J., D. Pitt and D. A. Hafler (2015). “Biomarkers in multiple sclerosis.” Clin Immunol 161(1): 51-58; and Katsavos, S. and M. Anagnostouli (2013). “Biomarkers in Multiple Sclerosis: An Up-to-Date Overview.” Mult Scler Int 2013: 340508. For example, biomarkers found in MS serum and cerebrospinal fluid include markers of neurodegeneration including neurofilament and GFAP, the monocyte macrophage marker CD163, the glial activation marker YKL-40, the B cell chemoattractant CXCL13, miRNA and mRNA, myelin reactive t cells, Kir4.1 antibodies, osteopontin, and microbiome associated lipopeptides. Any of these biomarkers can be monitored and/or measured alone or in combination, and can be used as feedback to modulate VNS. Other biomarkers for treating MS patients in particular are listed in Table 1.
The information described herein for the first time shows that stimulation of the vagus nerve modulates demyelination and/or remyelination and/or leaking through the blood-brain barrier. The examples provided herein are not intended to be comprehensive, but merely illustrate and embody certain variations of the invention. It is within the abilities of one of ordinary skill in the art to understand and apply, without undue experimentation, the invention as described herein.
To study the effect of VNS on neurodegeneration and neuroinflammation, a lysolecithin (LPC)-induced MS model can be used. Lysolecithin is a bioactive pro-inflammatory lipid that is a detergent-like membrane solubilizing agent. A 1% solution of LPC can induce local demyelinating lesions when injected into the white matter of the spinal cord. Four distinct epochs occur over 14 days post-injection: (1) demyelination; (2) oligodendrocyte progenitor cell (OPC) recruitment; (3) differentiation; and (4) remyelination.
To induce a self-limited demyelinating lesion, spinal cords of female BALB/c mice were injected between T3-T5 with 1% LPC (0.5 μL at 0.25 μL/min). The procedure to inject the mice with LPC was as follows. The mouse was anesthetized and stabilized into a stereotaxic frame. A midline incision was made between the scapulae. The underlying fat pads were bluntly separated and the spinous process of the T2 vertebra was identified and a laminectomy was performed. A syringe was advanced to 0.3 mm into the spinal cord and 0.5 uL of LPC was injected at a rate of 0.250 uL/min for 2 min. The muscle and adipose tissue were sutured and the skin was closed with surgical staples
VNS was performed as previously described (Olofsson, Levine, et al. 2015. Bioelectronic Medicine: 37-42) on Day 0 or Day 4 post-induction with LPC. More specifically, to study the effect of VNS on demyelination, VNS (0.75-1 mA, 250 μS pulse, 10 Hz) or sham VNS (0 mA) was performed immediately following LPC administration, and the mice were euthanized on the day of expected peak lesion volume (day 4 post-induction; J Neurocytol 24(10): 775-81). The demyelination experimental protocol is summarized in
Spinal cord lesion volumes/areas were quantified by myelin loss as assessed from luxol blue-stained, 15 μm serial sections.
Results: The demyelination protocol illustrated in
The remyelination protocol illustrated in
Conclusions: VNS reduced demyelination and accelerated remyelination, demonstrating a robust effect after a single dose in this model. Repeated stimulation of the vagus nerve with an implanted nerve stimulator may further reduce the rate of demyelination and/or further accelerate remyelination. This will be tested in an experimental autoimmune encephalomyelitis model to further assess the potential of VNS to treat MS.
Another study was performed to determine the effect of VNS on vessel leakiness 24 hours post-induction and stimulation. A lesion was induced as described above using LPC injection and VNS was performed immediately following induction. At 24 h, 0.15 mL of 1% Evans blue dye was injected intravenously through retro-orbital injection under anesthesia for 1 hr., as shown in
Leakiness in the blood brain barrier may allow immune cells and inflammatory cytokines and chemokines to pass through and contribute to continued inflammation in the brain and/or spinal cord. Therefore, VNS may reduce vessel leakiness around the central nervous system (CNS), thereby reducing the recruitment of proinflammatory cells such as lymphocytes (e.g., T-cells) and macrophages to the brain and spinal cord, thereby reducing the inflammation in the CNS and reducing the amount demyelination that results from an inflammatory attack by the immune system.
In general, the apparatuses and methods described for VNS therapy may also be used to prevent or treat increased leakiness of the blood-brain barrier, as illustrate in
Methods: 1% LPC was injected into the spinal cord white matter of BALB/c mice. For the first intervention time point, VNS therapy or sham VNS was performed immediately after injection. 24 hours later, mice (VNS, sham VNS, and naïve (no-LPC)) are injected with 1% Evans blue dye which binds to the albumin in blood and is left to circulate for 1 hour. Spinal cords are then harvested, dried for 24 hours in pre-weighed tubes at 60° C. Dried tissues are then incubated in formamide for 48 hours. Supernatant is then extracted from the tubes and read spectroscopically at 620 nm. For the second intervention time point, VNS therapy or sham VNS therapy occurs on day 4 post-LPC induction. On day 5 post-LPC induction, Evans blue extravasation is performed the same way as described for demyelination experiment. Evans blue concentration is compared (ng/mg of tissue) and normalized to naïve animals.
Results: LPC increased blood-spinal cord leakiness. VNS therapy significantly reduced Evans blue extravasation into the spinal cord compared to sham (81% decrease) 24 hours post-LPC induction (
Conclusion: VNS therapy increases the integrity of the blood-spinal cord barrier and subsequently reduces the extravasation of protein/Evans blue and other circulating species, including antibodies, DAMPS/PAMPS, and immunocytes into the central nervous system.
Another experiment was performed to determine whether the effect of VNS on demyelination was α7 nicotinic acetylcholine receptor (nAChR) dependent. Two mice strains were used in the study. One mice strain is the C57 Black subtype 6 (C57BL/6), which is a common wild type strain that expresses α7 receptors and are denoted as α7+/+. The second mice strain is an α7 knockout strain of the C57BL/6 strain, which lacks the α7 receptor and are denoted as α7−/−. Each of the mice strains were given LPC injections in sham (no VNS) and VNS groups. Tissue extraction was performed 4 days post-injection. The procedure was essentially identical to the Balb/c mice demyelination experiments described above in Example 1.
As shown in
In
Result: VNS therapy decreased demyelination in wildtype C57BL/6 mice. VNS therapy did not decrease demyelination in α7 KO animals (
In general, the apparatuses and methods described for VNS therapy may also be used to prevent or treat increased immunocyte homing to the central nervous system, as illustrate in
In
Methods: Surgical procedures and VNS/sham VNS treatments remain the same from
Result: LPC increased CD3+ T cell and macrophage infiltration in the spinal cord compared to naïve tissue (
As shown in
Result: as showing
Thus, VNS therapy increases the pro-resolving lipid mediator RvD1 in serum which may contribute to the increased speed in resolution time of LPC-induced lesions compared to sham.
The stimulator may be configured to apply stimulation to the vagus nerve. A stimulator maybe configured for electrical stimulation, mechanical stimulation, or both. For example, the stimulator may include or be coupled with the pulse generator 1101 (e.g., waveform and/or pulse generator, oscillator, etc.). The stimulator may include one or more stimulation applicators 1121 (e.g., one or more electrodes, mechanical transducers, etc.) for contact with the tissue, including the vagus nerve.
Any of the apparatuses may also include one or more power supplies 1115, and/or power regulation circuit, etc.
The controller is typically functionally coupled to the one or more biosensor (e.g., receiving data from the biosensor(s)) and controls the stimulator and may be configured to apply stimulation to the vagus nerve from the stimulator sufficient to reduce demyelination and/or increase remyelination of nerves within the patient when the biosensor detects a biomarker indicative of demyelination (including detecting active demyelination or a marker that is indicative of imminent active demyelination).
For example, a system may include an implant comprising a stimulator (e.g., a waveform and/or pulse generator, an oscillator, a power supply and/or power regulation circuit, etc.), a stimulation applicator (e.g., one or more electrodes, mechanical transducers, etc.), and a controller. The controller may be configured as a microcontroller and may be in electrical communication with the stimulator so as to control operation of the stimulator. The controller may include one or more processors, a memory and/or a timer. The stimulator and/or controller may be in electrical communication, one or more stimulation applicators. In some variations the controller may include or be in communication with wireless communications circuitry 1117 for wirelessly communicating with one or more remote processors 1131. The remote processor may be a hand-held device (e.g., smartphone, wearable electronics, etc.). The controller may optionally be in communication with one or more biosensors that may be included with the implant or may be remote from the implant (e.g., may be wearable, single-use, etc.). In some variations the biosensors are wirelessly connected to the apparatus.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patent application claims priority to U.S. Provisional Patent Application No. 62/572,374, filed on Oct. 13, 2017 (titled “VAGUS NERVE STIMULATION TO TREAT NEURODEGENERATIVE DISORDERS”) and U.S. Provisional Patent Application No. 62/576,547, filed Oct. 24, 2017 (titled “VAGUS NERVE STIMULATION TO TREAT NEURODEGENERATIVE DISORDERS”) each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2164121 | Pescador | Jun 1939 | A |
3363623 | Atwell | Jan 1968 | A |
3631534 | Hirota et al. | Dec 1971 | A |
4073296 | McCall | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4305402 | Katims | Dec 1981 | A |
4503863 | Katims | Mar 1985 | A |
4573481 | Bullara | Mar 1986 | A |
4590946 | Loeb | May 1986 | A |
4632095 | Libin | Dec 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4840793 | Todd, III et al. | Jun 1989 | A |
4867164 | Zabara | Sep 1989 | A |
4929734 | Coughenour et al. | May 1990 | A |
4930516 | Alfano et al. | Jun 1990 | A |
4935234 | Todd, III et al. | Jun 1990 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
5019648 | Schlossman et al. | May 1991 | A |
5025807 | Zabara | Jun 1991 | A |
5038781 | Lynch | Aug 1991 | A |
5049659 | Cantor et al. | Sep 1991 | A |
5073560 | Wu et al. | Dec 1991 | A |
5106853 | Showell et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5175166 | Dunbar et al. | Dec 1992 | A |
5179950 | Stanislaw | Jan 1993 | A |
5186170 | Varrichio et al. | Feb 1993 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5203326 | Collins | Apr 1993 | A |
5205285 | Baker, Jr. | Apr 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5215089 | Baker, Jr. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5235980 | Varrichio et al. | Aug 1993 | A |
5237991 | Baker et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5403845 | Dunbar et al. | Apr 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5472841 | Jayasena et al. | Dec 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5496938 | Gold et al. | Mar 1996 | A |
5503978 | Schneider et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5567588 | Gold et al. | Oct 1996 | A |
5567724 | Kelleher et al. | Oct 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5582981 | Toole et al. | Dec 1996 | A |
5604231 | Smith et al. | Feb 1997 | A |
5607459 | Paul et al. | Mar 1997 | A |
5611350 | John | Mar 1997 | A |
5618818 | Ojo et al. | Apr 1997 | A |
5629285 | Black et al. | May 1997 | A |
5637459 | Burke et al. | Jun 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5654151 | Allen et al. | Aug 1997 | A |
5683867 | Biesecker et al. | Nov 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5705337 | Gold et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709853 | Iino et al. | Jan 1998 | A |
5712375 | Jensen et al. | Jan 1998 | A |
5718912 | Thompson et al. | Feb 1998 | A |
5726017 | Lochrie et al. | Mar 1998 | A |
5726179 | Messer, Jr. et al. | Mar 1998 | A |
5727556 | Weth et al. | Mar 1998 | A |
5733255 | Dinh et al. | Mar 1998 | A |
5741802 | Kem et al. | Apr 1998 | A |
5773598 | Burke et al. | Jun 1998 | A |
5786462 | Schneider et al. | Jul 1998 | A |
5788656 | Mino | Aug 1998 | A |
5792210 | Wamubu et al. | Aug 1998 | A |
5824027 | Hoffer et al. | Oct 1998 | A |
5853005 | Scanlon | Dec 1998 | A |
5854289 | Bianchi et al. | Dec 1998 | A |
5902814 | Gordon et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919216 | Houben et al. | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5964794 | Bolz et al. | Oct 1999 | A |
5977144 | Meyer et al. | Nov 1999 | A |
5994330 | El Khoury | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6017891 | Eibl et al. | Jan 2000 | A |
6028186 | Tasset et al. | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6083696 | Biesecker et al. | Jul 2000 | A |
6083905 | Voorberg et al. | Jul 2000 | A |
6096728 | Collins et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6110900 | Gold et al. | Aug 2000 | A |
6110914 | Phillips et al. | Aug 2000 | A |
6117837 | Tracey et al. | Sep 2000 | A |
6124449 | Gold et al. | Sep 2000 | A |
6127119 | Stephens et al. | Oct 2000 | A |
6140490 | Biesecker et al. | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6147204 | Gold et al. | Nov 2000 | A |
6159145 | Satoh | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6166048 | Bencherif | Dec 2000 | A |
6168778 | Janjic et al. | Jan 2001 | B1 |
6171795 | Korman et al. | Jan 2001 | B1 |
6205359 | Boveja | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6208902 | Boveja | Mar 2001 | B1 |
6210321 | Di Mino et al. | Apr 2001 | B1 |
6224862 | Turecek et al. | May 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6269270 | Boveja | Jul 2001 | B1 |
6304775 | Iasemidis et al. | Oct 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6337997 | Rise | Jan 2002 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6356788 | Boveja | Mar 2002 | B2 |
6381499 | Taylor et al. | Apr 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6407095 | Lochead et al. | Jun 2002 | B1 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6429217 | Puskas | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6479523 | Puskas | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6528529 | Brann et al. | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6564102 | Boveja | May 2003 | B1 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602891 | Messer et al. | Aug 2003 | B2 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6611715 | Boveja | Aug 2003 | B1 |
6615081 | Boveja | Sep 2003 | B1 |
6615085 | Boveja | Sep 2003 | B1 |
6622038 | Barrett et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6628987 | Hill et al. | Sep 2003 | B1 |
6633779 | Schuler et al. | Oct 2003 | B1 |
6656960 | Puskas | Dec 2003 | B2 |
6668191 | Boveja | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690973 | Hill et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6735474 | Loeb et al. | May 2004 | B1 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6760626 | Boveja | Jul 2004 | B1 |
6762032 | Nelson | Jul 2004 | B1 |
6778854 | Puskas | Aug 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
RE38654 | Hill et al. | Nov 2004 | E |
6826428 | Chen et al. | Nov 2004 | B1 |
6832114 | Whitehurst et al. | Dec 2004 | B1 |
6838471 | Tracey | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6879859 | Boveja | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6901294 | Whitehurst et al. | May 2005 | B1 |
6904318 | Hill et al. | Jun 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6978787 | Broniatowski | Dec 2005 | B1 |
7011638 | Schuler et al. | Mar 2006 | B2 |
7054686 | MacDonald | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7058447 | Hill et al. | Jun 2006 | B2 |
7062320 | Ehlinger, Jr. | Jun 2006 | B2 |
7069082 | Lindenthaler | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7076307 | Boveja et al. | Jul 2006 | B2 |
7142910 | Puskas | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7174218 | Kuzma | Feb 2007 | B1 |
7184828 | Hill et al. | Feb 2007 | B2 |
7184829 | Hill et al. | Feb 2007 | B2 |
7191012 | Boveja et al. | Mar 2007 | B2 |
7204815 | Connor | Apr 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7225019 | Jahns et al. | May 2007 | B2 |
7228167 | Kara et al. | Jun 2007 | B2 |
7238715 | Tracey et al. | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7345178 | Nunes et al. | Mar 2008 | B2 |
7373204 | Gelfand et al. | May 2008 | B2 |
7389145 | Kilgore et al. | Jun 2008 | B2 |
7454245 | Armstrong et al. | Nov 2008 | B2 |
7467016 | Colborn | Dec 2008 | B2 |
7544497 | Sinclair et al. | Jun 2009 | B2 |
7561918 | Armstrong et al. | Jul 2009 | B2 |
7634315 | Cholette | Dec 2009 | B2 |
7711432 | Thimineur et al. | May 2010 | B2 |
7729760 | Patel et al. | Jun 2010 | B2 |
7751891 | Armstrong et al. | Jul 2010 | B2 |
7776326 | Milbrandt et al. | Aug 2010 | B2 |
7797058 | Mrva et al. | Sep 2010 | B2 |
7819883 | Westlund et al. | Oct 2010 | B2 |
7822486 | Foster et al. | Oct 2010 | B2 |
7829556 | Bemis et al. | Nov 2010 | B2 |
7869869 | Farazi | Jan 2011 | B1 |
7869885 | Begnaud et al. | Jan 2011 | B2 |
7937145 | Dobak | May 2011 | B2 |
7962220 | Kolafa et al. | Jun 2011 | B2 |
7974701 | Armstrong | Jul 2011 | B2 |
7974707 | Inman | Jul 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7996092 | Mrva et al. | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8060208 | Kilgore et al. | Nov 2011 | B2 |
8103349 | Donders et al. | Jan 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8180446 | Dacey, Jr. et al. | May 2012 | B2 |
8180447 | Dacey et al. | May 2012 | B2 |
8195287 | Dacey, Jr. et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
8233982 | Libbus | Jul 2012 | B2 |
8391970 | Tracey | Mar 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8504161 | Kornet et al. | Aug 2013 | B1 |
8571654 | Libbus et al. | Oct 2013 | B2 |
8577458 | Libbus et al. | Nov 2013 | B1 |
8600505 | Libbus et al. | Dec 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8630709 | Libbus et al. | Jan 2014 | B2 |
8688212 | Libbus et al. | Apr 2014 | B2 |
8700150 | Libbus et al. | Apr 2014 | B2 |
8729129 | Tracey et al. | May 2014 | B2 |
8788034 | Levine et al. | Jul 2014 | B2 |
8843210 | Simon et al. | Sep 2014 | B2 |
8855767 | Faltys et al. | Oct 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8914114 | Tracey et al. | Dec 2014 | B2 |
8918178 | Simon et al. | Dec 2014 | B2 |
8918191 | Libbus et al. | Dec 2014 | B2 |
8923964 | Libbus et al. | Dec 2014 | B2 |
8983628 | Simon et al. | Mar 2015 | B2 |
8983629 | Simon et al. | Mar 2015 | B2 |
8996116 | Faltys et al. | Mar 2015 | B2 |
9114262 | Libbus et al. | Aug 2015 | B2 |
9162064 | Faltys et al. | Oct 2015 | B2 |
9174041 | Faltys et al. | Nov 2015 | B2 |
9211409 | Tracey et al. | Dec 2015 | B2 |
9211410 | Levine et al. | Dec 2015 | B2 |
9254383 | Simon et al. | Feb 2016 | B2 |
9272143 | Libbus et al. | Mar 2016 | B2 |
9358381 | Simon et al. | Jun 2016 | B2 |
9399134 | Simon et al. | Jul 2016 | B2 |
9403001 | Simon et al. | Aug 2016 | B2 |
9409024 | KenKnight et al. | Aug 2016 | B2 |
9415224 | Libbus et al. | Aug 2016 | B2 |
9452290 | Libbus et al. | Sep 2016 | B2 |
9504832 | Libbus et al. | Nov 2016 | B2 |
9511228 | Amurthur et al. | Dec 2016 | B2 |
9533153 | Libbus et al. | Jan 2017 | B2 |
9572983 | Levine et al. | Feb 2017 | B2 |
9662490 | Tracey et al. | May 2017 | B2 |
9700716 | Faltys et al. | Jul 2017 | B2 |
9833621 | Levine | Dec 2017 | B2 |
9849286 | Levine et al. | Dec 2017 | B2 |
9987492 | Tracey et al. | Jun 2018 | B2 |
9993651 | Faltys et al. | Jun 2018 | B2 |
20010002441 | Boveja | May 2001 | A1 |
20010034542 | Mann | Oct 2001 | A1 |
20020026141 | Houben et al. | Feb 2002 | A1 |
20020040035 | Myers et al. | Apr 2002 | A1 |
20020077675 | Greenstein | Jun 2002 | A1 |
20020086871 | O'Neill et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099417 | Naritoku et al. | Jul 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138109 | Keogh et al. | Sep 2002 | A1 |
20020193859 | Schulman et al. | Dec 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20030018367 | DiLorenzo | Jan 2003 | A1 |
20030032852 | Perreault et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030088301 | King | May 2003 | A1 |
20030191404 | Klein | Oct 2003 | A1 |
20030194752 | Anderson et al. | Oct 2003 | A1 |
20030195578 | Perron et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030229380 | Adams et al. | Dec 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040002546 | Altschuler | Jan 2004 | A1 |
20040015202 | Chandler et al. | Jan 2004 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040024422 | Hill et al. | Feb 2004 | A1 |
20040024428 | Barrett et al. | Feb 2004 | A1 |
20040024439 | Riso | Feb 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040039427 | Barrett et al. | Feb 2004 | A1 |
20040048795 | Ivanova et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040049240 | Gerber et al. | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040111139 | McCreery et al. | Jun 2004 | A1 |
20040138517 | Osorio et al. | Jul 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138536 | Frei et al. | Jul 2004 | A1 |
20040146949 | Tan et al. | Jul 2004 | A1 |
20040153127 | Gordon et al. | Aug 2004 | A1 |
20040158119 | Osorio et al. | Aug 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040172074 | Yoshihito | Sep 2004 | A1 |
20040172085 | Knudson et al. | Sep 2004 | A1 |
20040172086 | Knudson et al. | Sep 2004 | A1 |
20040172088 | Knudson et al. | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040176812 | Knudson et al. | Sep 2004 | A1 |
20040178706 | D'Orso | Sep 2004 | A1 |
20040193231 | David et al. | Sep 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20040199210 | Shelchuk | Oct 2004 | A1 |
20040204355 | Tracey et al. | Oct 2004 | A1 |
20040215272 | Haubrich et al. | Oct 2004 | A1 |
20040215287 | Swoyer et al. | Oct 2004 | A1 |
20040236381 | Dinsmoor et al. | Nov 2004 | A1 |
20040236382 | Dinsmoor et al. | Nov 2004 | A1 |
20040240691 | Grafenberg | Dec 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040243211 | Colliou et al. | Dec 2004 | A1 |
20040254612 | Ezra et al. | Dec 2004 | A1 |
20040267152 | Pineda | Dec 2004 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050021101 | Chen et al. | Jan 2005 | A1 |
20050027328 | Greenstein | Feb 2005 | A1 |
20050043774 | Devlin et al. | Feb 2005 | A1 |
20050049655 | Boveja et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050070970 | Knudson et al. | Mar 2005 | A1 |
20050070974 | Knudson et al. | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050095246 | Shafer | May 2005 | A1 |
20050096707 | Hill et al. | May 2005 | A1 |
20050103351 | Stomberg et al. | May 2005 | A1 |
20050113894 | Zilberman et al. | May 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050131486 | Boveja et al. | Jun 2005 | A1 |
20050131487 | Boveja | Jun 2005 | A1 |
20050131493 | Boveja et al. | Jun 2005 | A1 |
20050137644 | Boveja et al. | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050143781 | Carbunaru et al. | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149126 | Libbus | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149131 | Libbus et al. | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050165458 | Boveja et al. | Jul 2005 | A1 |
20050177200 | George et al. | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182467 | Hunter et al. | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050187586 | David et al. | Aug 2005 | A1 |
20050187590 | Boveja et al. | Aug 2005 | A1 |
20050191661 | Gatanaga et al. | Sep 2005 | A1 |
20050192644 | Boveja et al. | Sep 2005 | A1 |
20050197600 | Schuler et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050197678 | Boveja et al. | Sep 2005 | A1 |
20050203501 | Aldrich et al. | Sep 2005 | A1 |
20050209654 | Boveja et al. | Sep 2005 | A1 |
20050216064 | Heruth et al. | Sep 2005 | A1 |
20050216070 | Boveja et al. | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050240231 | Aldrich et al. | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050240242 | DiLorenzo | Oct 2005 | A1 |
20050251220 | Barrett et al. | Nov 2005 | A1 |
20050251222 | Barrett et al. | Nov 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20050267547 | Knudson et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050282906 | Tracey | Dec 2005 | A1 |
20050283198 | Haubrich et al. | Dec 2005 | A1 |
20060009815 | Boveja et al. | Jan 2006 | A1 |
20060015151 | Aldrich | Jan 2006 | A1 |
20060025828 | Armstrong et al. | Feb 2006 | A1 |
20060036293 | Whitehurst et al. | Feb 2006 | A1 |
20060052657 | Zabara | Mar 2006 | A9 |
20060052831 | Fukui | Mar 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060058851 | Cigaina | Mar 2006 | A1 |
20060064137 | Stone | Mar 2006 | A1 |
20060064139 | Chung et al. | Mar 2006 | A1 |
20060074450 | Boveja et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060095081 | Zhou et al. | May 2006 | A1 |
20060095090 | De Ridder | May 2006 | A1 |
20060100668 | Ben-David et al. | May 2006 | A1 |
20060106755 | Stuhec | May 2006 | A1 |
20060111644 | Guttag et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116739 | Betser et al. | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060129200 | Kurokawa | Jun 2006 | A1 |
20060129202 | Armstrong | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060136024 | Cohen et al. | Jun 2006 | A1 |
20060142802 | Armstrong | Jun 2006 | A1 |
20060142822 | Tulgar | Jun 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060155495 | Osorio et al. | Jul 2006 | A1 |
20060161216 | John et al. | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060167501 | Ben-David et al. | Jul 2006 | A1 |
20060173493 | Armstrong et al. | Aug 2006 | A1 |
20060173508 | Stone et al. | Aug 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060178703 | Huston et al. | Aug 2006 | A1 |
20060178706 | Lisogurski et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060190053 | Dobak | Aug 2006 | A1 |
20060200208 | Terry, Jr. et al. | Sep 2006 | A1 |
20060200219 | Thrope et al. | Sep 2006 | A1 |
20060206155 | Ben-David et al. | Sep 2006 | A1 |
20060206158 | Wu et al. | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060229681 | Fischell | Oct 2006 | A1 |
20060241697 | Libbus et al. | Oct 2006 | A1 |
20060241699 | Libbus et al. | Oct 2006 | A1 |
20060247719 | Maschino et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20060259084 | Zhang et al. | Nov 2006 | A1 |
20060259085 | Zhang et al. | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060271115 | Ben-Ezra et al. | Nov 2006 | A1 |
20060282121 | Payne et al. | Dec 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20060282145 | Caparso et al. | Dec 2006 | A1 |
20060287678 | Shafer | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20060292099 | Milburn et al. | Dec 2006 | A1 |
20060293720 | DiLorenzo | Dec 2006 | A1 |
20060293721 | Tarver et al. | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070016263 | Armstrong et al. | Jan 2007 | A1 |
20070021785 | Inman et al. | Jan 2007 | A1 |
20070021786 | Parnis et al. | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070025608 | Armstrong | Feb 2007 | A1 |
20070027482 | Parnis et al. | Feb 2007 | A1 |
20070027483 | Maschino et al. | Feb 2007 | A1 |
20070027484 | Guzman et al. | Feb 2007 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070027492 | Maschino et al. | Feb 2007 | A1 |
20070027496 | Parnis et al. | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070027498 | Maschino et al. | Feb 2007 | A1 |
20070027499 | Maschino et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070027504 | Barrett et al. | Feb 2007 | A1 |
20070055324 | Thompson et al. | Mar 2007 | A1 |
20070067004 | Boveja et al. | Mar 2007 | A1 |
20070083242 | Mazgalev et al. | Apr 2007 | A1 |
20070093434 | Rossetti et al. | Apr 2007 | A1 |
20070093870 | Maschino | Apr 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070100263 | Merfeld | May 2007 | A1 |
20070100377 | Armstrong et al. | May 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070100380 | Fukui | May 2007 | A1 |
20070100392 | Maschino et al. | May 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070112404 | Mann et al. | May 2007 | A1 |
20070118177 | Libbus et al. | May 2007 | A1 |
20070118178 | Fukui | May 2007 | A1 |
20070129767 | Wahlstrand | Jun 2007 | A1 |
20070129780 | Whitehurst et al. | Jun 2007 | A1 |
20070135846 | Knudson et al. | Jun 2007 | A1 |
20070135856 | Knudson et al. | Jun 2007 | A1 |
20070135857 | Knudson et al. | Jun 2007 | A1 |
20070135858 | Knudson et al. | Jun 2007 | A1 |
20070136098 | Smythe et al. | Jun 2007 | A1 |
20070142870 | Knudson et al. | Jun 2007 | A1 |
20070142871 | Libbus et al. | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20070150011 | Meyer et al. | Jun 2007 | A1 |
20070150021 | Chen et al. | Jun 2007 | A1 |
20070150027 | Rogers | Jun 2007 | A1 |
20070156180 | Jaax et al. | Jul 2007 | A1 |
20070198063 | Hunter et al. | Aug 2007 | A1 |
20070239243 | Moffitt et al. | Oct 2007 | A1 |
20070244522 | Overstreet | Oct 2007 | A1 |
20070250145 | Kraus et al. | Oct 2007 | A1 |
20070255320 | Inman et al. | Nov 2007 | A1 |
20070255333 | Giftakis | Nov 2007 | A1 |
20070255339 | Torgerson | Nov 2007 | A1 |
20080015659 | Zhang | Jan 2008 | A1 |
20080021517 | Dietrich | Jan 2008 | A1 |
20080021520 | Dietrich | Jan 2008 | A1 |
20080046055 | Durand et al. | Feb 2008 | A1 |
20080051852 | Dietrich et al. | Feb 2008 | A1 |
20080058871 | Libbus et al. | Mar 2008 | A1 |
20080103407 | Bolea et al. | May 2008 | A1 |
20080140138 | Ivanova et al. | Jun 2008 | A1 |
20080166348 | Kupper et al. | Jul 2008 | A1 |
20080183226 | Buras et al. | Jul 2008 | A1 |
20080183246 | Patel et al. | Jul 2008 | A1 |
20080195171 | Sharma | Aug 2008 | A1 |
20080208266 | Lesser et al. | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080234780 | Smith | Sep 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080281197 | Wiley et al. | Nov 2008 | A1 |
20080281365 | Tweden et al. | Nov 2008 | A1 |
20080281372 | Libbus et al. | Nov 2008 | A1 |
20090012590 | Inman et al. | Jan 2009 | A1 |
20090048194 | Aerssens et al. | Feb 2009 | A1 |
20090062874 | Tracey | Mar 2009 | A1 |
20090076561 | Libbus et al. | Mar 2009 | A1 |
20090082832 | Carbunaru et al. | Mar 2009 | A1 |
20090088821 | Abrahamson | Apr 2009 | A1 |
20090105782 | Mickle et al. | Apr 2009 | A1 |
20090112291 | Wahlstrand et al. | Apr 2009 | A1 |
20090123521 | Weber et al. | May 2009 | A1 |
20090125076 | Shuros | May 2009 | A1 |
20090125079 | Armstrong et al. | May 2009 | A1 |
20090131995 | Sloan et al. | May 2009 | A1 |
20090143831 | Huston et al. | Jun 2009 | A1 |
20090171405 | Craig | Jul 2009 | A1 |
20090177112 | Gharib et al. | Jul 2009 | A1 |
20090187231 | Errico et al. | Jul 2009 | A1 |
20090210042 | Kowalczewski | Aug 2009 | A1 |
20090248097 | Tracey et al. | Oct 2009 | A1 |
20090254143 | Tweden et al. | Oct 2009 | A1 |
20090275997 | Faltys | Nov 2009 | A1 |
20090276019 | Perez et al. | Nov 2009 | A1 |
20090281593 | Errico et al. | Nov 2009 | A9 |
20090281594 | King et al. | Nov 2009 | A1 |
20090312817 | Hogle et al. | Dec 2009 | A1 |
20100003656 | Kilgard et al. | Jan 2010 | A1 |
20100010556 | Zhao et al. | Jan 2010 | A1 |
20100010571 | Skelton et al. | Jan 2010 | A1 |
20100010581 | Goetz et al. | Jan 2010 | A1 |
20100010603 | Ben-David et al. | Jan 2010 | A1 |
20100016746 | Hampton et al. | Jan 2010 | A1 |
20100042186 | Ben-David et al. | Feb 2010 | A1 |
20100063563 | Craig | Mar 2010 | A1 |
20100074934 | Hunter | Mar 2010 | A1 |
20100167937 | Goldknopf | Jul 2010 | A1 |
20100191304 | Scott | Jul 2010 | A1 |
20100215632 | Boss et al. | Aug 2010 | A1 |
20100241183 | DiLorenzo | Sep 2010 | A1 |
20100241207 | Bluger | Sep 2010 | A1 |
20100249859 | DiLorenzo | Sep 2010 | A1 |
20100280500 | Skelton et al. | Nov 2010 | A1 |
20100280562 | Pi et al. | Nov 2010 | A1 |
20100280569 | Bobillier et al. | Nov 2010 | A1 |
20110004266 | Sharma | Jan 2011 | A1 |
20110009734 | Foley et al. | Jan 2011 | A1 |
20110054569 | Zitnik et al. | Mar 2011 | A1 |
20110066208 | Pasricha et al. | Mar 2011 | A1 |
20110082515 | Libbus et al. | Apr 2011 | A1 |
20110092882 | Firlik et al. | Apr 2011 | A1 |
20110144717 | Burton et al. | Jun 2011 | A1 |
20110145588 | Stubbs et al. | Jun 2011 | A1 |
20110152967 | Simon | Jun 2011 | A1 |
20110224749 | Ben-David et al. | Sep 2011 | A1 |
20110247620 | Armstrong et al. | Oct 2011 | A1 |
20110275927 | Wagner et al. | Nov 2011 | A1 |
20110301658 | Yoo et al. | Dec 2011 | A1 |
20110307027 | Sharma et al. | Dec 2011 | A1 |
20120053657 | Parker et al. | Mar 2012 | A1 |
20120065706 | Vallapureddy et al. | Mar 2012 | A1 |
20120179219 | Kisker et al. | Jul 2012 | A1 |
20120185009 | Kornet et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120290035 | Levine | Nov 2012 | A1 |
20120296176 | Herbst | Nov 2012 | A1 |
20120302821 | Burnett | Nov 2012 | A1 |
20130013016 | Diebold | Jan 2013 | A1 |
20130066392 | Simon et al. | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130071390 | Stadheim | Mar 2013 | A1 |
20130150756 | Vitek et al. | Jun 2013 | A1 |
20130245718 | Birkholz et al. | Sep 2013 | A1 |
20130289385 | Lozano et al. | Oct 2013 | A1 |
20130317580 | Simon et al. | Nov 2013 | A1 |
20140046407 | Ben-Ezra et al. | Feb 2014 | A1 |
20140206945 | Liao | Jul 2014 | A1 |
20140213926 | Vaidyanathan | Jul 2014 | A1 |
20140257425 | Arcot-Krishnamurthy et al. | Sep 2014 | A1 |
20140277260 | Khalil et al. | Sep 2014 | A1 |
20140288551 | Bharmi | Sep 2014 | A1 |
20140324118 | Simon et al. | Oct 2014 | A1 |
20140330335 | Errico et al. | Nov 2014 | A1 |
20150018728 | Gross et al. | Jan 2015 | A1 |
20150100100 | Tracey et al. | Apr 2015 | A1 |
20150119956 | Libbus et al. | Apr 2015 | A1 |
20150133717 | Ghiron et al. | May 2015 | A1 |
20150180271 | Angara et al. | Jun 2015 | A1 |
20150196767 | Ahmed | Jul 2015 | A1 |
20150202446 | Franke et al. | Jul 2015 | A1 |
20150233904 | Nayak | Aug 2015 | A1 |
20150241447 | Zitnik et al. | Aug 2015 | A1 |
20160067497 | Levine et al. | Mar 2016 | A1 |
20160089540 | Bolea | Mar 2016 | A1 |
20160096016 | Tracey | Apr 2016 | A1 |
20160114165 | Levine et al. | Apr 2016 | A1 |
20160250097 | Tracey et al. | Sep 2016 | A9 |
20160331952 | Faltys et al. | Nov 2016 | A1 |
20160367808 | Simon et al. | Dec 2016 | A9 |
20170113044 | Levine et al. | Apr 2017 | A1 |
20170197076 | Faltys et al. | Jul 2017 | A1 |
20170202467 | Zitnik et al. | Jul 2017 | A1 |
20170203103 | Levine et al. | Jul 2017 | A1 |
20170209705 | Faltys et al. | Jul 2017 | A1 |
20170239484 | Ram Rakhyani et al. | Aug 2017 | A1 |
20170254818 | Haskins | Sep 2017 | A1 |
20170304613 | Faltys et al. | Oct 2017 | A1 |
20170304621 | Malbert et al. | Oct 2017 | A1 |
20170361093 | Yoo et al. | Dec 2017 | A1 |
20180001096 | Faltys et al. | Jan 2018 | A1 |
20180021217 | Tracey et al. | Jan 2018 | A1 |
20180021580 | Tracey et al. | Jan 2018 | A1 |
20180078769 | Dinsmoor et al. | Mar 2018 | A1 |
20180085578 | Rennaker, II et al. | Mar 2018 | A1 |
20180117320 | Levine et al. | May 2018 | A1 |
20180289970 | Faltys et al. | Oct 2018 | A1 |
20190010535 | Pujol Onofre | Jan 2019 | A1 |
20190022389 | Leonhardt | Jan 2019 | A1 |
20190090358 | Aresta et al. | Mar 2019 | A1 |
20190111263 | Levine | Apr 2019 | A1 |
20190192847 | Faltys et al. | Jun 2019 | A1 |
20190290902 | Romero-Ortega et al. | Sep 2019 | A1 |
20200330760 | Levine et al. | Oct 2020 | A1 |
20200384259 | Chasensky et al. | Dec 2020 | A1 |
20220040483 | Levine et al. | Feb 2022 | A1 |
20220118257 | Huston et al. | Apr 2022 | A1 |
20220257941 | Levine et al. | Aug 2022 | A1 |
20220280797 | Faltys et al. | Sep 2022 | A1 |
20220362555 | Zitnik et al. | Nov 2022 | A1 |
20230019961 | Huston et al. | Jan 2023 | A1 |
20230144580 | Manogue | May 2023 | A1 |
20230158301 | Levine et al. | May 2023 | A1 |
20230241387 | Levine et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
201230913 | May 2009 | CN |
101528303 | Sep 2009 | CN |
101578067 | Nov 2009 | CN |
101868280 | Oct 2010 | CN |
104220129 | Dec 2014 | CN |
2628045 | Jan 1977 | DE |
3736664 | May 1989 | DE |
20316509 | Apr 2004 | DE |
0438510 | Aug 1996 | EP |
0726791 | Jun 2000 | EP |
1001827 | Jan 2004 | EP |
2213330 | Aug 2010 | EP |
2073896 | Oct 2011 | EP |
3470111 | Apr 2019 | EP |
04133 | Feb 1910 | GB |
2073428 | Oct 1981 | GB |
2017502787 | Jan 2017 | JP |
2019517830 | Jun 2019 | JP |
20050039445 | Apr 2005 | KR |
WO9301862 | Feb 1993 | WO |
WO9730998 | Aug 1997 | WO |
WO9820868 | May 1998 | WO |
WO0027381 | May 2000 | WO |
WO0047104 | Aug 2000 | WO |
WO0100273 | Jan 2001 | WO |
WO0108617 | Feb 2001 | WO |
WO0189526 | Nov 2001 | WO |
WO0244176 | Jun 2002 | WO |
WO02057275 | Jul 2002 | WO |
WO03072135 | Sep 2003 | WO |
WO2004000413 | Dec 2003 | WO |
WO2004064918 | Aug 2004 | WO |
WO2006073484 | Jul 2006 | WO |
WO2006076681 | Jul 2006 | WO |
WO2007133718 | Nov 2007 | WO |
WO2010005482 | Jan 2010 | WO |
WO2010067360 | Jun 2010 | WO |
WO2010118035 | Oct 2010 | WO |
WO-2015009907 | Jan 2015 | WO |
WO2016134197 | Aug 2016 | WO |
WO2019204884 | Oct 2019 | WO |
Entry |
---|
US 6,184,239 B1, 02/2001, Puskas (withdrawn) |
US 11,745,017 B2, 09/2023, Zanos et al. (withdrawn) |
Katsavos S, Anagnostouli M. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int. 2013;2013:340508. doi: 10.1155/2013/340508. Epub Jan. 22, 2013. PMID: 23401777; PMCID: PMC3564381 (Year: 2013). |
Jacob, Anu, et al. “Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence.” Multiple Sclerosis Journal 18.12 (2012): 1801-1803. (Year: 2012). |
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22(4), pp. 401-404, Apr. 2000. |
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999. |
Anderson et al.; Reflex principles of immunological homeostasis; Annu. Rev. Immunol.; 30; pp. 313-335; Apr. 2012. |
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48(3), pp. 187-197, Aug. 1994. |
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only). |
Beliavskaia et al.,“On the effects of prolonged stimulation of the peripheral segment of the vagus nerve . . . ,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); p. 1315-1321, Nov. 1966. |
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001. |
Benoist, et al., “Mast cells in autoimmune disease” Nature., vol. 420(19): pp. 875-878, Dec. 2002. |
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280(2); pp. E378-E381; Feb. 2001. |
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to Shock, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, Shock, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81. |
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001. |
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression in shock, New York Surgical Society, New York, NY, Apr. 11, 2001. |
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002. |
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, No. 4764, pp. 652-654, Aug. 1986. |
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191(1), pp. 65-76, Dec. 1991. |
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996. |
Biggio et al.; Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus; Int. J. Neurpsychopharmacol.; vol. 12; No. 9; pp. 1209-1221; Oct. 2009. |
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77(1), pp. 110-117, Jul. 1996. |
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135(2), pp. 181-186, Feb. 1998. |
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, Issue 1-2, pp. 1-14, Jan./Dec. 1936. |
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, (Abs. No. 624.6); Oct. 23-28, 1999. |
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, Nov. 4-9, 2000 (abstract only). |
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86. |
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to Shock, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29, 2000-Mar. 4, 2000, Munich, DE), Abstract No. 166. |
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9). |
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to Shock, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277. |
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000. |
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000. |
Bruchfeld et al.; Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis; J. Int. Med.; 268(1); pp. 94-101; Jul. 2010. |
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76(1-2); pp. 141-149; May 1994. |
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, Thieme Medical Publishers; pp. 189-204, © 1999. |
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264(4); pp. 650-666, Dec. 1996. |
Bushby et al; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67(10); pp. 1286-1287; Oct. 1992. |
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439(1); pp. 1-18; Oct. 2001. |
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6(8), pp. 315-323, Aug. 2000. |
Cavaillon et al.; The pro-inflammatory cytokine casade; Immune Response in the Critically Ill; Springer-Verlag Berlin Hiedelberg; pp. 37-66; Jan. 21, 2002. |
Cheyuo et al.; The parasympathetic nervous system in the quest for stroke therapeutics; J. Cereb. Blood Flow Metab.; 31(5); pp. 1187-1195; May 2011. |
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824, Apr. 1998. |
Clark et al.; Enhanced recognition memory following vagus nerve stimulation in human subjects; Nat. Neurosci.; 2(1); pp. 94-98; Jan. 1999. |
Cohen, “The immunopathogenesis of sepsis,” Nature., vol. 420(6917): pp. 885-891, Dec. 2002. |
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroImmunoModulation, vol. 12(5), pp. 307-309, Sep. 2005. |
Dake; Chronic cerebrospinal venous insufficiency and multiple sclerosis: Hostory and background; Techniques Vasc. Intervent. Radiol.; 15(2); pp. 94-100; Jun. 2012. |
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000. |
Del Signore et al; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004. |
Diamond et al.; Mapping the immunological homunculus; Proc. Natl. Acad. Sci. USA; 108(9); pp. 3461-3462; Mar. 1, 2011. |
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 111, No. 5, pp. 423-428, Sep.-Oct. 1999. |
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, Dec. 1994. |
Dorr et al.; Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission; J. Pharmacol. Exp. Ther.; 318(2); pp. 890-898; Aug. 2006. |
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, May 2002. |
Elenkov et al.; Stress, corticotropin-releasing hormone, glucocorticoids, and the immune / inflammatory response: acute and chronic effects; Ann. N.Y. Acad. Sci.; 876; pp. 1-13; Jun. 22, 1999. |
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990. |
Ellrich et al.; Transcutaneous vagus nerve stimulation; Eur. Neurological Rev.; 6(4); pp. 254-256; Winter 2011. |
Engineer et al.; Directing neural plasticity to understand and treat tinnitus; Hear. Res.; 295; pp. 58-66; Jan. 2013. |
Engineer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011 (Author Manuscript). |
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, Sep. 2000. |
Fields; New culprits in chronic pain; Scientific American; pp. 50-57; Nov. 2009. |
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-?) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86(2), pp. 134-141, Jun. 1998. |
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000. |
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, Dec. 2001. |
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006. |
Gao et al.; Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats; Autonomic Neurosc.; 138(1-2); pp. 50-56; Feb. 29, 2008. |
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, Sep. 2000. |
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, Oct. 1995. |
Ghelardini et al., S-(-)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, Feb. 1996. |
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, No. 4, pp. 1122-1130, Oct. 2006. |
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?- independent mechanism, Shock, vol. 27, No. 4, pp. 443-447, Apr. 2007. |
Goyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975. |
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, Nov. 1999. |
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000. |
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969. |
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998. |
Groves et al.; Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat; Neuroscience Letters; 379(3); pp. 174-179; May 13, 2005. |
Guarente, Leonard, Ph. D.; Sirtuins, Aging, and Medicine; N Engl J Med ; vol. 364:pp. 2235-2244; Jun. 2011. |
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48(4), pp. 481-484, Oct. 1999. |
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187, Issue 1-2; pp. 321R327, May/Jun. 2006. |
Harrison's Principles of Internal Medicine, 13th Ed., pp. 511-515 and 1433-1435, Mar. 1994. |
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; No. 5; pp. 1241-1249; Nov. 2006. |
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, Feb. 1999. |
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, No. 2, pp. 75-89, 1999 (Accepted Jan. 13, 1999). |
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; Jul. 1980. |
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40(26), pp. 4169-4194, Dec. 1997. |
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3(3), pp. 191-195, May 2000. |
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003. |
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, Nov. 1999. |
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31(1), pp. 35-42, Jan. 1991. |
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203, No. 7; pp. 1623-1628; Jun. 19, 2006. |
Huston et al.; Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis; Crit. Care Med.; 35(12); pp. 2762-2768; Dec. 2007. |
Hutchinson et al.; Proinflammatory cytokines oppose opioid induced acute and chronic analgesia; Brain Behav Immun.; vol. 22; No. 8; pp. 1178-1189; Nov. 2008. |
Ilton et al., “Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby—Year Book, inc., St. Louis, Mo, US, pp. 930-937, Nov. 1, 1999. |
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, Aug. 1998. |
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, Mar. 2001. |
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002. |
Kawahara et al.; SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.; Cell. ; vol. 136; No. 1; pp. 62-74; Jan. 2009. |
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Sechenov Physiological Journal of the USSR, 65(3): pp. 398-404, Mar. 1979. |
Kalishevskaya et al.; Nervous regulation of the fluid state of the blood; Usp. Fiziol. Nauk;,vol. 13; No. 2; pp. 93-122; Apr.-Jun. 1982. |
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2001. |
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with helicobacter pylori infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, 1997. |
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, Apr. 2000. |
Kees et al; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145(1-2); pp. 77-85; Dec. 2003. |
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), pp. 18271-18278, Jun. 16, 2000. |
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81(3): pp. 449-455, Mar. 1999. |
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vo. 52, No. 3, pp. 349-356, Sep. 1992 (abstract only). |
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, Sep. 2000. |
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; Oct. 2000. |
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003. |
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; Arth. Rheum.; 64(10 suppl.); pp. S195; Oct. 2012. |
Krarup et al; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988. |
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; Nov. 17, 1962. |
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, Shock, vol. 5, No. 5, pp. 385-388, May 1996. |
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date)1973. |
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78(7): pp. 7-9, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1974. |
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologiia, vol. 13(4): pp. 145-154, Apr. 1973. |
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Sechenov Physiological Journal of the USSR, vol. 65; No. 3: pp. 414-420, Mar. 1979. |
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1975. |
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43(1): pp. 143-161, Apr. 1974. |
Lee, H. G., et al., Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, Apr. 1995. |
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, Feb. 1995. |
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223, Aug. 2001. |
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; Feb. 2006. |
Lipton, J. M. et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, Mar. 1997. |
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; Jan. 1996. |
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, Oct. 1996. |
Manta et al.; Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe; European Neuropsychopharmacology; vol. 19; pp. 250-255; Jan. 2009 (doi: 10.1016/j.euroneuro.2008.12.001). |
Martindale: The Extra Pharmacopoeia; 28th Ed. London; The Pharmaceutical Press; pp. 446-485; © 1982. |
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998. |
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46(2), pp. 260-269, Feb. 2000. |
Miguel-Hidalgo, J.J.; The role of glial cells in drug abuse; Current Drug Abuse Reviews; vol. 2; No. 1; pp. 76-82; Jan. 2009. |
Milligan et al.; Pathological and protective roles of glia in chronic pain; Nat Rev Neurosci.; vol. 10; No. 1; pp. 23-26; Jan. 2009. |
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63(3); pp. 437-441; Aug. 2004. |
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Sechenov Physiological Journal of the USSR, vol. 61(1): pp. 101-107, 1975. |
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, 1974. |
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998. |
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580. |
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, Jan. 2002. |
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79(2), pp. 319-326, Feb. 1987. |
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; Feb. 2001. |
Navzer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011. |
Neuhaus et al.; P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder; J. Affect. Disord.; 100(1-3); pp. 123-128; Jun. 2007. |
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, Feb. 1996. |
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine, 2(1), pp. 6, Mar. 4, 2003. |
Olofsson et al.; Rethinking inflammation: neural circuits in the regulation of immunity; Immunological Reviews; 248(1); pp. 188-204; Jul. 2012. |
Oshinsky et al.; Non-invasive vagus nerve stimulation as treatment for trigeminal allodynia; Pain; 155(5); pp. 1037-1042; May 2014. |
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001. |
Pateyuk, et al.,“Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, Mar. 1973. |
Pavlov et al.; Controlling inflammation: the cholinergic anti-inflammatory pathway; Biochem. Soc. Trans.; 34(Pt 6); pp. 1037-1040; Dec. 2006. |
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, Feb. 1996. |
Peuker; The nerve supply of the human auricle; Clin. Anat.; 15(1); pp. 35-37; Jan. 2002. |
Pongratz et al.; The sympathetic nervous response in inflammation; Arthritis Research and Therapy; 16(504); 12 pages; retrieved from the internet (http://arthritis-research.com/content/16/6/504) ; Jan. 2014. |
Prystowsky, J. B. et al., Interleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, Aug. 1997. |
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29(4), pp. 339-343, Aug. 1997. |
Pullan, R. D., et al., Transdermal nicotine for active ulceratiive colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-815, Mar. 24, 1994. |
Pulvirenti et al; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; Apr./Jun. 2001. |
Rahman et al.; Mammalian Sirt 1: Insights on its biological functions; Cell Communications and Signaling; vol. 9; No. 11; pp. 1-8; May 2011. |
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, Oct. 2000. |
Reale et al.; Treatment with an acetylcholinesterase inhibitor in alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines; J. Neuroimmunology; 148(1-2); pp. 162-171; Mar. 2004. |
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81(1-2); pp. 31-37; Jan. 1998. |
Robinson et al.; Studies with the Electrocardiogram the Action of the Vagus Nerve on the Human Heart; J Exp Med; 14(3):217-234; Sep. 1911. |
Romanovsky, A. A., et al., The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, Jul. 1, 1997. |
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; Feb. 15, 1996. |
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; Mar. 23, 2001. |
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, Sep. 1994. |
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, Mar. 1, 1997. |
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, Jun. 1998. |
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, Apr. 30, 1999. |
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, No. 5234, pp. 283-286, Oct. 13, 1995. |
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, Jul. 1995. |
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, Apr. 2002. |
Shapiro et al.; Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80(5); pp. 773-778; Nov. 1998. |
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, May 1999. |
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; Jan. 2003 (Eng. Abstract). |
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999. |
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, 1977. |
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, Dec. 1982. |
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95(1), pp. 31-35, Sep. 1998. |
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997. |
Stevens et al.; The anti-inflammatory effect of some immunosuppressive agents; J. Path.; 97(2); pp. 367-373; Feb. 1969. |
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19(1); pp. 37R43; Dec. 1986. |
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaβ activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998. |
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007. |
Swick et al.; Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res.; 101(1); pp. 86-92; Sep. 1994. |
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, Jul. 2000. |
Takeuchi et al., A comparison between chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, Jun. 1985 (eng. abstract). |
Tekdemir et al.; A clinico-anatomic study of the auricular branch of the vagus nerve and arnold's ear-cough reflex; Surg. Radiol. Anat.; 20(4); pp. 253-257; Mar. 1998. |
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92(2), pp. 201-205, Oct. 1997. |
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001. |
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, Dec. 23, 1987. |
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007. |
Tracey, K. J.; Reflex control of immunity; Nat Rev Immunol; 9(6); pp. 418-428; Jun. 2009. |
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, Oct. 24, 1986. |
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, Dec. 19-26, 2002. |
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver diseases; Immunol. Rev., 174:192-209, Apr. 2000. |
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992. |
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990. |
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, Aug. 1998. |
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007. |
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14(1), pp. 35-37, Jan. 1983. |
VanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005. |
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nerv Syst, vol. 16(2), pp. 101-102, Feb. 2000. |
Vijayaraghavan, S.; Glial-neuronal interactions-implications for plasticity anddrug addictionl AAPS J.; vol. 11; No. 1; pp. 123-132; Mar. 2009. |
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, Jun. 1997. |
Von Känel, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, Apr. 2003. |
Von Känel, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, Dec. 2000. |
Walland et al., Compensation of muscarinic brochial effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330(2-3), pp. 213-219, Jul. 9, 1997. |
Wang et al; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003. |
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999. |
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, May-Jun. 2000. |
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, Apr. 1997. |
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979. |
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183(1-2), pp. 27-31, Jan. 1995. |
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96(14), pp. 7710-7713, Jul. 6, 1999. |
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009. |
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” Nature., vol. 420(6917): pp. 879-884, Dec. 19-26, 2002. |
Westerheide et al.; Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.; Science; Vo. 323; No. 5717; pp. 1063-1066; Feb. 2009. |
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981. |
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, Jul. 1998. |
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70(2), pp. 183-197, Aug. 1999. |
Yu et al.; Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a non-invasive approach to treat the initial phase of atrial fibrillation; Heart Rhythm; 10(3); pp. 428-435; Mar. 2013. |
Zamotrinsky et al.; Vagal neurostimulation in patients with coronary artery disease; Auton. Neurosci.; 88(1-2); pp. 109-116; Apr. 2001. |
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, Jul. 1, 1998. |
Zhang et al.; Roles of SIRT1 in the acute and restorative phases following induction of inflammation.; J Biol Chem.; vol. 285; No. 53; pp. 41391-41401; Dec. 2010. |
Zhang et al.; Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model; Circulation Heart Fail.; 2; pp. 692-699; Nov. 2009. |
Zhao et al.; Transcutaneous auricular vagus stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation; Evid. Based Complement Alternat. Med.; vol. 2012; Article ID 627023; 10 pages; Dec. 29, 2012. |
Levine et al.; U.S. Appl. No. 16/103,873 entitled “Vagus nerve stimulation pre-screening test,” filed Aug. 14, 2018. |
Zitnik et al.; U.S. Appl. No. 16/356,906 entitled “Batteryless Implantable Microstimulators,” filed Mar. 18, 2019. |
Faltys et al.; U.S. Appl. No. 16/544,805 entitled “Nerve cuff with pocket for leadless stimulator,” filed Aug. 19, 2019. |
Faltys et al.; U.S. Appl. No. 16/544,882 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Aug. 19, 2019. |
Crusz et al.; Inflammation and cancer; advances and new agents; Nature reviews Clinical Oncology; 12(10); pp. 584-596; doi: 10.1038/nrclinonc.2015.105; Jun. 30, 2015. |
Strowig et al.; Inflammasomes in health and disease; Nature; vol. 481; pp. 278-286; doi: 10.1038/nature10759; Jan. 19, 2012. |
Manogue; U.S. Appl. No. 16/582,726 entitled “Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation,” filed Sep. 25, 2019. |
Tracey et al., U.S. Appl. No. 16/231,581 entitled “Inhibition of inflammatory cytokine production by cholinergic agnostics and vagus nerve stimulation,” filed Dec. 23, 2018. |
Housley et al.; Biomarkers in multiple sclerosis; Clinical Immunology; 161(1); pp. 51-58; Nov. 2015. |
Katsavos et al.; Biomarkers in multiple sclerosis: an up-to-date overview; Multiple Sclerosis International; vol. 2013, Article ID 340508, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2013. |
Faltys et al.; U.S. Appl. No. 16/728,880 entitled “Implantable neurostimulator having power control and thermal regulation and methods of use,” filed Dec. 27, 2019. |
Faltys et al.; U.S. Appl. No. 16/785,400 entitled “Systems and methods for establishing a nerve block,” filed Feb. 7, 2020. |
Levine et al.; U.S. Appl. No. 17/337,292 entitled “Closed-loop vagus nerve stimulation,” filed Jun. 2, 2021. |
Tracey et al.; U.S. Appl. No. 17/170,772 entitled “Treatment of bleeding by non-invasive stimulation,” filed Feb. 8, 2021. |
Palov et al.; The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation; Molecular Medicine; 9(5); pp. 125-134; May 2003. |
Caravaca et al.; A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve; Journal of Neural Engineering; 14(6);066005; Nov. 1, 2017. |
Koopman et al.; THU0237 first-in-human study of vagus nerve stimulation for rheumatoid arthritis: clinical and biomarker results through day 84; Annals of the Rheumatic Diseases; 72(Suppl 3):A245; Jun. 1, 2013 (Abstract Only). |
Koopman et al.; Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis; Proceedings of the National Academy of Sciences; 113(29); pp. 8284-8289; Jul. 19, 2016. |
Mayo Clinic; The factsheet of vagus nerve stimulation from the Mayo Clinic website: www.mayoclinic.org/tests-procedures/vagus-nerve-sti mulation/about/pac-20384565; retrieved from the internet on Sep. 28, 2021. |
Faltys et al.; U.S. Appl. No. 17/443,875 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Jul. 28, 2021. |
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; 2012 ACR/ARHP Annual Meeting; Abstract No. 451; 4 pages; retrieved from the internet (https://acrabstracts.org/abstract/pilot-study-of-stimulation-of-the-cholinergic-anti-inflammatory-pathway-with-an-implantable-vagus-nerve-stimulation-device-in-patients-with-rheumatoid-arthritis); (Abstract Only); on Sep. 24, 2020. |
Pavlov et al.; The cholinergic anti-inflammatory pathway; Brain, Behavior, and Immunity; 19; p. 493-499; Nov. 2005. |
Zitnik et al.; Treatment of chronic inflammatory diseases with implantable medical devices; Cleveland Clinic Journal of Medicine; 78(Suppl 1); pp. S30-S34; Aug. 2011. |
Levine et al.; U.S. Appl. No. 17/599,594 entitled “Vagus nerve stimulation to treat neurodegenerative disorders,” filed Sep. 29, 2021. |
Manogue; U.S. Appl. No. 17/578,339 entitled “Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation,” filed Jan. 18, 2022. |
Faltys et al.; U.S. Appl. No. 17/700,415 entitled “Systems and methods for establishing a nerve block,” filed Mar. 21, 2022. |
De Jonge et al.; Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway; Nature Immunology; 6(8); pp. 844-851; Aug. 2005. |
Emery et al.; Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: switch-ra, a global, oberservational, comparative effectiveness study; Annals of the Rheumatic Diseases; 4(6); pp. 979-984; Jun. 2015. |
Gottenberg et al.; Non-TNF-targeted biologic vs a second anti-TNF drug to treat theumatoid arthritis in patients with insufficient response to a first anti TNF drug: a randomized clinical trial; JAMA; 316(11); pp. 1172-1180; Sep. 2016. |
Monaco et al.; Anti-TNF therapy:past,present, and future; International Immunology; 27(1); pp. 55-62; Jan. 2015. |
Olofsson et al.; Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia; Bioelectronic Medicine; 2(1); pp. 37-42; Jun. 2015. |
Rendas-Baum et al.; Evaluating the efficacy of sequential biologic therapies for rheumatoid arthritis patients with an inadequate response to tumor necrosis factor—alpha inhibitors; Arthritis research and therapy; 13; R25; 15 pages; ; Feb. 2011. |
Rosas-Ballina et al.; Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit Science: 334(6052); pp. 98-101; 10 pages; (Author Manuscript); Oct. 2011. |
Vida et al.; Aplha 7-cholinergic receptor mediates vagal induction of splenic norepinephrine; Journal of Immunology; 186(7); pp. 4340-4346; 16 pages; (Author Manuscript); Apr. 2011. |
Yang et al.; Acetylcholine inhibits LPS-induced MMP-9 production and ccell migration via the alpha7 nAChR-JAK2/STAT3 pathway in RAW264.7 cells; Cellular Physiology and Biochemistry: 36(5); pp. 2025-2038; (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue) 2015. |
Zanos et al.; U.S. Appl. No. 18/335,116 entitled “Systems and methods for vagus nerve stimulation,” filed Jun. 14, 2023. |
Yang et al.; Axon myelination and electrical stimulation in a microfluidic, compartmentalized cell culture platform; Neuromolecular medicine; vol. 14; pp. 112-118; Jun. 2012. |
Gautron et al.; Neurobiology of inflammation-associated anorexia; Frontiers in Neuroscience; 3(59); 10 pages; Jan. 8, 2010. |
Hebb et al.; Creating the Feedback Loop: Closed-Loop Neurostimulation; Neurosurgery Clinics of North America; 25(1); pp. 187-204; Jan. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20190111263 A1 | Apr 2019 | US | |
20220072309 A9 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62576547 | Oct 2017 | US | |
62572374 | Oct 2017 | US | |
61484112 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14968702 | Dec 2015 | US |
Child | 15853350 | US | |
Parent | 14336942 | Jul 2014 | US |
Child | 14968702 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15853350 | Dec 2017 | US |
Child | 16158222 | US | |
Parent | 13467928 | May 2012 | US |
Child | 14336942 | US |