VALIDATING EDUCATIONAL CONTENT IN AN EDUCATIONAL CONTENT MANAGEMENT SYSTEM

Information

  • Patent Application
  • 20180096020
  • Publication Number
    20180096020
  • Date Filed
    March 10, 2017
    7 years ago
  • Date Published
    April 05, 2018
    6 years ago
Abstract
Disclosed are examples of systems, apparatus, methods, and computer program products for validating educational content in an educational content management system. In some implementations, a validation rule can be generated. A first request to add first educational content to an educational content management system can be processed. A validation error associated with the first educational content can be identified using the validation rule. A first notification indicating the validation error can be provided to a user interface of a display device. A second request to add second educational content to the educational content management system can be processed. It can be determined that the second educational content satisfies the first validation rule. A second notification can be provided to the user interface of the display device indicating that the second educational content satisfies the first validation rule.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the United States Patent and Trademark Office patent file or records but otherwise reserves all copyright rights whatsoever.


TECHNICAL FIELD

This patent document generally relates to educational content management. More specifically, this patent document discloses techniques for validating educational content in an educational content management system.


BACKGROUND

“Cloud computing” services provide shared resources, applications, and information to computers and other devices upon request. In cloud computing environments, services can be provided by one or more servers accessible over the Internet rather than installing software locally on in-house computer systems. As such, users having a variety of roles can interact with cloud computing services.





BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and serve only to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer program products. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.



FIG. 1 shows a system diagram of an example of a database system 100 for validating educational content in an educational content management system, in accordance with some implementations.



FIG. 2 shows a flow chart of an example of a method 200 for validating educational content in an educational content management system, in accordance with some implementations.



FIG. 3A shows an example of a queue of validation jobs, in accordance with some implementations.



FIG. 3B shows an updated example of a queue of validation jobs, in accordance with some implementations.



FIG. 4 shows an example of a feed as part of a graphical user interface (GUI) 400 as displayed on a computing device, in accordance with some implementations.



FIG. 5A shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations.



FIG. 5B shows a block diagram of an example of some implementations of elements of FIG. 5A and various possible interconnections between these elements.



FIG. 6A shows a system diagram of an example of architectural components of an on-demand database service environment 900, in accordance with some implementations.



FIG. 6B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.





DETAILED DESCRIPTION

Examples of systems, apparatus, methods and computer-readable storage media according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that implementations may be practiced without some or all of these specific details. In other instances, certain operations have not been described in detail to avoid unnecessarily obscuring implementations. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.


In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosed implementations, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from their spirit and scope. For example, the operations of methods shown and described herein are not necessarily performed in the order indicated. It should also be understood that the methods may include more or fewer operations than are indicated. In some implementations, operations described herein as separate operations may be combined. Conversely, what may be described herein as a single operation may be implemented in multiple operations.


Some of the disclosed implementations of systems, apparatus, methods and computer program products are for validating educational content in an educational content management system.


In a conventional content management system, there can be many complicated and interrelated parts, e.g., data structures, relationships between data structures, metadata, formatting consistency, etc. When new content is to be released, the new content is manually created by users relying on a syntax and/or style reference guide. Given the complexity of these interrelated parts, it is relatively easy for a user to introduce an error accidently. Likewise, it is relatively easy for the error to go unnoticed until it causes a build of an enterprise learning platform to fail. For example, Rahul is creating a new module for the enterprise learning platform. At the end of the module, he includes a hyperlink to the next module. Unfortunately, Rahul inputs the URL in an incorrect format, rendering the hyperlink to inoperable, e.g., a broken link. The error goes unnoticed, and both modules are published on the enterprise learning platform, which results in frustrated customer complaints about the broken link.


Some examples of the disclosed systems and methods provide for automatically validating educational content in an educational content management system. In some implementations, prior to publishing the new modules, Rahul can run a validation job to automatically check for schema errors (e.g., wrong data type), referential integrity (e.g., broken links), and/or metadata values (e.g., invalid role or product). After running a validation job, the broken link error is identified and displayed in an easy to navigate user interface. As such, Rahul can fix the error prior to publishing the new modules and avoid any subsequent customer complaints.


These and other implementations may be embodied in various types of hardware, software, firmware, and combinations thereof. For example, some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter. Examples of computer-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices. These and other features of the disclosed implementations will be described in more detail below with reference to the associated drawings.


In some but not all implementations, the disclosed methods, apparatus, systems, and computer-readable storage media may be configured or designed for use in a multi-tenant database environment.


The term “multi-tenant database system” can refer to those systems in which various elements of hardware and software of a database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers. The term “query plan” generally refers to one or more operations used to access information in a database system.


A “user profile” or “user's profile” is generally configured to store and maintain data about a given user of the database system. The data can include general information, such as name, title, phone number, a photo, a biographical summary, and a status, e.g., text describing what the user is currently doing. As mentioned below, the data can include messages created by other users. Where there are multiple tenants, a user is typically associated with a particular tenant. For example, a user could be a salesperson of a company, which is a tenant of the database system that provides a database service.


The term “record” generally refers to a data entity, such as an instance of a data object created by a user of the database service, for example, about a particular (actual or potential) business relationship or project. The data object can have a data structure defined by the database service (a standard object) or defined by a user (custom object). For example, a record can be for a business partner or potential business partner (e.g., a client, vendor, distributor, etc.) of the user, and can include information describing an entire company, subsidiaries, or contacts at the company. As another example, a record can be a project that the user is working on, such as an opportunity (e.g., a possible sale) with an existing partner, or a project that the user is trying to get. In one implementation of a multi-tenant database system, each record for the tenants has a unique identifier stored in a common table. A record has data fields that are defined by the structure of the object (e.g., fields of certain data types and purposes). A record can also have custom fields defined by a user. A field can be another record or include links thereto, thereby providing a parent-child relationship between the records.



FIG. 1 shows a system diagram of an example of a system 100 for validating educational content in an educational content management system, in accordance with some implementations. System 100 includes a variety of different hardware and/or software components that are in communication with each other. In the non-limiting example of FIG. 1, system 100 includes version control server 106, packaging object 108, version control databases 110, validation environment 112, production databases 114, educational content development environment 116, and enterprise learning platform 118.


Users 102a-102d can include different types of users corresponding to a variety of roles and/or permissions. Examples of users include at least one content generator user 102a, content validation users 102b and 102c, and learning user 102d. In some implementations, different users of system 100 use different components, e.g., user 102a uses educational content development environment 116 to interact with system 100. Examples of devices used by users 102a-102d include, but are not limited to a desktop computer or portable electronic device such as a smartphone, a tablet, a laptop, a wearable device such as Google Glass®, another optical head-mounted display (OHMD) device, a smart watch, etc.


Server 106 may control communication with other components of system 100. This communication may be facilitated through a combination of networks and interfaces. Server 106 may handle and process data requests from users 102a-102c of system 100. In one example, user 102a can add new educational content using educational content development environment 116. In another example, user 102b can use validation environment 112 via server 106 to validate educational content with validation rule 104b.


Packaging object 108 can be generated based on educational content received from user 102a. Packaging object 108 can be stored in version control database 110. In other implementations, version control database 110 and server 106 are implemented using a single device. In some implementations, a packaging object can be a compressed arrangement of directories. In one example, a packaging object is a .ZIP file with a variety of files and directories corresponding to the content and metadata of educational content, e.g., HTML files, JSON files, images, etc. Packaging objects can be used to generate release objects via one or more API requests, which can also be stored in version control database 110. In some implementations, a release object controls and/or tracks information, for instance, version, release object name, release object description, created by, created date, last modified, target release date, actual release date, permissions, security parameters, etc. A version of a release object might be one of many different versions, e.g., a pending version, an open version, a review version, a released version, a closed version, a custom version, or an archived version.


Validation environment 112 can be used to create and execute validation rules 104a-104c. In one example, validation environment 112 is a command line interface (CLI) capable of receiving and processing validation rules. For example, using the CLI, a user can clone a repository, change the directory to the project directory, and install a code package, e.g. a Ruby gem including code, documentation, and gemspec, using an install command, e.g., “bundle exec rake install.” After installation, a user can run the content validation environment with a run command inputted at the command line, e.g., “run contentvalidationtool.” Examples of validation rules that can be run using validation environment 112 include: contentvalidationtool schema, contentvalidationtool, contentvalidationtool whitelisted_filters, and contentvalidationtool html_lint. To further illustrate, :a schema validation, contentvalidationtool schema ˜/x2learningplatform/output/*; a referential integrity check, contentvalidationtool ri ˜/x2learningplatform/output/*−d ˜/x2learningplatform/output; validation of metadata filters or tags, contentvalidationtool whitelisted_filters ˜/x2learningplatform/output/; HTML content linting, contentvalidationtool html_lint foo.html. In some implementations, validation environment 112 can be combined with one or more other tools to validate educational content. For example, validation environment 112 can be combined with a build automation service, e.g., Jenkins, which can display validation errors to user 102b on an easy-to-navigate user interface. While validation rules 104a-104c can be executed at various stages of a publishing cycle, e.g., content creator stage, content repository stage, content build stage, etc., it is desirable to detect errors as soon as possible in the publishing cycle. In some implementations, validation rules can be a combination of many rules chained to execute in sequence. For example, a first validation rule to check if an image includes an <alt> tag, which can cause a second validation rule to check if the <alt> tag is properly formatted. During a validation job, all validation rules can be run such that any and all validation errors are gathered and reported upon completion of the validation job. After successful validation, educational content can be stored at production database 114.


Educational content development environment 116 can be an integrated development environment used to create educational content objects, e.g., unit objects, module objects, project objects, etc. Users can provide educational content, and educational content development environment 116 can guide a user through a stage-by-stage process to automatically generate and format educational content such that it is properly displayed at enterprise learning environment 118.



FIG. 2 shows a flow chart of an example of a method 200 for validating educational content in an educational content management system, in accordance with some implementations. Method 200 and other methods described herein may be implemented using system 100 of FIG. 1, although the implementations of such methods are not limited to system 100.


In block 204 of FIG. 2, a validation rule is generated. A validation rule can be a warning rule or a prohibiting rule. In some implementations, the validation rule of block 204 is generated based on validation data received from a user of an educational content management system. In other implementations, validation data is received from another component of the educational content management system, e.g., validation environment 112 of FIG. 1.


In some implementations, a validation rule is generated based on user input from a user whose work responsibilities include validating educational content prior to publication, e.g., user 102b. In one example, a system administrator may want to create a validation rule concerning the presentation of HTML content. As such, the system administrator can create a validation rule that enforces uniformity of certain HTML tags, for instance, using a <strong> html tag instead of a <b> html tag. The validation rule may include a description, e.g., “Use <strong> instead of <b>;” a portion of HTML code to identify, e.g., “css: b;” and validation rule type, e.g., “a prohibiting rule.” In another example, the system administrator creates a validation rule to enforce that images include an alt HTML tag. This validation rule can include a description, e.g., “<img> must provide ‘alt’ text;” a portion of HTML code to identify, e.g., “css: img:not([alt]);” and a validation rule type, e.g., “a warning rule.” Referring to these two examples, these rules can be run as part of the same validation job; however, because the first rule is a prohibiting rule, portions of educational content that include this error would have to be addressed before publishing. In contrast to the first rule, the second rule is a warning rule that would not prohibit publication of educational content, but it could be used by the system administrator to enforce uniformity in styling preferences across all education content in the content management system. In this way, validation rules can be created declaratively to check for schema integrity, content integrity, or referential integrity of educational content submitted for publishing. As will be discussed further below, validation rules can run at multiple points within a web publishing process and can be configured accordingly.


In block 208 of FIG. 2, a request to add educational content is received. For example, FIG. 3A shows an example of a queue of validation jobs, in accordance with some implementations. In FIG. 3A, validation jobs 304a, 308a, 312a, and 316a are included in validation queue 300a. Each validation job can include validation job information. For example, validation job 304a includes validation job information 306a, validation job 308a includes validation job information 310a, validation job 312a includes validation job information 314a, and validation job 316a includes validation job information 318a. In some implementations, the status of a validation job can be represented as one field of its validation job information, as well as it being visually represented. For example, validation job 304a has a successful status, which can be displayed as a green background on validation job 304a. Validation job 308a has an error status, which can be displayed as a red background on validation job 308a. Validation job 312a has a processing status, which can be displayed as a yellow background on validation job 312a. Validation job 316a has a pending status, which can be displayed as a blue background on validation job 316a. Each validation job of queue 300a is an example of a request to add educational content, and validation job 318a is the most recently added request to queue 300a.


In some implementations, the received educational content includes metadata and content. Educational content can include a variety of files created manually by a user. In some implementations, the content and metadata are associated with educational content objects. Examples of content objects include a unit object, a module object, a path object, a badge object, or a project object. In one example, content received as part of the educational content can include a paragraph of text describing what the basics of being an administrator of a database system, while the metadata received as part of the educational content can structure, format, and/or define the type of data for the paragraph of text. Educational content can be stored and/or represented as a collection of JSON, HTML/XML (or other markup languages), CSS, and images. In some implementations, educational content can include any content, labels, and/or types of interactions. As discussed above, educational content objects can include data associated with an educational content object. For example, educational content can be used to generate a packaging object based on content objects identified as part of block 208 of FIG. 2. For example, received educational content can include a module object, e.g., Module A, which can be identified by the server processing the educational content. In some implementations, more than one content object can be identified. A first portion of educational content can be identified as corresponding with a first content object, and second portion of educational content can be identified as corresponding with a second content object that is different from the first content object. For example, the educational content of block 208 can include two unit objects, e.g., Unit object A and Module object B. Also or alternatively, content objects can be identified from separate educational content received from different user devices, but the content objects can still be included in one packaging object.


In some implementations, after identifying a content object, a level of an organizational hierarchy (or content object hierarchy) can be determined for the identified content object. For example, if a path object is identified by server 106 of FIG. 1, server 106 can also determine a level corresponding to the path object, e.g., Level 1 of a multi-level organizational hierarchy. Similarly, when a module object is identified by server 106, server 106 can determine a level corresponding to the module object, e.g., Level 2 of a multi-level organizational hierarchy. Levels of hierarchies may be represented in a variety of ways, for instance, an ascending numerical scale, e.g., 1-5; a descending numerical scale, e.g., 5-1; an alphabetical scale, e.g., a-z; etc. In other implementations, a first level may be determined in relation to another level. For example, if two content objects are identified as part of receiving educational content, server 106 can determine that the first content object, e.g., a module object, is higher in the organizational hierarchy than the second content object, e.g., a unit object.


In other implementations, as a request to add educational content is received, a publishing stage associated with the request can be determined by server 106. The process of publishing educational content includes a variety of publishing stages, starting with a content creator and finishing with a content consumer. Examples of publishing stages include, but are not limited to: a content creator stage, a content repository stage, a content build stage, a database storage stage, e.g., a non-relational database using multi-version concurrency control, a published stage, e.g., available on an enterprise learning platform, and a content consumer stage. As will be discussed further below, the publishing stage can be used as part of the process of block 212 of FIG. 2.


In block 212 of FIG. 2, server 106 of FIG. 1 identifies a validation error. In some implementations, a validation server identifies the validation error in response to receiving the request to add educational content of block 208 of FIG. 2. Also or alternatively, the validation error can be associated with the metadata of educational content or content of the educational content. Validation rules can also be executed through a variety of interfaces, for instance, validation rules can be executed on an ad hoc basis through a command line tool. For example, content validation user 102b of FIG. 1 can start the process of identifying validation errors by inputting “validatetool x2t schema learningplatform.json” to validate the schema of a JSON file. Also or alternatively, content validation user 102b can input “validatetool x2t html_lint.html” to validate an HTML file. As discussed above, the validation rule of block 204 of FIG. 2 can have a validation rule type, e.g., a warning rule, which can return a validation error that can include an error type of a schema error, a reference error, or a metadata value error.


In one example, a schema error is identified. A schema error can occur when a field or value does is not coded according to the definition of a validation rule, for instance, if a positive integer object requires a minimum value of 0, and the educational content includes a positive integer object with a value of −1, then a schema error can be identified. Identified schema errors can be logged and displayed as messages in a user interface in response to identification. As one example, the identified schema error can be displayed as “ERROR /home/sfdc/versrepo/trailhead/qa3/createnow/json/tx.modulecontentobject.know_your_buyer.ja.jp.” In this example, the message includes “ERROR,” which indicates that a prohibiting rule identified a schema error. In addition, the message also includes the location of the error, e.g., “tx.modulecontentobject.know_your_buyer.ja.jp.” The location can include a reference to the type of content object, e.g., “modulecontentobject;” an identifier of the content object, e.g., “know_your_buyer;” and the directory where the content object is located, e.g., “.ja.jp.” Remaining with this example, below the displayed message of the identified error can be an explanation associated with the schema error. For example, “The property ‘#/content_toc_html’ was not a minimum string length of 1 in schema file:///home/sfdc/.rvm/gems/ruby/trailcop/resources/schemas/modulecontent.object.schema.json.” As discussed above, a validation rule may be a warning rule, and schema errors can be identified according to a warning rule. For example, “WARNING /home/sfdc/versrepo/trailhead/qa3/createnow/json/tx.modulecontentobject.know_your_buyer.ja.jp.” The explanation associated with this schema error can be displayed as “‘success_html is not translated.’” In contrast to the previous example, a schema error identified according to a warning rule does not need to be addressed prior to publishing the educational content.


In another example, a reference error is identified. A reference error can refer to referential integrity between linked educational content, for instance, a hyperlink from a first unit to the next unit in sequence. An identified reference error can be displayed as, “ERROR .../trailhead/qa3/createnow/json/tx.modulecontentobject.en.us.” The explanation below can include: “‘tx.modulecontentobject.nextunit.en.us’ is referenced in this file, but it does not exist.” In this example, “modulecontentobject” references a missing file. The missing file is a unit content object with an identifier of “nextunit,” which does not exist in the current build.


In another example, a metadata value error is identified. In some implementations, metadata values represent filters within an enterprise learning platform. Below is an example of metadata values from a JSON file:



















“level” : “beginner”,




   “tags : [




       {




         “name” : “general”,




         “value” : “General”




       }




     ]




   “products” : [




       {




         “name” : “appcloud”,




         “value” : “App Cloud”




       }




     ]











Validation rules for identifying metadata value errors can be useful for identifying typos that can create confusion or cause a build to fail. In some cases, validation rules for identifying metadata value errors are useful for deprecating tags over time due to governance reasons, e.g., tag sprawl. An identified metadata value error can be displayed as, “WARNING .../trailhead/qa3/createnow/json/tx.modulecontentobject.new.en.us.” The explanation below can include: “The tag ‘lightning’ in tx.tag.lightning.en.us is deprecated. Allowed values: [alm, apex, chatter, crm, data-management, database, general, heroku, integration, mobile, new, nonprofit, pages, partner, reports, security].” Since this is a warning rule identifying a metadata value error, a user can replace the value with one of the allowed values, but the user is not required to do so for the educational content to be published. However, there are circumstances where a prohibiting rule identifies metadata value errors. For example, “ERROR .../trailhead/qa3/createnow/json/tx.modulecontentobject.new.en.us” can be displayed with the following explanation, “The role ‘all’ in tx.role.all.en.us is not whitelisted. Allowed values: [admin, dev, salesforce, user].” In this case, the user would need to correct the error prior to publishing the educational content.


As discussed above, publishing stages can be identified as part of block 208. In some implementations, as part of identifying a validation error, a validation rule can be identified according to a publishing stage identified by the validation server. In some cases, the validation rule identified according to the publishing stage may be validation rule of block 204 of FIG. 2, but in other cases, the validation rule identified according to the publishing stage can be a separate rule independent of the rule of block 204. It is desirable to catch validation errors as early as possible in the publishing cycle. As such, in some implementations, there may be one set of validation rules used to identify validation errors at a preliminary stage, e.g., content creator stage, and another set of validation rules at a later stage, e.g., content build stage. In this case, it may be desirable to have a more comprehensive set of rules to initially validate educational content at the content creator stage, and a more refined set of validation rules to validate educational content at the content build stage. As such, depending on the publishing stage identified, different sets of validation rules can be used.


In block 216 of FIG. 2, a validation server provides a notification to a user device. In some implementations, the notification includes the validation error of block 212. Also or alternatively, the notification can be displayed in a user interface of a display of the user device. The notification can include messages and explanation as discussed above. For example, a message may be “ERROR .../trailhead/qa3/createnow/json/tx.modulecontentobject.en.us” or “WARNING .../trailhead/qa3/createnow/json/tx.modulecontentobject.new.en.us.” Explanations can include “‘tx.modulecontentobject.nextunit.en.us’ is referenced in this file, but it does not exist” or “The role ‘all’ in tx.role.all.en.us is not whitelisted. Allowed values: [admin, dev, salesforce, user].” In FIG. 3A, notifications can be displayed in the form of a validation job. For example, validation job 312a includes validation job information 314a, which shows that the validation job is currently being processed and 30 minutes remain. In FIG. 3B, validation job 312b indicates that a validation rule identified a validation error. The change in status of validation job 312b can be a notification. From there, a user can select validation job 312b to view a parsed console error, which reports the details of the various validation errors.


In other implementations, a notification can be provided to a user in the form of a feed item of a social network feed. In some implementations, a feed item is generated based on a validation error. For example, FIG. 4 shows an example of a feed as part of a graphical user interface (GUI) 400 as displayed on a computing device, in accordance with some implementations. In FIG. 4, a user may monitor the status of validation jobs by viewing feed 404. A user may select search toolbar 416 to search for keywords associated with feed items. For example, a user that wants to view each feed item associated with a validation job that has a validation error can type “validation error” into search toolbar 416. As shown in FIG. 4, feed 404 is currently displaying two feed items 412a and 412b. Feed item 412a indicates that the “staging-run-trailhead 22” build has a validation error. As such, a user can select a hyperlink, e.g., “https://status.checkproblem22.here,” to view the validation error. In some implementations, a user may be presented with validation queue 300a of FIG. 3A upon selecting the hyperlink. Similarly, feed item 412b of FIG. 4 indicates that the “staging-run-trailhead 21” build has a validation error. A user can also select a hyperlink, e.g., “https://status.checkproblem21.here,” to view the validation error associated with feed item 412b. A user may input text into publisher 408 to create a new feed item or to post a comment on either feed item 412a or feed item 412b.


In block 220 of FIG. 2, server 106 of FIG. 1 receives a request to add educational content. The process of block 220 of FIG. 2 can be similar to block 208. However, in some implementations, the educational content of block 220 is different from the educational content of block 208. For example, after reviewing the notification of block 216, a user can address any validation errors. Upon addressing the validation errors, the user can submit the corrected educational content to server 106 of FIG. 1. In some implementations, after receiving the corrected educational content, additional validation errors may be identified. As such, a notification can be displayed near the notification of block 216 of FIG. 2. In one example, another validation job can be displayed below validation job 318b of FIG. 3B. Also or alternatively, a pop-up window can be displayed over validation job 318b that indicates additional validation errors have been identified. In another example, a new feed item may be displayed in feed 404 of FIG. 4 above feed item 412a.


In block 224 of FIG. 2, server 106 of FIG. 1 determines that the educational content of block 220 of FIG. 2 satisfies the validation rule of block 204. In some implementations, the determination of block 224 is made by server 106 of FIG. 1 in response to receiving the request to add educational content of block 220 of FIG. 2. Upon the determination in block 224, a notification of success can be provided to a user interface. For example, validation job 318b of FIG. 3B can have its status changed from processing to successful. Also or alternatively, the background color of validation job 318b can be changed from yellow to green. In addition, a new feed item may be displayed in feed 404 of FIG. 4 above feed item 412a.


Systems, apparatus, and methods are described below for implementing database systems and enterprise level social and business information networking systems in conjunction with the disclosed techniques. Such implementations can provide more efficient use of a database system. For instance, a user of a database system may not easily know when important information in the database has changed, e.g., about a project or client. Such implementations can provide feed tracked updates about such changes and other events, thereby keeping users informed.


By way of example, a user can update a record in the form of a CRM record, e.g., an opportunity such as a possible sale of 1000 computers. Once the record update has been made, a feed tracked update about the record update can then automatically be provided, e.g., in a feed, to anyone subscribing to the opportunity or to the user. Thus, the user does not need to contact a manager regarding the change in the opportunity, since the feed tracked update about the update is sent via a feed to the manager's feed page or other page.



FIG. 5A shows a block diagram of an example of an environment 10 in which an on-demand database service exists and can be used in accordance with some implementations. Environment 10 may include user systems 12, network 14, database system 16, processor system 17, application platform 18, network interface 20, tenant data storage 22, system data storage 24, program code 26, and process space 28. In other implementations, environment 10 may not have all of these components and/or may have other components instead of, or in addition to, those listed above.


A user system 12 may be implemented as any computing device(s) or other data processing apparatus such as a machine or system used by a user to access a database system 16. For example, any of user systems 12 can be a handheld and/or portable computing device such as a mobile phone, a smartphone, a laptop computer, or a tablet. Other examples of a user system include computing devices such as a work station and/or a network of computing devices. As illustrated in FIG. 5A (and in more detail in FIG. 5B) user systems 12 might interact via a network 14 with an on-demand database service, which is implemented in the example of FIG. 5A as database system 16.


An on-demand database service, implemented using system 16 by way of example, is a service that is made available to users who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users. Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system. In some implementations, application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.


The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, when a salesperson is using a particular user system 12 to interact with system 16, the user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.


Network 14 is any network or combination of networks of devices that communicate with one another. For example, network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the Internet. The Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited.


User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16. Such an HTTP server might be implemented as the sole network interface 20 between system 16 and network 14, but other techniques might be used as well or instead. In some implementations, the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least for users accessing system 16, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.


In one implementation, system 16, shown in FIG. 5A, implements a web-based CRM system. For example, in one implementation, system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Webpage content. With a multi-tenant system, data for multiple tenants may be stored in the same physical database object in tenant data storage 22, however, tenant data typically is arranged in the storage medium(s) of tenant data storage 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. In certain implementations, system 16 implements applications other than, or in addition to, a CRM application. For example, system 16 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 18, which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 16.


One arrangement for elements of system 16 is shown in FIGS. 5A and 5B, including a network interface 20, application platform 18, tenant data storage 22 for tenant data 23, system data storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program code 26 for implementing various functions of system 16, and a process space 28 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 16 include database indexing processes.


Several elements in the system shown in FIG. 5A include conventional, well-known elements that are explained only briefly here. For example, each user system 12 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection. The term “computing device” is also referred to herein simply as a “computer”. User system 12 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 12 to access, process and view information, pages and applications available to it from system 16 over network 14. Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a GUI provided by the browser on a display (e.g., a monitor screen, LCD display, OLED display, etc.) of the computing device in conjunction with pages, forms, applications and other information provided by system 16 or other systems or servers. Thus, “display device” as used herein can refer to a display of a computer system such as a monitor or touch-screen display, and can refer to any computing device having display capabilities such as a desktop computer, laptop, tablet, smartphone, a television set-top box, or wearable device such Google Glass® or other human body-mounted display apparatus. For example, the display device can be used to access data and applications hosted by system 16, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.


According to one implementation, each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16 (and additional instances of an MTS, where more than one is present) and all of its components might be operator configurable using application(s) including computer code to run using processor system 17, which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units. Non-transitory computer-readable media can have instructions stored thereon/in, that can be executed by or used to program a computing device to perform any of the methods of the implementations described herein. Computer program code 26 implementing instructions for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).


According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to refer to one type of computing device such as a system including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.



FIG. 5B shows a block diagram of an example of some implementations of elements of FIG. 5A and various possible interconnections between these elements. That is, FIG. 5B also illustrates environment 10. However, in FIG. 5B elements of system 16 and various interconnections in some implementations are further illustrated. FIG. 5B shows that user system 12 may include processor system 12A, memory system 12B, input system 12C, and output system 12D. FIG. 5B shows network 14 and system 16. FIG. 5B also shows that system 16 may include tenant data storage 22, tenant data 23, system data storage 24, system data 25, User Interface (UI) 30, Application Program Interface (API) 32, PL/SOQL 34, save routines 36, application setup mechanism 38, application servers 501-50N, system process space 52, tenant process spaces 54, tenant management process space 60, tenant storage space 62, user storage 64, and application metadata 66. In other implementations, environment 10 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.


User system 12, network 14, system 16, tenant data storage 22, and system data storage 24 were discussed above in FIG. 5A. Regarding user system 12, processor system 12A may be any combination of one or more processors. Memory system 12B may be any combination of one or more memory devices, short term, and/or long term memory. Input system 12C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks. Output system 12D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks. As shown by FIG. 5B, system 16 may include a network interface 20 (of FIG. 5A) implemented as a set of application servers 50, an application platform 18, tenant data storage 22, and system data storage 24. Also shown is system process space 52, including individual tenant process spaces 54 and a tenant management process space 60. Each application server 50 may be configured to communicate with tenant data storage 22 and the tenant data 23 therein, and system data storage 24 and the system data 25 therein to serve requests of user systems 12. The tenant data 23 might be divided into individual tenant storage spaces 62, which can be either a physical arrangement and/or a logical arrangement of data. Within each tenant storage space 62, user storage 64 and application metadata 66 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 64. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenant storage space 62. A UI 30 provides a user interface and an API 32 provides an application programmer interface to system 16 resident processes to users and/or developers at user systems 12. The tenant data and the system data may be stored in various databases, such as one or more Oracle® databases.


Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 54 managed by tenant management process 60 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 66 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.


Each application server 50 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23, via a different network connection. For example, one application server 501 might be coupled via the network 14 (e.g., the Internet), another application server 50N-1 might be coupled via a direct network link, and another application server 50N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 50 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.


In certain implementations, each application server 50 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 50. In one implementation, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 50 and the user systems 12 to distribute requests to the application servers 50. In one implementation, the load balancer uses a least connections algorithm to route user requests to the application servers 50. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers 50, and three requests from different users could hit the same application server 50. In this manner, by way of example, system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.


As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.


While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 16 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant-specific data, system 16 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.


In certain implementations, user systems 12 (which may be client systems) communicate with application servers 50 to request and update system-level and tenant-level data from system 16 that may involve sending one or more queries to tenant data storage 22 and/or system data storage 24. System 16 (e.g., an application server 50 in system 16) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 24 may generate query plans to access the requested data from the database.


Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.


In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.



FIG. 6A shows a system diagram of an example of architectural components of an on-demand database service environment 900, in accordance with some implementations. A client machine located in the cloud 904, generally referring to one or more networks in combination, as described herein, may communicate with the on-demand database service environment via one or more edge routers 908 and 912. A client machine can be any of the examples of user systems 12 described above. The edge routers may communicate with one or more core switches 920 and 924 via firewall 916. The core switches may communicate with a load balancer 928, which may distribute server load over different pods, such as the pods 940 and 944. The pods 940 and 944, which may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 932 and 936. Components of the on-demand database service environment may communicate with a database storage 956 via a database firewall 948 and a database switch 952.


As shown in FIGS. 6A and 6B, accessing an on-demand database service environment may involve communications transmitted among a variety of different hardware and/or software components. Further, the on-demand database service environment 900 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 6A and 6B, some implementations of an on-demand database service environment may include anywhere from one to many devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 6A and 6B, or may include additional devices not shown in FIGS. 6A and 6B.


Moreover, one or more of the devices in the on-demand database service environment 900 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.


The cloud 904 is intended to refer to a data network or combination of data networks, often including the Internet. Client machines located in the cloud 904 may communicate with the on-demand database service environment to access services provided by the on-demand database service environment. For example, client machines may access the on-demand database service environment to retrieve, store, edit, and/or process information.


In some implementations, the edge routers 908 and 912 route packets between the cloud 904 and other components of the on-demand database service environment 900. The edge routers 908 and 912 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 908 and 912 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.


In one or more implementations, the firewall 916 may protect the inner components of the on-demand database service environment 900 from Internet traffic. The firewall 916 may block, permit, or deny access to the inner components of the on-demand database service environment 900 based upon a set of rules and other criteria. The firewall 916 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.


In some implementations, the core switches 920 and 924 are high-capacity switches that transfer packets within the on-demand database service environment 900. The core switches 920 and 924 may be configured as network bridges that quickly route data between different components within the on-demand database service environment. In some implementations, the use of two or more core switches 920 and 924 may provide redundancy and/or reduced latency.


In some implementations, the pods 940 and 944 may perform the core data processing and service functions provided by the on-demand database service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to FIG. 6B.


In some implementations, communication between the pods 940 and 944 may be conducted via the pod switches 932 and 936. The pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and client machines located in the cloud 904, for example via core switches 920 and 924. Also, the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and the database storage 956.


In some implementations, the load balancer 928 may distribute workload between the pods 940 and 944. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 928 may include multilayer switches to analyze and forward traffic.


In some implementations, access to the database storage 956 may be guarded by a database firewall 948. The database firewall 948 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 948 may protect the database storage 956 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.


In some implementations, the database firewall 948 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 948 may inspect the contents of database traffic and block certain content or database requests. The database firewall 948 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.


In some implementations, communication with the database storage 956 may be conducted via the database switch 952. The multi-tenant database storage 956 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 952 may direct database queries transmitted by other components of the on-demand database service environment (e.g., the pods 940 and 944) to the correct components within the database storage 956.


In some implementations, the database storage 956 is an on-demand database system shared by many different organizations. The on-demand database service may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. On-demand database services are discussed in greater detail with reference to FIGS. 6A and 6B.



FIG. 6B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations. The pod 944 may be used to render services to a user of the on-demand database service environment 900. In some implementations, each pod may include a variety of servers and/or other systems. The pod 944 includes one or more content batch servers 964, content search servers 968, query servers 982, file servers 986, access control system (ACS) servers 980, batch servers 984, and app servers 988. Also, the pod 944 includes database instances 990, quick file systems (QFS) 992, and indexers 994. In one or more implementations, some or all communication between the servers in the pod 944 may be transmitted via the switch 936.


The content batch servers 964 may handle requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 964 may handle requests related to log mining, cleanup work, and maintenance tasks.


The content search servers 968 may provide query and indexer functions. For example, the functions provided by the content search servers 968 may allow users to search through content stored in the on-demand database service environment.


The file servers 986 may manage requests for information stored in the file storage 998. The file storage 998 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file servers 986, the image footprint on the database may be reduced.


The query servers 982 may be used to retrieve information from one or more file systems. For example, the query system 982 may receive requests for information from the app servers 988 and then transmit information queries to the NFS 996 located outside the pod.


The pod 944 may share a database instance 990 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 944 may call upon various hardware and/or software resources. In some implementations, the ACS servers 980 may control access to data, hardware resources, or software resources.


In some implementations, the batch servers 984 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 984 may transmit instructions to other servers, such as the app servers 988, to trigger the batch jobs.


In some implementations, the QFS 992 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 944. The QFS 992 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 968 and/or indexers 994 to identify, retrieve, move, and/or update data stored in the network file systems 996 and/or other storage systems.


In some implementations, one or more query servers 982 may communicate with the NFS 996 to retrieve and/or update information stored outside of the pod 944. The NFS 996 may allow servers located in the pod 944 to access information to access files over a network in a manner similar to how local storage is accessed.


In some implementations, queries from the query servers 922 may be transmitted to the NFS 996 via the load balancer 928, which may distribute resource requests over various resources available in the on-demand database service environment. The NFS 996 may also communicate with the QFS 992 to update the information stored on the NFS 996 and/or to provide information to the QFS 992 for use by servers located within the pod 944.


In some implementations, the pod may include one or more database instances 990. The database instance 990 may transmit information to the QFS 992. When information is transmitted to the QFS, it may be available for use by servers within the pod 944 without using an additional database call.


In some implementations, database information may be transmitted to the indexer 994. Indexer 994 may provide an index of information available in the database 990 and/or QFS 992. The index information may be provided to file servers 986 and/or the QFS 992.


Some but not all of the techniques described or referenced herein are implemented as part of or in conjunction with a social networking database system, also referred to herein as a social networking system or as a social network. Social networking systems have become a popular way to facilitate communication among people, any of whom can be recognized as users of a social networking system. One example of a social networking system is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif. salesforce.com, inc. is a provider of social networking services, CRM services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations. These various services can be provided in a cloud computing environment, for example, in the context of a multi-tenant database system. Thus, the disclosed techniques can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations are often described with reference to Chatter®, those skilled in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems and/or social networking systems such as Facebook®, LinkedIn®, Twitter®, Google+®, Yammer® and Jive® by way of example only.


Some social networking systems can be implemented in various settings, including organizations. For instance, a social networking system can be implemented to connect users within an enterprise such as a company or business partnership, or a group of users within such an organization. For instance, Chatter® can be used by employee users in a division of a business organization to share data, communicate, and collaborate with each other for various social purposes often involving the business of the organization. In the example of a multi-tenant database system, each organization or group within the organization can be a respective tenant of the system, as described in greater detail herein.


In some social networking systems, users can access one or more social network feeds, which include information updates presented as items or entries in the feed. Such a feed item can include a single information update or a collection of individual information updates. A feed item can include various types of data including character-based data, audio data, image data and/or video data. A social network feed can be displayed in a graphical user interface (GUI) on a display device such as the display of a computing device as described herein. The information updates can include various social network data from various sources and can be stored in an on-demand database service environment. In some implementations, the disclosed methods, apparatus, systems, and computer-readable storage media may be configured or designed for use in a multi-tenant database environment.


In some implementations, a social networking system may allow a user to follow data objects in the form of CRM records such as cases, accounts, or opportunities, in addition to following individual users and groups of users. The “following” of a record stored in a database, as described in greater detail herein, allows a user to track the progress of that record when the user is subscribed to the record. Updates to the record, also referred to herein as changes to the record, are one type of information update that can occur and be noted on a social network feed such as a record feed or a news feed of a user subscribed to the record. Examples of record updates include field changes in the record, updates to the status of a record, as well as the creation of the record itself. Some records are publicly accessible, such that any user can follow the record, while other records are private, for which appropriate security clearance/permissions are a prerequisite to a user following the record.


Information updates can include various types of updates, which may or may not be linked with a particular record. For example, information updates can be social media messages submitted by a user or can otherwise be generated in response to user actions or in response to events. Examples of social media messages include: posts, comments, indications of a user's personal preferences such as “likes” and “dislikes”, updates to a user's status, uploaded files, and user-submitted hyperlinks to social network data or other network data such as various documents and/or web pages on the Internet. Posts can include alpha-numeric or other character-based user inputs such as words, phrases, statements, questions, emotional expressions, and/or symbols. Comments generally refer to responses to posts or to other information updates, such as words, phrases, statements, answers, questions, and reactionary emotional expressions and/or symbols. Multimedia data can be included in, linked with, or attached to a post or comment. For example, a post can include textual statements in combination with a JPEG image or animated image. A like or dislike can be submitted in response to a particular post or comment. Examples of uploaded files include presentations, documents, multimedia files, and the like.


Users can follow a record by subscribing to the record, as mentioned above. Users can also follow other entities such as other types of data objects, other users, and groups of users. Feed tracked updates regarding such entities are one type of information update that can be received and included in the user's news feed. Any number of users can follow a particular entity and thus view information updates pertaining to that entity on the users' respective news feeds. In some social networks, users may follow each other by establishing connections with each other, sometimes referred to as “friending” one another. By establishing such a connection, one user may be able to see information generated by, generated about, or otherwise associated with another user. For instance, a first user may be able to see information posted by a second user to the second user's personal social network page. One implementation of such a personal social network page is a user's profile page, for example, in the form of a web page representing the user's profile. In one example, when the first user is following the second user, the first user's news feed can receive a post from the second user submitted to the second user's profile feed. A user's profile feed is also referred to herein as the user's “wall,” which is one example of a social network feed displayed on the user's profile page.


In some implementations, a social network feed may be specific to a group of users of a social networking system. For instance, a group of users may publish a news feed. Members of the group may view and post to this group feed in accordance with a permissions configuration for the feed and the group. Information updates in a group context can also include changes to group status information.


In some implementations, when data such as posts or comments input from one or more users are submitted to a social network feed for a particular user, group, object, or other construct within a social networking system, an email notification or other type of network communication may be transmitted to all users following the user, group, or object in addition to the inclusion of the data as a feed item in one or more feeds, such as a user's profile feed, a news feed, or a record feed. In some social networking systems, the occurrence of such a notification is limited to the first instance of a published input, which may form part of a larger conversation. For instance, a notification may be transmitted for an initial post, but not for comments on the post. In some other implementations, a separate notification is transmitted for each such information update.


The term “multi-tenant database system” generally refers to those systems in which various elements of hardware and/or software of a database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers.


An example of a “user profile” or “user's profile” is a database object or set of objects configured to store and maintain data about a given user of a social networking system and/or database system. The data can include general information, such as name, title, phone number, a photo, a biographical summary, and a status, e.g., text describing what the user is currently doing. As mentioned herein, the data can include social media messages created by other users. Where there are multiple tenants, a user is typically associated with a particular tenant. For example, a user could be a salesperson of a company, which is a tenant of the database system that provides a database service.


The term “record” generally refers to a data entity having fields with values and stored in database system. An example of a record is an instance of a data object created by a user of the database service, for example, in the form of a CRM record about a particular (actual or potential) business relationship or project. The record can have a data structure defined by the database service (a standard object) or defined by a user (custom object). For example, a record can be for a business partner or potential business partner (e.g., a client, vendor, distributor, etc.) of the user, and can include information describing an entire company, subsidiaries, or contacts at the company. As another example, a record can be a project that the user is working on, such as an opportunity (e.g., a possible sale) with an existing partner, or a project that the user is trying to get. In one implementation of a multi-tenant database system, each record for the tenants has a unique identifier stored in a common table. A record has data fields that are defined by the structure of the object (e.g., fields of certain data types and purposes). A record can also have custom fields defined by a user. A field can be another record or include links thereto, thereby providing a parent-child relationship between the records.


The terms “social network feed” and “feed” are used interchangeably herein and generally refer to a combination (e.g., a list) of feed items or entries with various types of information and data. Such feed items can be stored and maintained in one or more database tables, e.g., as rows in the table(s), that can be accessed to retrieve relevant information to be presented as part of a displayed feed. The term “feed item” (or feed element) generally refers to an item of information, which can be presented in the feed such as a post submitted by a user. Feed items of information about a user can be presented in a user's profile feed of the database, while feed items of information about a record can be presented in a record feed in the database, by way of example. A profile feed and a record feed are examples of different types of social network feeds. A second user following a first user and a record can receive the feed items associated with the first user and the record for display in the second user's news feed, which is another type of social network feed. In some implementations, the feed items from any number of followed users and records can be combined into a single social network feed of a particular user.


As examples, a feed item can be a social media message, such as a user-generated post of text data, and a feed tracked update to a record or profile, such as a change to a field of the record. Feed tracked updates are described in greater detail herein. A feed can be a combination of social media messages and feed tracked updates. Social media messages include text created by a user, and may include other data as well. Examples of social media messages include posts, user status updates, and comments. Social media messages can be created for a user's profile or for a record. Posts can be created by various users, potentially any user, although some restrictions can be applied. As an example, posts can be made to a wall section of a user's profile page (which can include a number of recent posts) or a section of a record that includes multiple posts. The posts can be organized in chronological order when displayed in a GUI, for instance, on the user's profile page, as part of the user's profile feed. In contrast to a post, a user status update changes a status of a user and can be made by that user or an administrator. A record can also have a status, the update of which can be provided by an owner of the record or other users having suitable write access permissions to the record. The owner can be a single user, multiple users, or a group.


In some implementations, a comment can be made on any feed item. In some implementations, comments are organized as a list explicitly tied to a particular feed tracked update, post, or status update. In some implementations, comments may not be listed in the first layer (in a hierarchal sense) of feed items, but listed as a second layer branching from a particular first layer feed item.


A “feed tracked update,” also referred to herein as a “feed update,” is one type of information update and generally refers to data representing an event. A feed tracked update can include text generated by the database system in response to the event, to be provided as one or more feed items for possible inclusion in one or more feeds. In one implementation, the data can initially be stored, and then the database system can later use the data to create text for describing the event. Both the data and/or the text can be a feed tracked update, as used herein. In various implementations, an event can be an update of a record and/or can be triggered by a specific action by a user. Which actions trigger an event can be configurable. Which events have feed tracked updates created and which feed updates are sent to which users can also be configurable. Social media messages and other types of feed updates can be stored as a field or child object of the record. For example, the feed can be stored as a child object of the record.


A “group” is generally a collection of users. In some implementations, the group may be defined as users with a same or similar attribute, or by membership. In some implementations, a “group feed”, also referred to herein as a “group news feed”, includes one or more feed items about any user in the group. In some implementations, the group feed also includes information updates and other feed items that are about the group as a whole, the group's purpose, the group's description, and group records and other objects stored in association with the group. Threads of information updates including group record updates and social media messages, such as posts, comments, likes, etc., can define group conversations and change over time.


An “entity feed” or “record feed” generally refers to a feed of feed items about a particular record in the database. Such feed items can include feed tracked updates about changes to the record and posts made by users about the record. An entity feed can be composed of any type of feed item. Such a feed can be displayed on a page such as a web page associated with the record, e.g., a home page of the record. As used herein, a “profile feed” or “user's profile feed” generally refers to a feed of feed items about a particular user. In one example, the feed items for a profile feed include posts and comments that other users make about or send to the particular user, and status updates made by the particular user. Such a profile feed can be displayed on a page associated with the particular user. In another example, feed items in a profile feed could include posts made by the particular user and feed tracked updates initiated based on actions of the particular user.


While some of the disclosed implementations may be described with reference to a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the disclosed implementations are not limited to multi-tenant databases nor deployment on application servers. Some implementations may be practiced using various database architectures such as ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.


It should be understood that some of the disclosed implementations can be embodied in the form of control logic using hardware and/or computer software in a modular or integrated manner. Other ways and/or methods are possible using hardware and a combination of hardware and software.


Any of the disclosed implementations may be embodied in various types of hardware, software, firmware, and combinations thereof. For example, some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as flash memory, compact disk (CD) or digital versatile disk (DVD); magneto-optical media; and hardware devices specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices. A computer-readable medium may be any combination of such storage devices.


Any of the operations and techniques described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, object-oriented techniques. The software code may be stored as a series of instructions or commands on a computer-readable medium. Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network. A computer system or computing device may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.


While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.

Claims
  • 1. A system comprising: a database system implemented using a server system, the database system configurable to cause: generating or updating a first validation rule based on validation data received from a user of an educational content management system;processing a first request to add first educational content to the educational content management system, the first educational content comprising metadata and content;responsive to processing the first request, identifying, using the first validation rule, a validation error associated with the metadata of the first educational content or the content of the first educational content;providing a first notification indicating the validation error to a user interface of a display device;processing a second request to add second educational content to the educational content management system, the second educational content being different from the first educational content;responsive to processing the second request, determining that the second educational content satisfies the first validation rule; andproviding a second notification to the user interface of the display device, the second notification indicating that the second educational content satisfies the first validation rule.
  • 2. The system of claim 1, wherein the validation error comprises an error type being one of: a schema error, a reference error, HTML lint error, or a whitelisted filter value error.
  • 3. The system of claim 1, wherein processing the first request to add first educational content comprises: determining a publishing stage associated with the first request, the publishing stage being one of: a content creator stage, a content repository stage, a content build stage, or a published stage; andidentifying a second validation rule based on the publishing stage; andresponsive to identifying the second validation rule, determining that the first educational content satisfies the second validation rule.
  • 4. The system of claim 1, the database system further configurable to cause: processing a third request to add third educational content to the educational content management system;responsive to processing the third request, identifying, using a third validation rule, a further validation error; andproviding a third notification indicating the further validation error to the user interface of the display device, the third notification being displayed proximate with the second notification.
  • 5. The system of claim 1, wherein the first validation rule is a warning rule or a prohibiting rule.
  • 6. The system of claim 1, wherein identifying, using the first validation rule, the validation error comprises: identifying a first portion of the first educational content, the first portion of the first educational content corresponding with a first content object, the first content object being one of: a unit object, a module object, a path object, a badge object, or a project object; andidentifying a second portion of the first educational content, the second portion of the first educational content corresponding with a second content object different from the first content object.
  • 7. The system of claim 1, the database system further configurable to cause: generating or updating a feed item based on the validation error; andproviding the feed item to a social network feed of associated with the user of the educational content management system.
  • 8. A method comprising: generating or updating a first validation rule based on validation data received from a user of an educational content management system;processing a first request to add first educational content to the educational content management system, the first educational content comprising metadata and content;responsive to processing the first request, identifying, using the first validation rule, a validation error associated with the metadata of the first educational content or the content of the first educational content;providing a first notification indicating the validation error to a user interface of a display device;processing a second request to add second educational content to the educational content management system, the second educational content being different from the first educational content;responsive to processing the second request, determining that the second educational content satisfies the first validation rule; andproviding a second notification to the user interface of the display device, the second notification indicating that the second educational content satisfies the first validation rule.
  • 9. The method of claim 8, wherein the validation error comprises an error type being one of: a schema error, a reference error, HTML lint error, or a whitelisted filter value error.
  • 10. The method of claim 8, wherein processing the first request to add first educational content comprises: determining a publishing stage associated with the first request, the publishing stage being one of: a content creator stage, a content repository stage, a content build stage, or a published stage; andidentifying a second validation rule based on the publishing stage; andresponsive to identifying the second validation rule, determining that the first educational content satisfies the second validation rule.
  • 11. The method of claim 8, the method further comprising: processing a third request to add third educational content to the educational content management system;responsive to processing the third request, identifying, using a third validation rule, a further validation error; andproviding a third notification indicating the further validation error to the user interface of the display device, the third notification being displayed proximate with the second notification.
  • 12. The method of claim 8, wherein the first validation rule is a warning rule or a prohibiting rule.
  • 13. The method of claim 8, wherein identifying, using the first validation rule, the validation error comprises: identifying a first portion of the first educational content, the first portion of the first educational content corresponding with a first content object, the first content object being one of: a unit object, a module object, a path object, a badge object, or a project object; andidentifying a second portion of the first educational content, the second portion of the first educational content corresponding with a second content object different from the first content object.
  • 14. The method of claim 8, the method further comprising: generating or updating a feed item based on the validation error; andproviding the feed item to a social network feed of associated with the user of the educational content management system.
  • 15. A computer program product comprising computer-readable program code to be executed by one or more processors when retrieved from a non-transitory computer-readable medium, the program code including instructions configurable to cause: generating or updating a first validation rule based on validation data received from a user of an educational content management system;processing a first request to add first educational content to the educational content management system, the first educational content comprising metadata and content;responsive to processing the first request, identifying, using the first validation rule, a validation error associated with the metadata of the first educational content or the content of the first educational content;providing a first notification indicating the validation error to a user interface of a display device;processing a second request to add second educational content to the educational content management system, the second educational content being different from the first educational content;responsive to processing the second request, determining that the second educational content satisfies the first validation rule; andproviding a second notification to the user interface of the display device, the second notification indicating that the second educational content satisfies the first validation rule.
  • 16. The computer program product of claim 15, wherein the validation error comprises an error type being one of: a schema error, a reference error, HTML lint error, or a whitelisted filter value error.
  • 17. The computer program product of claim 15, wherein processing the first request to add first educational content comprises: determining a publishing stage associated with the first request, the publishing stage being one of: a content creator stage, a content repository stage, a content build stage, or a published stage; andidentifying a second validation rule based on the publishing stage; andresponsive to identifying the second validation rule, determining that the first educational content satisfies the second validation rule.
  • 18. The computer program product of claim 15, the instructions further configurable to cause: processing a third request to add third educational content to the educational content management system;responsive to processing the third request, identifying, using a third validation rule, a further validation error; andproviding a third notification indicating the further validation error to the user interface of the display device, the third notification being displayed proximate with the second notification.
  • 19. The computer program product of claim 15, wherein the first validation rule is a warning rule or a prohibiting rule.
  • 20. The computer program product of claim 15, wherein identifying, using the first validation rule, the validation error comprises: identifying a first portion of the first educational content, the first portion of the first educational content corresponding with a first content object, the first content object being one of: a unit object, a module object, a path object, a badge object, or a project object; andidentifying a second portion of the first educational content, the second portion of the first educational content corresponding with a second content object different from the first content object.
PRIORITY DATA

This patent document claims priority to co-pending and commonly assigned U.S. Provisional Patent Application No. 62/402,773, titled “Customizing Validation Rules in a Web Publishing Process,” by Sreenivasa et al., filed on Sep. 30, 2016 (Attorney Docket No. SLFCP237P/1866PROV), which is hereby incorporated by reference in its entirety and for all purposes.

Provisional Applications (1)
Number Date Country
62402773 Sep 2016 US