The invention relates to a valve actuation device for actuating at least two gas exchange valves of an internal combustion engine. Furthermore, the invention relates to a method for operating such a valve actuation device. The invention also refers to an internal combustion engine for a motor vehicle having at least one such valve actuation device.
EP 2 425 105 B1 discloses a system for actuating an outlet valve for decelerating the engine. Furthermore, a method for selectively actuating gas exchange valves in an internal combustion engine is known from EP 3 012 440 B1. Furthermore, US 2018/0058271 A1 discloses a system for actuating at least one of two or more gas exchange valves in an internal combustion engine. Furthermore, a device for modifying a stroke of gas exchange valves is known from U.S. Pat. No. 7,789,065 B2.
The object of the present invention is to create a valve actuation device, a method for operating such a valve actuation device and an internal combustion engine having at least one such valve actuation device, such that a particularly advantageous valve stroke shutoff can be implemented.
A first aspect of the invention relates to a valve actuation device for actuating at least two gas exchange valves of an internal combustion engine preferably formed as a reciprocal piston engine, in particular for a motor vehicle. The motor vehicle is formed, for example, as a car and here in particular as a utility vehicle and in its completely produced state comprises the internal combustion engine, by means of which the motor vehicle can be driven. Here, the internal combustion engine in its completely produced state comprises the valve actuation device. The valve actuation device comprises at least one first tilting lever, which can be pivoted around a pivoting axis between at least one first starting position and at least one first actuation position, in particular in relation to at least one housing element, in particular a cylinder head or a crank housing, of the internal combustion engine. To do so, the tilting lever is arranged rotatably on a tilting lever axis and can be pivoted around the pivoting axis in relation to the tilting lever axis between the first starting position and the first actuation position. For example, the tilting lever can be pivoted around the pivoting axis out of the first starting position into the first actuation position by means of a cam of a camshaft.
Moreover, the valve actuation device comprises at least one valve bridge that can be moved between at least one second starting position and at least one second actuation position, in particular in relation to the housing element mentioned above, by means of which valve bridge both a first of the gas exchange valves and a second of the gas exchange valves can be actuated by moving the valve bridge out of the second starting position into the second actuation position. In other words, if the valve bridge also simply referred to as the bridge is moved out of the second starting position into the second actuation position, then both the first and the second gas exchange valve are thus actuated. The respective gas exchange valve is, for example, an outlet valve via which a gas, such as air or an exhaust gas of the internal combustion engine, for example, can be led or guided out of a cylinder of the internal combustion engine into an exhaust gas tract also referred to as an outlet tract of the internal combustion engine. By actuating the respective gas exchange valve, the respective gas exchange valve can be move or is moved, for example, out of a closed position into at least one open position. By actuating the gas exchange valve, this carries out a stroke, for example, which is also referred to as a valve stroke. Preferably, the valve bridge and the tilt lever are components formed separately from each other.
The valve actuation device moreover comprises a coupling device, which can be switched between at least one locking state and at least one unlocking state. In the locking state of the coupling device, by moving the tilting lever from the first starting position into the first actuation position, the valve bridge can be moved via the coupling device by means of the tilting lever out of the second starting position into the second actuation position. In other words, if the tilting lever is moved or pivoted out of the first starting position into the first actuation position, while the coupling device is in its locking state, then the valve bridge is moved out of the second starting position into the second actuation position by means of the tilting lever via the coupling device. In doing so, both the first gas exchange valve and the second gas exchange valve, for example, are actuated via the valve bridge and via the coupling device by means of the tilting lever. Thus, both the first gas exchange valve and the second gas exchange valve can be actuated via the valve bridge and the coupling device by means of the same tilting lever common to the first gas exchange valve and the second gas exchange valve.
In the unlocking state, despite the movement of the tilting lever from the first starting position into the first actuation position, a movement of the valve bridge out of the second position into the second actuation position by means of the tilting lever via the coupling device is avoided. In other words, if the tilting lever is moved or pivoted out of the first starting position into the first actuation position while the coupling device is in its unlocking position, then a movement of the valve bridge out of the second starting position into the second actuation position is avoided. This means that, in the unlocking state of the coupling device, an actuation of the first gas exchange valve and the second gas exchange valve that is caused or can be caused by the valve bridge is avoided. Thus, in the or due to the unlocking state of the coupling device, a stroke shutoff of the gas exchange valves is caused or set, since, in the unlocking state of the coupling device, no stroke of the gas exchange valves is caused although the tilting lever is moved or pivoted out of the first starting position into the first actuation position. Such a stroke shutoff, in particular its fundamental principle, is described in EP 3 012 440 B1, for example.
However, in order to now be able to implement the stroke shutoff particularly advantageously and here, in particular, to avoid excessive loads of the valve actuation device, it is provided according to the invention that the coupling device is held on the tilting lever and can thus also be pivoted around the pivoting axis with the tilting lever, in particular in relation to the housing element mentioned above. In doing so, it is possible to couple or to link a switch of the coupling device from the unlocking state into the locking state and/or a switch of the coupling device from the locking state into the unlocking state with the or a movement of the tilting lever between the first actuation position and the first starting position, whereby a defined or clear switching of the coupling device can be ensured.
Preferably, the coupling device is received at least partially in a receiver of the tilting lever, formed for example as a through opening, and is thus held on the tilting lever and can thus be pivoted with the tilting lever around the pivoting axis, in particular in relation to the housing element and/or in relation to the tilting lever axis or shaft.
It has been shown to be particular advantageous when the coupling device has a switching element that can be moved in a movement direction in relation to the tilting lever, in particular translationally, the switching element being able to be moved, in particular shifted, in the movement direction in relation to the tilting lever between at least one locking position causing the at least one locking state and at least one unlocking position causing the at least one unlocking state.
Here, it has been shown to be particularly advantageous when the valve actuation device has an actuation element provided in addition to the coupling device, for example. Preferably, the actuation element and the tilting lever are formed as components formed separately from each other. The tilting lever and, with this, the coupling device and thus the switching element can be pivoted around the pivoting axis in relation to the actuation element. In other words, since the coupling deice is held on the tilting lever and can thus also be pivoted with the tilting lever around the pivoting axis, the tilting lever and the coupling device can be pivoted, in particular together or simultaneously, around the pivoting axis between the first actuation position and the first starting position, in particular in relation to the actuation element. By pivoting the tilting lever and the switching element of the coupling device out of the first actuation position into the first starting position, the switching element can be moved out of the locking position into the unlocking position by means of the actuation element. In doing so, pivoting the tilting lever can be linked or correlated, in particular directly, particularly precisely and in a defined manner with switching the coupling device, such that the coupling device can be switched in a defined and targeted manner between the unlocking state and the locking state and can be switched. In particular, it is possible thanks to or with the valve actuation device according to the invention to switch the coupling device, in particularly exclusively, during the base circle phase of the cam mentioned above. In particular, an unwanted switching of the coupling device can be avoided, while the tilting lever is actuate by means of the cam, i.e., is moved out of the first starting position into the first actuation position or is held in the first actuation position. The knowledge underlying the invention, in particular, is that when the coupling device is switched while the tilting lever is actuated by means of the cam, in particular by means of the cam elevation, this can result in very high loads of the valve actuation device. However, such high loads can now be safely avoided thanks to the invention, and so-called semi-switches of the coupling device are avoided, since a clear and defined switching of the coupling device during a base circle phase of a cam is ensured.
A further embodiment is characterised in that, by pivoting the tilting lever from the first actuation position into the first starting position, the actuation element can be moved, in particular can be pivoted, out of at least on active position into at least one withdrawal position. In the active position, the switching element can be moved by means of the actuation element out of the locking position into the unlocking position by pivoting the tilting lever and the switching element out of the first actuation position into the first starting position. In other words, if the tilting lever and, with this, the switching element are moved or pivoted out of the first actuation position into the first starting position, while the actuation element is in its active position, then the switching element is then moved by means of the actuation element out of the locking position of the switching element into the unlocking position of the switching element.
In the withdrawal position of the actuation element, despite a pivoting or a movement of the first tilting lever and the switching element out of the first actuation position into the first starting position, a movement of the switching element that can be caused or is caused by means of the actuation element out of the locking position into the unlocking position stops. In other words, if the tilting lever and, with this, the switching element are moved or pivoted out of the first actuation position into the first starting position while the actuation element is in its withdrawal position, then a movement of the switching element that can be caused or is caused by means of the actuation element from the locking position into the unlocking position stops. Since the actuation element can here be moved out of its active position into its withdrawal position by the tilting ever being moved out of the first actuation position into the first starting position, switching the coupling device, in particular out of the locking stat into the unlocking state and/or out of the unlocking stat into the locking states, can be linked or brought into correlation or connection in a targeted and defined manner with the pivoting of the tilting lever, such that unwanted half switches of the coupling device leading to excessive high loads of the valve actuation device can be safely avoided.
A further embodiment is characterised in that the valve actuation device has a movement element provided in addition to the coupling device and thus not belonging to the coupling device. The movement element is held on the first tilting lever and can thus also be pivoted with the tilting lever around the pivoting axis, in particular in relation to the housing and/or in relation to the tilting lever axis or the shaft. The movement element can be moved in a switching direction in relation to the tilting lever and in relation to the switching element or in relation to the coupling device, in particular translationally, between at least one movement position and at least one rest position, in particular hydraulically. For example, the switching direction runs obliquely or perpendicularly to the movement direction of the coupling device. In particular, the movement element can be moved translationally between the movement position and the rest position in relation to the tilting lever and in relation to the switching element. In the movement position of the movement element, the actuation element can be moved by means of the movement element out of the active position into the withdrawal position by pivoting the tilting lever and the movement element out of the first actuation position into the first starting position. In other words, if the tilting lever and, with this, the movement element are moved or pivoted out of the first actuation position into the first starting position while the movement element is in its movement position, then the actuation element is then moved out of the active position into the withdrawal position by means of the movement element. As a result, a movement of the switching element caused by the actuation element out of the locking position into the unlocking position stops, such that unlocking the coupling device, i.e., switching the coupling device out of the locking state into the unlocking state, stops. This means that the switching element then remains in its locking position, such that the coupling device remains in its locking state.
In the rest position of the movement element, despite a pivoting of the tilting lever and the movement element out of the actuation position into the first starting position, a movement of the actuation that can be caused or is caused by means of the actuation element out of the active position into the withdrawal position stops. In other words, if the tilting lever and, with this, the movement element are moved or pivoted out of the first actuation position into the first starting position while the movement element is in its rest position, then the actuation element is not moved out of the active position into the withdrawal position, but rather the actuation element remains in its active position. As a result, the switching element is moved by means of the actuation element out of the locking position into the unlocking position, whereby the coupling device unlocks, i.e., is switched or shifted out of the locking state into the unlocking state. In the unlocking state, the stroke lift-off is activated or set. In other words, by unlocking the coupling device, the stroke lift-off is activated. In the unlocking state of the coupling device, the stroke lift-off is deactivated. By using the movement element, the coupling device can be specifically and definitely switched, wherein the switching can simultaneously be coupled or linked to the pivoting or movement of the first tilting lever in a precise and definite manner.
In order to be able to move the movement element particularly precisely and quickly from the movement position into the rest position, it is provided in a further design of the invention that the movement element can be moved hydraulically out of the movement position into the rest position. In doing so, a specific and defined switching of the coupling device during the base circle phase can be ensured, such that excessive loads of the valve actuation device can be safely avoided.
In a particularly advantageous embodiment of the invention, the valve actuation device comprises at least one in particular mechanical spring element, by means of which a spring force can be provided. The movement element can be moved out of the rest position into the movement position by means of the spring force and thus by mean of the spring element. The feature that the spring element is preferably formed as a mechanical spring element, i.e., as a mechanical spring, can be understood, in particular, to mean that the spring element is a spring that is distinct from a gas spring and thus present bodily or physically. By using the hydraulic movability of the movement element out of the movement position into the rest position and by using the spring element to move the movement element out of the rest position into the movement position, a specific and defined and needs-based movement of the movement element can be ensured, such that the coupling device can be switched as needed between the locking state and the unlocking state.
Finally, it has proved to be particularly advantageous when the actuation element is formed as an in particular mechanical spring. Thus, the switching element can be actuated specifically and simultaneously without load, i.e., moved from the locking position into the unlocking position, such that excessive loads of the valve actuation device can be safely avoided.
A second aspect of the invention relates to a method for operating a valve actuation device according to the invention according to the first aspect of the invention. Advantages and advantageous designs of the first aspect of the invention can be seen as advantages and advantageous designs of the second aspect of the invention and vice versa.
A third aspect of the invention relates to an internal combustion engine, preferably formed as a stroke piston engine, for a motor vehicle. The internal combustion engine according to the third aspect of the invention comprises at least one valve actuation device according to the invention according to the first aspect of the invention. Advantages and advantageous designs of the first aspect and the second aspect of the invention can be seen as advantages and advantageous designs of the third aspect of the invention and vice versa.
Further advantages, features and details of the invention emerge from the description below of a preferred exemplary embodiment and by means of the drawings. The features and feature combinations mentioned above in the description and feature combinations and the features and feature combinations mentioned below in the description of the figure and/or shown only in the figures can be used not only in the respectively specified combination, but also in other combinations or on their own without leaving the scope of the invention.
In the figures, the same or functionally identical elements are provided with the same reference numerals.
In a schematic perspective view,
A third stroke following the second stroke is a so-called working stroke, as part of which the piston is moved out of its upper ignition dead centre into its lower dead centre. The fourth stroke following the third stroke is a so-called outlet stroke or expulsion stroke, as part of which the piston is moved out of its upper dead centre into its upper charge alternation dead centre. Here, the gas exchange valves 2 and 3 are allocated to the cylinder, i.e., to the same cylinder, and are received in the cylinder head. Presently, the gas exchange valves 2 and 3 are formed as outlet valves, via which a gas or exhaust gas from the combustion chamber of the cylinder can flow via at least one outlet channel in the cylinder head into an exhaust gas tract of the internal combustion engine. The respective gas exchange valve 2 or 3 can be moved between a respective closed position and at least one respective open position, in particular translationally. With its movement out of the respective closed position into the respective open position, the respective gas exchange valve 2 or 3 carries out a stroke, also referred to as a valve stroke, which can be switched on and switched off particularly advantageously by means of the valve actuation device 1. Switching off the respective valve stroke is also referred to as stroke shutoff or valve stroke shutoff.
A respective valve spring 4 or 5 is allocated to the respective gas exchange valve 2 or 3. In the respective open position of the respective gas exchange valve 2 or 3, the respective valve spring 4 or 5 is tensioned, such that the respective valve spring 4 or 5 in the respective open position provides a respective spring force. The respective gas exchange valve 2 or 3 is moved or can be moved out of the respective open position into the respective closed position by means of the spring force and thus by means of the respective valve spring 4 or 5. In particular, the respective gas exchange valve 2 or 3 can be held in the respective closed position by means of the respective valve spring 4 or 5. Thus, if the gas exchange valves 2 and 3 are actuated by means of the valve actuation device 1, i.e., are moved out of the respective closed position into the respective open position, the gas exchange valves 2 are 3 are moved in opposition to the valve springs 4 and 5, i.e., in opposition to the spring forces provided by the valve springs 4 and 5, out of the respective closed position into the respective open position, in particular translationally. In particular, the gas exchange valves 2 and 3 can be moved in relation to the housing element mentioned above or in relation to the cylinder head of the internal combustion engine, in particular translationally, between the closed position and the open position. The cylinder head and the crankshaft housing are housing elements of the internal combustion engine formed separately from each other and connected to each other.
The valve actuation device 1 has at least one first tilting lever 6 common to the gas exchange valves 2 and 3, which is also referred to as the outlet tilting lever. Moreover, the valve actuation device 1 comprises a second tilting lever 7, which is also referred to as the braking tilting lever. The tilting levers 6 and 7 are formed separately from each other. Moreover, the tilting levers are arranged on a tilting lever axis 8 common to the tilting levers 6 and 7. Thus, the tilting levers 6 and 7 can be pivoted around a pivoting axis 9 that can be seen from
Moreover, the valve actuation device 1 comprises a valve bridge 10 common to the gas exchange valves 2 and 3 and formed separately from the tilting levers 6 and 7 and also simply referred to as the bridge, which can be moved between at least one second starting position that can be seen from
In the unlocking state of the coupling device 11, a movement of the valve bridge 10 that can be caused or is caused by means of the outlet tilting lever 6 via the coupling device 11 out of the second starting position into the second actuation position stops despite a movement or despite a pivoting of the outlet tilting lever 6 out of the first starting position into the first actuation position. In other words, if the first outlet tilting lever 6 is moved or pivoted out of the first starting position into the first actuation position while the coupling device 11 is in its unlocking state, the a movement of the valve bridge 10 caused by the outlet tilting lever 6, in particular the coupling device 11, out of the second starting position into the second actuation position stops; instead the valve bridge 10 remains in its second starting position, wherein an actuation of the gas exchange valves 2 and 3 stops, although the outlet tilting lever 6 is pivoted out of the first starting position into the first actuation position. As a result, the gas exchange valves 2 and 3 are not actuated, i.e., not opened, such that an actuation or an opening of the gas exchange valves 2 and 3 stops.
In order to now switch particularly advantageously and here in particular in a targeted and defined manner between the unlocking state and the locking state and to here be able to safely avoid excessive loads of the valve actuation device 1, the coupling device 11—as can be seen particularly well from
Moreover, the coupling device 11 comprises a spring element 15 formed mechanically or as a mechanical spring, which can be supported or is supported on one side at least indirectly, in particular directly, on the switching element 14 and on the other side at least indirectly, in particular directly, on the switching element 12. Here, the spring element 15 is received at least partially, in particular at least extensively or completely, in the switching element 14. By moving the switching element 12 out of the locking position into the unlocking position, the spring element 15 is tensioned, such that the spring element 15 is tensioned more greatly in the unlocking position than in the locking position. Thus, the spring element 15 in the unlocking position provides a spring force by means of which the switching element 12 can be moved or is moved out of the unlocking position into the locking position. The switching element 12 can thus be moved out of the locking position into the unlocking position in opposition to the spring element 15 or in opposition to the spring force provided by the spring element 15.
The switching element 12 and 14 are components formed separately from each other. Here, the coupling device 11 moreover comprises a housing 16 formed, for example, as a sleeve, which is formed separately to the outlet tilting lever 6 and separately from the switching elements 12 and 14. Moreover, the switching elements 12 and 14 are formed separately from the outlet tilting lever 6. Here, the housing 16 is received at least partially in a receiver 17 of the outlet tilting lever 6 formed, for example, as a passage opening. Here, the coupling device 11 is held on the outlet tilting lever 6 via the housing 16, for example. Here, the housing 16 has a male thread 18 and is screwed into a correspondingly formed female thread 19 of the receiver 17 of the outlet tilting lever 6. The coupling device 11 comprises a nut 20 formed separately from the housing 16 and separately from the outlet tilting lever 6, which nut also has a female thread 19 corresponding to the male thread 18. The male thread 18 is screwed to the female thread 19, whereby the housing 16 is secured via the nut 20 in the movement direction on the outlet tilting lever 6 against distorting in relation to the outlet tilting lever 6. To do so, the nut 20 can be supported or is supported on the outlet tilting lever 6 on the housing 16. If the housing 16 is rotated in relation to the outlet tilting lever 6, this results in a movement of the housing 16 and the switching elements 12 and 14 taking place in relation to the outlet tilting lever 6 in the movement direction. Thus, a clearance, also referred to as a valve clearance, in particular between the coupling device 11 and the valve bridge 10 is set.
The valve bridge 10 can be actuated by the coupling device 11 via a joint 21 formed, for example as a ball joint, and thus by the outlet tilting lever 6 via the joint 21 and the coupling device 11 and can thus be moved out of the second starting position into the second actuation position. The joint 21 presently comprises a ball socket formed by a ball cap 22 of the joint 21 and a joint head 23 formed, for example, as a ball joint head, the joint head engage in the ball cap 22. Thus, the ball cap 22 is flexibly connected to the joint head 23 formed as a ball head in the manner of a ball joint, such that the ball cap 22 can be pivoted in relation to the joint head 23 and, in particular, in relation to the switching elements 12 and 14 in the manner of a ball joint. For example, the ball cap 22 can be supported on the valve bridge 10, such that the valve bridge 10 can be actuated by the outlet tilting lever 6 via the joint 21 and the coupling device 11. Presently, the joint head 23 is provided on the switching element 14. In particular, the joint head 23 is formed by the switching element 14. Furthermore, it can be provided that the joint head 23 and the switching element 14 are formed integrally with each other.
As can be seen from
In particular for each form-fit element 25, the switching element 14 has a second recess 28, which is formed, for example, as a passage opening. In particular for each form-fit element 25, the switching element 12 has a third recess 29. A support region 30 of the switching element 12 is attached to the third recess 29 in the movement direction towards the valve bridge 10. If the switching element 12 is in its locking position, then the form-fit element 25 is supported on the support region 30 of the switching element 12. Thus, the form-fit element 25 is held in a first position in which the form-fit element 25 simultaneously engages in the first recess 27 and the second recess 28. In doing so, the form-fit element 25 interacts in a form-fit manner with both the switching element 14 and with the housing 16 or with the outlet tilting lever 6. Thus, the coupling device 11 is locked, i.e., in doing so, the coupling device 11 is in its locking state. The locking state can be seen particularly well in
In the first position, the form-fit element 25 is at least partially, in particular at least extensively or completely, covered by or overlaps with, the support region 30 in the swerving direction that coincides with the direction illustrated by the double arrow 26 and points to the switching element 12, and here the form-fit element is supported on the support region 30, whereby the switching element 12 prevents the form-fit element 25 from being moved in the direction illustrated with the double arrow 26 and thus into the switching element 14 and being able to move away from the outlet tilting lever 6 or from the housing 16 and move out of the first recess 27.
If the switching element 12 is moved out of the locking position into the unlocking position in relation to the outlet tilting lever 6 and, here, in relation to the switching element 14 and in relation to the housing 16, in particular translationally, in the movement direction, whereby the spring element 15 is tensioned, then the recess 29 of the switching element 12 comes into such overlap or covering with the form-fit element 25 that the form-fit element 25 is then covered or overlapped by the third recess 29 in the direction illustrated with the double arrow 26. As a result, the form-fit element 25 is then moved in the direction 26 out of the first position, which can be seen in
It can be seen particularly well in
By the coupling device 11 now being held on the outlet tilting lever 6 and thus also being able to be pivoted around the pivoting axis 9 with the outlet tilting axis 6, a switching of the coupling device 11 between the locking state and the unlocking state can be linked precisely and in a defined manner with the pivoting of the outlet tilting lever 6 around the pivoting axis 9, in particular in such a way that the coupling device 11 is switched, in particular exclusively, by pivoting the outlet tilting ever 6 around the pivoting axis 9. Thus, it can be ensured that the coupling device 11 is switched during the base circular phase and not during the actuation phase, such that half switches of the coupling device 11 and resulting excessive loads of the valve actuation device 1 can be safely avoided.
Here, the valve actuation device 1 comprises an actuation element 38, which is formed as a mechanical spring, i.e., as a mechanical spring element, in the exemplary embodiment shown in the figures. The outlet tilting lever 6 and, with this, the coupling device 11 and thus the switching element 12 can be pivoted around the pivoting axis 9 in relation to the actuation element 38. By pivoting the outlet tilting lever 6 and the switching element 12 out of the first actuation position into the first starting position, the switching element 12 can be moved out of the locking position into the unlocking position by means of the actuation element. Moreover, by pivoting the outlet tilting lever 6 out of the first actuation position into the first starting position, the actuation element 38 can be moved out of an active position that can be seen in
To do so, the valve actuation device 1 has a movement element 39 provided in addition to the coupling device 11. The movement element 39 is formed as a piston and can be held on the outlet tilting lever 6 and thus also pivoted with the outlet tilting lever 6 around the pivoting axis 9. Here, the piston 39 can be moved, in particular translationally, in a switching direction illustrated in
However, if the outlet tilting lever 6 is moved out of the first actuation position into the first outlet position while the piston 39 is in the rest position, then the shell surface 41 or the piston 39 on the outer peripheral side does not come into supported abutment with the actuation element 38 (
It can be seen particularly well from
It can be seen particularly well from
A mechanical spring element in the form of a first tilting lever spring 46 is allocated to the roller 34 (cam follower), by means of which the roller 34 is held or can be held in supported abutment with the cam 31. To do so, the tilting lever spring 46 is supported, on one side, at least indirectly, in particular directly, on the outlet tilting lever 6 in the region of the roller 34 and, on the other side, at least indirectly, in particular directly, on a spring bracket 47. The actuation element 38 is held on the spring bracket 47 and is arranged, for example, between the tilting lever spring 46 and the spring bracket 47, and here can be supported or is supported in particular on the spring bracket 46 in a direction indicated by the outlet tilting lever 6. If the actuation element 38 is moved out of the active position into the withdrawal position, for example, by means of the piston 39 in the movement position, then the actuation element 38 is thus deformed elastically. If the outlet tilting lever 6 and, with this, the piston 39 are then moved or pivoted out of the first starting position into the first actuation position, then the actuation element 38, which is elastically deformed in the withdrawal position and thus in the first starting position, can spring back elastically and thus elastically return to the active position, in particular independently or automatically. The actuation element 38 remains in the active position when the outlet tilting lever 6 is pivoted out of the first actuation position into the first starting position, and the piston is here in the rest position. In order to here move the switching element 12, for example, by means of the actuation element 38 out of the locking position into the unlocking position, then the actuation element 38 is supported or can be supported on the spring bracket 47. The spring element 15 or the spring force that is provided or can be provided by means of the spring element 15 is not sufficient in order move the actuation element 38 initially in the active position out of the active position into the withdrawal position when the outlet tilting lever 6 and, with this, the coupling device 11 are pivoted out of the first actuation position into the first starting position, but rather the switching element 12 is moved out of the locking position into the unlocking position by means of the actuation element 38.
It can be seen from
Moreover, the valve actuation device 1 comprises a spring element 50 formed as a mechanical spring, which is arranged on a side 51 of the piston 39 facing away from the working chamber 49, in particular in the switching direction illustrated by the double arrow 40. The spring element 50 can be supported or is supported in the switching direction on one side at least indirectly, in particular directly, on the piston 39, in particular on a further end face 52 of the piston. Here, the end face 52 is facing away, in particular in the switching direction. On the other side, the spring element 52 can be supported or is supported at least indirectly, in particular directly, on the outlet tilting lever 6. Presently, the spring element 50 can be supported or is supported on the other side via a plate or a safety ring 53 on the outlet tilting lever 6.
If the piston 39 is moved out of the movement position into the rest position in relation to the outlet tilting lever 6, then the spring element 50 is thus tensioned. The spring element 50 is thus tensioned more greatly in the rest position of the piston 39 than in the movement position, such that the spring element 50 provides a spring force at least in the rest position. The piston 39 can be moved or is moved out of the rest position into the movement position by means of this spring force provided by the spring element 50 in the rest position. In other words, by means of the oil introduced into the working chamber 40, the piston 39 is moved out of the movement position into the rest position in opposition to the spring force of the spring element 50 and, in particular, is held in the rest position. For example, by discharging the oil out of the working chamber 49 or by an outflow of the oil initially received in the working chamber 40 from the working chamber 40 being permitted, the spring element 50 can be at least partially relaxed. In doing so, the piston 39 is moved out of the rest position into the movement position by means of the spring force of the spring element 50 or by means of the spring element 50.
The braking tilting lever (second tilting lever 7) and, in particular, its function can be seen particularly well from
The coupling device 57 is provided to activate and deactivate the engine brake. Here, as is known from the prior art and here from EP 2 425 105 B1, for example, the coupling device 57 comprises a piston 58 also referred to as a hydraulic piston, which can be moved and thus can be shifted translationally in a direction illustrated by a double arrow 59 in
Furthermore, it can be seen from
If, however, the braking tilting lever 7 is actuated, in particular by means of the cam 54, and is thus pivoted around the pivoting axis 9 in relation to the tilting lever axis 8 while the piston 58 is in the retracted position, i.e., while the engine brake is deactivated, then an actuation of the gas exchange valve 3 stops despite the braking tilting lever 7 pivoting or actuating. If the piston 58 is in the retracted position while the braking tilting lever 7 is actuated, i.e., pivoted, then the piston 58 also referred to as an actuation piston or actuator piston, does not come into contact, or only marginally, with the valve cap 24 in such a way that an actuation of the gas exchange valve 3 stops (
If the piston 58 is initially in its retracted position, for example, then the piston 58 is moved out of the retracted position into the extended position in such a way that the oil is introduced into the working chamber 69 via the channel 44. Thus, the piston 58 and, with this, the further collar 66 are shifted in a extending direction coinciding with the shifting direction, illustrated in
Overall, it can be seen that the outlet tilting lever (first tilting lever 6) includes the switching element 12 for switching off the respective stroke of the gas exchange valves 2 and 3, also referred to as an outlet stroke. In comparison to convention solutions, this allows a greater degree of freedom when designing the cam elevation of the cam 54, also referred to as the brake cam elevation, whereby in turn a particularly high braking performance, also referred to as engine braking performance, of the engine brake can be achieved. In particular, a so-called four-tact decompression brake can be implemented by means of the valve actuation device 1, which is also referred to as a four-tact engine braking system. The depiction of a two-tact engine braking system is also conceivable, which could, however, necessitate an additional switch of a valve train on the inlet side from a four-tact to a two-tact operation.
Overall, it can furthermore be seen that the switching element 12 is a hydraulic-mechanically actuated or actuatable and mechanically locked or lockable switching element, since firstly the piston 39 is hydraulically actuated to actuate or unlock the coupling device 11 and here is moved out of the movement position into the rest position. As a result, the switching element 12 is mechanically actuated by means of the actuation element 38 and, is here moved out of the locking position into the unlocking position, for example. Moreover, the form-fit element 25 enables a mechanical locking of the switching element 12 in the locking state of the coupling device 11 in the manner described. The special feature lies, in particular, in the fact that the stroke switch-off is carried out hydraulically or is caused hydraulically or initiated by the piston 39 being moved hydraulically, yet the actual switching trigger, i.e., the actual unlocking of the coupling device 11, is carried out mechanically or is controlled mechanically via the outlet tilting lever 6 and, in particular, its pivoting out of the first actuation position into the first starting position. In doing so, on one hand, a simply hydraulic switching actuation can be carried out. On the other hand, the switching process, i.e., switching the coupling device 11, is carried out by actuating the switching 12 via a deflection, i.e., via pivoting the outlet tilting lever 6 within or during the base circular phase of the cam 31 via pivoting the braking tilting lever (second tilting lever 7), such that the coupling device 11 is clearly and thus safely switched. In particular, it makes it possible to completely switch the valve actuation device 1, the switching element 12 within the base circular phase and thus to switch the coupling device 11 completely within the base circular phase, whereby half-switched states of the coupling device 11 and resulting excessive component loads can be avoided.
Furthermore, it can be seen that the piston 39 is spring loaded and is in the movement position in a spring-loaded manner. By means of a periodic movement, in particular by means of a periodic pivoting, of the outlet tilting lever (first tilting lever 6) from the base circular phase into the actuation phase, also referred to as the stroke phase, and back again into the base circular phase. The piston 39 also raises the actuation element 38 formed, for example, as a flat spring, periodically in the stroke phase, in particular at the end of it, via its shell surface 41 on the side of the outer periphery. The actuation element 38 is used to trigger the switching process, in particular for unlocking the coupling device 11, and in its raised position, i.e., in its withdrawal position, cannot press on the switching element 12 formed, for example, as a pin, and thus the switching element 12 cannot not move out of the locking position into the unlocking position and thus the coupling device 11 cannot unlock. Thus, the coupling device 11 remains in its locking state, and an outlet stroke is completely transferred from the cam 31 via the braking tilting lever 7, the coupling device 11 and the valve bridge 10 to the gas exchange valves 2 and 3. As a result, the gas exchange valves 2 and 3 are actuated, i.e., opened. In order to switch on the engine brake, i.e., in a switching process for switching on or activating the engine brake, a lacuna is led via a hydraulic circuit, which supplies the braking tilting lever 7 with oil and here comprises the channel 44, for example, also via the channel 44 to the piston 39 functioning as a switching piston and is here introduced into the working chamber 49 in particular. In doing so, the shifting of the piston 39 described above out of the movement position into the rest position is caused. As a result, the piston 39 with its shell surface 41 on the side of the outer periphery can no longer raise the actuation element 38 formed, for example, as a switching spring or functioning as a switching spring, i.e., can no longer move it out of the active position into the withdrawal position, whereby the actuation element 38 actuates the switching element 12 formed, for example, as a pin in a closing phase of the outlet tilting lever 6, i.e., when the outlet tilting lever 6 is moved back into its first starting position and, as a result, is moved out of the locking position into the unlocking position. In doing so, the coupling device 11 is unlocked, and in or from the next stroke phase, i.e., in a following work cycle, the stroke of the gas exchange valves 2 and 3 is absent. Moreover, the piston 58 formed or functioning as a hydraulic braking piston extends, in particular simultaneously, out of the braking tilting lever 7, whereby a braking stroke is transferred from the cam 54 functioning as a braking cam, via the braking tilting lever 7 and the coupling device 57, in particular the piston 58, and optionally the valve cap 24 to the gas exchange valve 3. As a result, the gas exchange valve 3 carries out the braking stroke, while an actuation of the gas exchange valve 2 or a movement of the valve bridge 10 out of the second starting position into the second actuation position stops. In order to switch off or when switching off the engine brake, a hydraulic pressure is now correspondingly lowered or raised in the working chamber 49 and preferably in the working chamber 69, such that the piston 39 is moved by means of the spring element 50 out of the rest position into the movement position, and such that the piston 58, for example, is moved, in particular shifted, by means of the spring element 65 out of the extended position into the retracted position in relation to the braking tilting lever 7. Here, the piston 58 is retracted into the braking tilting lever 7 in a retracting direction illustrated in
As a result, the piston 39 with its shell surface 41 on the side of the outer periphery can raise the actuation element 38 again or move it out of the active position into the withdrawal position, such that the actuation element 38 no longer actuates the switching element 12 in a closed phase of the outlet tilting lever 6 and thus no longer moved it out of the locking position into the unlocking position. As a result, the switching element 12 is spring loaded, i.e., locks again by means of the spring element 15 or moves out of the unlocking position into the locking position, whereby the piston device 11 is locked. In a subsequent work cycle, the outlet stroke is carried out again by the gas exchange valves 2 and 3 during the next stroke phase, for example. Moreover, the piston 58 is spring loaded, in particular simultaneously, i.e., retracted again by means of the spring element 15, i.e., moves out of the extended position into the retracted position. The switching element 12 or the coupling device 11 in or on the outlet tilting lever 6 ends, in principle, on the roller seal, as can be used with or in guns.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 008 860.3 | Dec 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/084548 | 12/3/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/122046 | 6/24/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7789065 | Yang | Sep 2010 | B2 |
10309273 | Kim | Jun 2019 | B2 |
20100170472 | Yang | Jul 2010 | A1 |
20120024260 | Groth et al. | Feb 2012 | A1 |
20180058271 | Baltrucki et al. | Mar 2018 | A1 |
20210254562 | McCarthy, Jr. | Aug 2021 | A1 |
20220307389 | Edke | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
102014205813 | Oct 2015 | DE |
10 2016 119 635 | Apr 2017 | DE |
2 425 105 | Mar 2012 | EP |
2 439 381 | Apr 2012 | EP |
3 012 440 | Apr 2016 | EP |
WO 2010078280 | Jul 2010 | WO |
WO 2010126479 | Nov 2010 | WO |
Entry |
---|
PCT/EP2020/084548, International Search Report dated Mar. 4, 2021 (Three (3) pages). |
Number | Date | Country | |
---|---|---|---|
20230016116 A1 | Jan 2023 | US |