Valve anchor and installation method

Information

  • Patent Grant
  • 11026781
  • Patent Number
    11,026,781
  • Date Filed
    Thursday, November 21, 2019
    4 years ago
  • Date Issued
    Tuesday, June 8, 2021
    3 years ago
Abstract
Anchor devices and methods can be used to secure a prosthetic valve to a native valve annulus. The anchor device can be a separate expandable element from the prosthetic valve that is first advanced to the annulus and deployed, after which an expandable prosthetic valve is advanced to within the annulus and deployed. The combination of the two elements can apply a clamping force to the valve leaflets which holds the prosthetic valve in place. The anchor device can have a lower or ventricular portion and an upper or atrial portion. The anchor device can include one or more leaflet clamping portions. One, two, or more upstanding vertical posts between the clamping portions can extend upward at the valve commissures and support the upper portion, which can include one or more structures for leak prevention.
Description
FIELD OF THE INVENTION

The present invention relates to repairing or replacing a native valve, including to devices for anchoring or docking a prosthetic valve at a native valve and a corresponding installation methods.


BACKGROUND OF THE INVENTION

The heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary. Heart valves are comprised of a dense fibrous ring known as the annulus, and flexible tissue leaflets or cusps attached to the annulus.


Heart valves can be rendered less effective by congenital, inflammatory, or infectious conditions. Such conditions can eventually lead to serious cardiovascular compromise or death. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during open heart surgery, where the prosthetic valve is sutured in place while the patient is on cardiopulmonary bypass. Such surgeries are time-consuming, dangerous and prone to complication.


Less invasive transvascular and transapical techniques can be used for introducing and implanting a prosthetic heart valve off-pump and while the heart is beating. For example, a prosthetic valve can be mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the valve reaches the implantation site. The valve at the catheter tip can then be expanded to its functional size at the site of the defective native valve, such as by inflating a balloon on which the valve is mounted. Alternatively, the valve can have a resilient, self-expanding stent or frame that expands the valve to its functional size when it is advanced from a delivery sheath at the distal end of the catheter. These are sutureless techniques which can greatly reduce the procedure time.


One issue with sutureless valves is the potential for valve migration. For example, when an aortic prosthetic valve is deployed, a 100-200 mmHg pressure can load on the aortic valve immediately. The pressure times the valve surface area can produce a substantial load force on the prosthetic valve and might cause valve migration towards the aortic arch.


Treatment of the mitral valve can present additional challenges, and methods and apparatuses appropriate for the aortic valve may not be well suited for use with the mitral valve. For instance, the mitral valve includes clusters of chordae tendineae extending from the valve leaflets to the walls of the ventricle that may interfere with placement of the prosthesis. The shape of the mitral valve, rather than being circular and uniform like the aortic valve, can be an oval or kidney-like shape that may not be well suited for supporting conventional stents of cylindrical configuration. Further, whereas the aortic valve annulus is often entirely surrounded by muscular tissue, the mitral valve annulus may be bounded by muscular tissue on the outer (posterior) wall only. The anterior side of the mitral valve annulus is bounded by a thin vessel wall adjacent the left ventricular outflow tract (“LVOT”), which must remain open to allow blood to pass into the aorta. As a result, the stent-type fixation may not be suitable for the mitral valve because the anterior side of the native valve has insufficient radial strength and can distort, risking occlusion of the left ventricular outflow tract. Moreover, mitral valve disease often is accompanied by (or caused by) gradual enlargement of the native annulus and/or the left ventricle. Thus, treatment approaches which rely upon radial engagement with or outward compression against the native annulus can be subject to failure as the size and shape of the annulus changes.


Despite certain advances, there remains a need for improved methods, systems, and apparatus for implanting prosthetic heart valves to the mitral annulus.


SUMMARY OF THE INVENTION

This summary is meant to provide examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the features. Also, the features described here and elsewhere in the application can be combined in a variety of ways.


The present application discloses embodiments of an anchor device and methods used to secure a prosthetic heart valve to a native heart valve annulus. The anchor device can be a separate expandable element from the heart valve prosthesis that can be first advanced to the native annulus and deployed, after which an expandable heart valve prosthesis can be advanced to within the native annulus and/or anchor device and deployed. The combination of an anchor device and heart valve prosthesis can apply a clamping force to the heart valve leaflets which holds the prosthetic heart valve in place.


The anchor device can have a lower portion (e.g., a ventricular portion disposable/positionable in the left ventricle) and an upper portion (e.g., an atrial portion disposable/positionable in the left atrium). The lower portion can include one or more leaflet clamping portions, for example, two leaflet clamping portions opposite one another that are positioned radially outside the native valve leaflets. One, two, or more upstanding vertical posts between the clamping portions can extend upward at the valve commissures and support the upper portion, which can include one or more structures for leak prevention.


Anchor devices herein can be for securing a prosthetic valve at a native valve (e.g., a native valve between an atrium and a ventricle such as a mitral or tricuspid valve). The Anchor devices can comprise a lower or ventricular portion and an upper or atrial portion. The lower or ventricular portion can be below the upper or atrial portion. The lower or ventricular portion can have an expandable tubular body about a vertical axis and can comprise struts (e.g., undulating struts). The tubular body can define one, two, three, or more leaflet clamping portions (e.g., two leaflet clamping portions opposite one another). Each can be defined by at least one peak extending upward. There can also be a downward valley on opposite sides of the lower or ventricular portion or the peak (e.g., between two leaflet clamping portions). The anchor device can be configured to receive and/or optionally include an expandable prosthetic valve expanded within the anchor device.


The anchor devices can further include one or more upstanding vertical posts, for example, an upstanding vertical post commencing at each valley of the undulating struts and extending upward beyond a maximum height of the peaks of the two leaflet clamping portions and terminating in the upper or atrial portion. The vertical posts can be located less than 180° from each other around a circumference of the anchor device (e.g., if only two posts are used, they can but do not need to be 180° apart). The upper or atrial portion can include an annular ring of porous material attached to top ends of the vertical posts. The annular ring of porous material can be selected from the group consisting of polyester fabric, porous polymer material, ePTFE, foam, other materials, or some or all of the foregoing. The upper or atrial portion can include a pair of Y-shaped struts at a terminal end of each vertical post, which can optionally include a cover. The atrial portion can include a wire ring at a terminal end of each vertical post, which can optionally include a cover.


The clamping portions can each include at least two peaks and one valley therebetween. The clamping portions can be covered (e.g., with fabric, a coating, a polymer material, and/or other material).


Each strut can have a variety of shapes, the same or different. As one example each strut can include an undulating S-shape and terminate in an asymptotic manner at each end at a peak and a valley. The struts can also define a sinusoidal pattern.


The lower or ventricular portion can include one or more integrally formed downwardly extending legs that terminate below the valleys in buckles to facilitate manipulation and deployment of the anchor device. The legs can each extend downward from one of the peaks of the clamping portions. In one embodiment, there are three of the legs and three buckles. The buckles can form squares or rectangles or another shape with a hole therethrough.


Additional features and/or components described elsewhere herein can also be used.


Methods herein (e.g., a beating heart method) can be for securing a prosthetic valve at a native valve (e.g., a native valve between an atrium and a ventricle). The native valve has native leaflets (and, optionally, attached chordae in the ventricle), and commissures between the leaflets at a native annulus of the native valve. The Methods can comprise advancing an anchor device to the native valve, the device having a lower (e.g., ventricular) portion and an upper (e.g., atrial) portion. The lower or ventricular portion can have an expandable tubular body about a vertical axis comprising undulating struts.


In one embodiment, the tubular body has two leaflet clamping portions opposite one another. The two leaflet clamping portions each defined by at least one peak and two valleys in between the two leaflet clamping portions. The anchor device further including two upstanding vertical posts each commencing at a separate valley of the undulating struts and extending upward beyond a maximum height of the peaks of the two leaflet clamping portions and terminating in the upper or atrial portion. The anchor device struts can be Nitinol, and each clamping portion can have at least two peaks and one valley therebetween. The clamping portions can be covered with fabric.


The atrial portion can be formed in a variety of ways. For example, the atrial portion can comprise a tubular foam member. The atrial portion can also include a pair of Y-shaped struts at a terminal end of each vertical post. A fabric cover can be included across each pair of Y-shaped struts. Optionally, the atrial portion includes a wire ring at a terminal end of each vertical post. A cover can be included across the wire rings.


The methods can also comprise expanding the lower or ventricular portion of the device below the annulus (e.g., in a ventricle) and positioning the two leaflet clamping portions radially outside respective leaflets of the native leaflets. The methods can also comprise positioning the upstanding posts such that they project upward at valve commissures (e.g., two upstanding posts at two valve commissures) and support the upper or atrial portion above the native annulus (e.g., in the atrium).


The methods can also comprise advancing an expandable prosthetic valve to within the native leaflets and expanding to compress the native leaflets outward against the leaflet clamping portions of the device. Optionally, the anchor device and prosthetic valve can be deployed using one access or delivery system or two separate access or delivery systems.


Additional steps described elsewhere herein can also be used, and the steps of the methods can be reordered.


A system for securing a prosthetic valve at a native valve can comprise an expandable/collapsible anchor device having a first portion or lower portion below a second portion or an upper portion, the first or lower portion having an expandable tubular body about a vertical axis and comprising struts (e.g., undulating struts, etc.), the tubular body defining a leaflet clamping portion defined by at least one peak extending upward, wherein there is a downward valley on the first or lower portion adjacent the at least one leaflet clamping portion, the device further including an upstanding vertical post commencing at the downward valley and extending upward beyond a maximum height of the at least one peak of the leaflet clamping portion and terminating in the second or upper portion.


The system can also include one or more additional leaflet clamping portions (e.g., a second leaflet clamping portion). The leaflet clamping portions can be defined by at least one peak or more than one peak extending upward. In one embodiment, the clamping portions each include at least two peaks and one valley therebetween. The leaflet clamping portion(s) can be covered with fabric.


The struts can take on a variety of shapes and configurations. In one embodiment, the device includes undulating struts and each undulating strut has an S-shape and terminates in an asymptotic manner at each end at a peak and a valley.


The system can include one or more additional vertical posts (e.g., a second upstanding vertical post). In one embodiment, the vertical posts commence at a second downward valley and extend upward beyond a maximum height of the at least one peak of the leaflet clamping portion and terminating in the second or upper portion. The vertical posts can be located less than 180° from each other around a circumference of the anchor device. This can be beneficial when native commissures are not located 180° apart from each other, for example, as installed in a mitral valve.


The lower portion can include one or more integrally formed downwardly extending legs that terminate below the valleys in buckles to facilitate manipulation and deployment of the anchor device. In one embodiment, at least one of the legs extends downward from the at least one peak of the leaflet clamping portion. In one embodiment, there are three of the downwardly extending legs and buckles. The buckles can form squares or rectangles or another shape with a hole therethrough.


The second or upper portion can include an annular ring of porous material attached to top end of the vertical post. The annular ring of porous material can be selected from the group consisting of polyester fabric, porous polymer material, ePTFE, and foam or another material. The second or upper portion can include a pair of Y-shaped struts at a terminal end of each vertical post. A fabric cover can be included across each pair of Y-shaped struts. The second or upper portion can include a wire ring at a terminal end of each vertical post. A fabric cover can be included across the wire rings.


The system can also include an expandable prosthetic heart valve, which can be expanded within the anchor device.


Additional features and/or components described elsewhere herein can also be used.


The methods herein (e.g., methods of securing a prosthetic valve at a native valve) can comprise advancing an anchor device to the native valve. The anchor device can be the same as or similar to other anchor devices described elsewhere herein. For example the anchor device can have a first portion or lower portion and a second portion or upper portion. The first or lower portion can have an expandable tubular body about a vertical axis comprising struts (e.g., undulating struts). The tubular body can have one or more leaflet clamping portions. A leaflet clamping portion can be defined by at least one peak and valleys adjacent the at least one peak. The anchor device can further include one or more upstanding vertical posts. An upstanding vertical post can commence at a valley of the undulating struts and extend upward beyond a maximum height of the at least one peak of the leaflet clamping portion and terminating in the second or upper portion. The anchor device struts can be Nitinol, and each clamping portion can have one or more peaks and valleys (e.g., at least two peaks and one valley) therebetween. The clamping portions can be covered with fabric.


The second or upper portion can include a tubular foam member. The second or upper portion can include a pair of Y-shaped struts at a terminal end of each vertical post. A fabric cover can be used across each pair of Y-shaped struts. The second or upper portion can include a wire ring at a terminal end of each vertical post and can include a cover across the wire rings.


The methods can also include expanding the first or lower portion of the device below the native valve or native valve annulus and can include positioning the leaflet clamping portion radially outside at least one leaflet of native leaflets of the native valve. The methods can also include positioning the upstanding vertical post such that it projects upward at a native valve commissure and supports the second or upper portion above the native annulus or the native valve.


The methods can also comprise advancing an expandable prosthetic valve to within the native leaflets and expanding the prosthetic valve to compress the at least one leaflet outward against the leaflet clamping portion.


The methods can include using the same access system or delivery system to deploy the anchor device and the prosthetic valve or using two separate access systems.


Additional steps described elsewhere herein can also be used, and the steps of the methods can be reordered.


Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic perspective view from the atrial side of a mitral valve and a sectional view of the subvalvular anatomy of the left ventricle;



FIG. 1B is an atrial plan view of the mitral valve leaflets indicating common nomenclature initials for regular anatomical features;



FIG. 1C is a laid-flat diagram of the mitral valve leaflets and subvalvular structure with anatomical descriptors;



FIGS. 2A and 2B are side and top perspective views of an exemplary anchor device of the present application having an undulating ventricular portion and a tubular leak-preventing atrial portion, while FIG. 2C is an exploded view thereof;



FIG. 3A is a schematic perspective view of the mitral valve similar to FIG. 1A that shows the position of the anchor device when deployed;



FIG. 3B is a laid-flat diagram of the mitral valve and a portion of the deployed anchor device;



FIG. 3C is a schematic perspective view similar to FIG. 3A after delivery of a prosthetic heart valve within the anchor device;



FIGS. 4A-4D are exemplary leak-preventing atrial portions that can be used with the anchor devices described herein;



FIG. 5 is an atrial plan view of the mitral valve leaflets indicating an exemplary dashed line outline for an anchor device as described herein;



FIG. 6 is a plan view of just a lower or ventricular portion of an anchor device configured to match the dashed line outline of FIG. 5;



FIG. 7 is an elevational view of the lower or ventricular portion of an exemplary anchor device with an undulating dashed line superimposed thereon;



FIG. 8 is an elevational view of the lower or ventricular portion of an alternative anchor device shaped like the undulating dashed line from FIG. 7;



FIG. 9 is an elevational view of the lower or ventricular portion of a further exemplary anchor device having an undulating shape and a fabric cover.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following description and accompanying figures, which describe and show certain embodiments, are made to demonstrate, in a non-limiting manner, several possible configurations of systems, platforms, devices, methods, etc. that may be used for various aspects and features of the present disclosure.


Anchor devices for assisting in implanting a prosthetic heart valve at a native valve (e.g., a mitral valve, tricuspid valve, etc.) are described. An anchor device can be separate from and separately implanted prior to the prosthetic heart valve. Once the anchor device has been installed at the native valve (e.g., mitral valve, etc.), the prosthetic heart valve is delivered and coupled thereto. This process may be accomplished using one combined or two separate catheters, delivery systems/devices, or access systems/devices. While examples are given herein with respect to the mitral valve, use of the devices, systems, methods, etc. described herein is not limited to use with the mitral valve and can be applied in other valves (e.g., aortic valve, pulmonary valve, tricuspid valve) or other locations.


The anchor devices can be used in connection with various types of expandable valves, for example, with a balloon-expandable prosthetic heart valve such as the Edwards SAPIEN 3 Transcatheter Heart Valve (THV) made by Edwards Lifesciences of Irvine, Calif., or such as described in U.S. Pat. No. 6,730,118, which is hereby expressly incorporated herein by reference. However, these exemplary THVs should not be construed as limiting, and embodiments of the disclosed anchor device(s) can be used to secure a wide variety of THVs delivered through a variety of mechanisms (e.g., self-expanding heart valves, other balloon-expanding heart valves, mechanically-expandable heart valves, and the like). The term, “expandable heart valves” is intended to encompass all such varieties.


Exemplary delivery routes through the body and into the heart for both the anchor device(s) and prosthetic heart valve include transvascular (e.g., transfemoral) routes, transapical routes, and transaortic routes, among others. In a transvascular approach, a catheter can be inserted into the vasculature at a site that is relatively distant from the heart. An anchor device or prosthetic valve can be mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the valve reaches the implantation site. The valve at the catheter tip is then expanded to its functional size at the site of the defective native valve such as by inflating a balloon on which the valve is mounted.


Various delivery or access systems having a catheter or sheath can be used. The anchor device and prosthetic heart valve can be deployed using one access system or delivery system for near simultaneous delivery, or with two separate systems for sequential delivery. One delivery system adapted for use in introducing a prosthetic valve into a heart in a transapical procedure is disclosed in U.S. Pat. No. 8,439,970, which is incorporated herein by reference. In a transapical procedure, a prosthetic valve is introduced into the left ventricle through a surgical opening in the apex of the heart. The delivery system in the '970 patent similarly can be used for introducing a prosthetic valve into a heart in a transaortic procedure. In a transaortic procedure, a prosthetic valve is introduced into the aorta through a surgical incision in the ascending aorta, such as through a partial J-sternotomy or right parasternal mini-thoracotomy, and then advanced through the ascending aorta toward heart. Percutaneous or transcatheter delivery systems are also possible.



FIG. 1A is a schematic perspective view from the atrial side of a mitral valve 200 and a sectional view of the subvalvular anatomy of the left ventricle 202. The mitral valve 200 primarily comprises a pair of coapting leaflets—an anterior leaflet 204 and a posterior leaflet 206—secured around their outer edges to a fibrous mitral annulus 208. The inner edges of the anterior and posterior leaflets 204, 206 connect to string-like chordae tendineae 210 that extend down into the left ventricle 202 and are tethered at papillary muscles 212 that extend upward from the muscular myocardium 214 defining the left ventricular cavity. As the main outlet pumping chamber of the heart, the myocardium 214 contracts in systole which reduces tension in the chordae tendineae 210 and permits the leaflets 204, 206 to come together or coapt. Contraction of the volume within the left ventricle 202 sends blood out through the aortic valve (not shown) and into the body. In diastole, the myocardium 214 expands outward pulling the chordae tendineae 210 down in tension to help open the leaflets 204, 206 and pulling blood through the mitral valve 200 to fill the cavity of the left ventricle 202.



FIG. 1B is an atrial plan view of the leaflets 204, 206 of the mitral valve 200. The surrounding mitral annulus 208 is often described as it D-shaped with a somewhat straighter side adjacent the anterior leaflet 204 and a more rounded or convex side adjacent the posterior leaflet 206. The leaflets are shaped such that the line of coaptation resembles a smile that approximately parallels the posterior aspect of the mitral annulus 208. The anterior leaflet 204 spans a smaller peripheral aspect around the mitral annulus 208 than the posterior leaflet 206, but the anterior leaflet 204 has a single cusp with a convex free edge that extends farther into the orifice defined by the mitral annulus 208. Typically, the anterior leaflet 204 has three labeled regions or cusps A1, A2, A3 around its periphery. The posterior leaflet 206, on the other hand, is typically divided by creases into three cusps P1, P2, P3 around its periphery and has a generally concave free edge. Two commissures—an anterior commissure 220 and a posterior commissure 222—generally defined the intersection of the line of coaptation between the two leaflets 204, 206 and the mitral annulus 208. The region at both the anterior commissure 220 and posterior commissure 222 may not be so clear, and sometimes a cusp or leaflet is defined at those points, as will be seen.



FIG. 1C is a laid-flat diagram of the mitral valve leaflets 204, 206 and subvalvular structure with anatomical descriptors. In particular, the free edges of both the anterior leaflet 204 and posterior leaflet 206 (as well as the commissure leaflet 224 if present) connect to the chordae tendineae 210 and then to the subvalvular papillary muscles. There are two papillary muscles—an anterolateral and a posteriormedial papillary muscles 226, 228. The chordae tendineae extending upward from each of the papillary muscles connects to parts of both of the leaflets 204, 206. Also shown in the heart wall outside of the left ventricle 202 are the coronary sinus 230 and circumflex artery 232.



FIGS. 2A and 2B are side and top perspective views of an exemplary anchor device 20 of the present application having an undulating lower portion 22 (generally referred to as a “ventricular portion,” but can be used in other locations) and a tubular leak-preventing upper portion 24 (generally referred to as an “atrial portion,” but can be used in other locations), while FIG. 2C is an exploded view thereof.


The ventricular portion 22 of the illustrated anchor device 20 includes a plurality of peaks 30 evenly alternating with the same number of valleys 32 around its circumference, in an undulating fashion. In one exemplary embodiment there are six peaks 30 spaced 60° apart, each 30° separated from adjacent valleys 32. The peaks and valleys 30, 32 desirably lie in a tubular space such that the peaks 30 are positioned above the valleys 32 along a Z-axis, generally parallel to blood flow through the mitral valve when the device is implanted.


Descending and ascending circumferential struts 34, 36 connect each two adjacent peaks 30 and valleys 32. More particularly, as viewed looking down along the axis Z, a first circumferential strut 34 extends clockwise (CW) down from each one of the peaks 30 to each one of the valleys 32, and a second circumferential strut 36 extends up from the valley CW to the next peak. The circumferential struts 34, 36 can be generally S-shaped, with two distinct curvatures separated by a point of inflection. More specifically, each of the struts 34, 36 can terminate at its corresponding peak and valley in an asymptotic manner such that it is nearly aligned with the vertical Z-axis. Looking at one of the circumferential struts 34 extending between the peak 30 and the valley 32 in FIGS. 2A-2C, a first segment initially extends downward in a nearly vertical direction and has a concave up curvature until a point of inflection at a midpoint of the strut. From there, a second segment is curved concave down until it is nearly vertical at the valley 32. The second circumferential struts 36 can have a similar or different shape. The struts 34, 36 can be deployed such that they are in direct contact with the native heart valve leaflets, as will be explained, and this S-shaped configuration enhances their ability to pinch or clamp a wide area of the leaflet against the expandable heart valve that is positioned within the leaflets.


In the illustrated embodiment of FIGS. 2A-2C, the peaks and valleys 30, 32 are identically-shaped, and have generally flat ends. Optionally, the peaks and valleys 30, 32 may be rounded or more pointed, and the peaks may be different shape than the valleys. For example, the peaks 30 may have a greater radii than the valleys 32, or vice versa. Additionally, the struts 34, 36 are generally identical and have a point of inflection mid-way along the Z-axis, though they can be asymmetric such that the peaks 30 appear longer than the valleys 32, or vice versa. The undulating shape of the ventricular portion 22 enables the anchor device 20 to fit partly to the outside of the mitral leaflets except at two locations as will be seen.


The ventricular portion 22 can connect to the atrial portion 24 via one or more upstanding commissure posts 40, e.g., one, two, three, or more upstanding commissure posts. In the illustrated embodiment, there are two posts 40 diametrically opposed from each other and extending upward from two of the valleys 32 located generally opposite from one another and between clamping portions of the ventricular portion 22, as will be described below. The posts 40 extend upward beyond the upper extent of the peaks 30, and can be embedded and secured within the tubular atrial portion 24. The atrial portion 24 can comprise an annular ring of porous material, such as polyester fabric, porous polymer material, ePTFE, or foam. Means to connect the commissure posts 40 to the atrial portion 24 can be with adhesive, sutures, latches, friction, etc. Optionally, the posts 40 may have barbs or roughness of some sort to enable simple frictional holding. Still further, the posts 40 may be cloth covered or have one or more eyelets and be sutured to the atrial portion 24.


The ventricular portion 22 can further include one or more downwardly extending legs 42 that terminate in buckles 44 to facilitate manipulation and deployment of the anchor device 20. In the illustrated embodiment, the buckles 44 form squares or rectangles with a hole therethrough. The buckles 44 can be integrally formed with the ventricular portion 22 and preferably extend downward from one or more of the peaks 30. The term “integrally formed” in this regard means that the buckles 44 are either formed homogeneously with the rest of the ventricular portion 22 as a single piece, or that the buckles are secured to the ventricular portion 22 in a manner which enables manipulation of the buckles to manipulate the inner body. For example, the buckles 44 may be welded to the ventricular portion 22 after fabrication of both.


Now with reference to FIG. 3A the anchor device 20 is shown deployed at the mitral valve with the ventricular portion 22 below the mitral annulus 208 and the atrial portion 24 located above the annulus. The upstanding commissure posts 40 connect the two portions, and extend across the mitral annulus 208 at the anterior commissure 220 and posterior commissure 222.



FIG. 3B is a laid-flat diagram of the mitral valve and deployed anchor device 20 (with the atrial portion 24 removed for clarity). As mentioned, the undulating shape of the ventricular portion 22 enables the anchor device 20 to fit partly to the outside of the mitral leaflets 204, 206 except at the two commissure posts 40. That is, all three of the peaks 30 of the ventricular portion 22 are outside the leaflets, while the valleys 32 from which the commissure posts 40 extend upward are inside the leaflets. In this way, the commissure posts 40 can extend upward at the two valve commissures 220, 222 to support the atrial portion 24 above the annulus. At the same time, the majority of the ventricular portion 22 lies outside of the leaflets in order to provide an anchor against which a subsequently deployed prosthetic valve may be secured. The portions of the ventricular portion 22 outside of the leaflets define clamping portions of the anchor device 20, and may have different configurations as described below. Further, the various anchor devices herein can include two clamping portions as shown or another number of clamping portions, e.g., one, three, or more. The ventricular portion 22 “undulates” in the sense only that the clamping portions rise up from the valleys 32 from which project the commissure posts 40. Once more, the valleys 32 from which the commissure posts 40 project are located between clamping portions.


An exemplary beating heart method of securing a prosthetic heart valve at the mitral valve 200 between the left atrium 234 and left ventricle 202 includes advancing the anchor device 20 to the mitral valve and expanding the ventricular portion 22 of the device in the left ventricle. Using forceps or other manipulation tools, the two leaflet clamping portions are positioned radially outside respective ones of the two leaflets 204, 206. The surgeon then positions the upstanding posts 40 such that they project upward at the two native valve commissures 220, 222 and support the atrial portion 24 above the mitral valve annulus in the left atrium. Subsequently, an expandable prosthetic heart valve is advanced to within the mitral valve leaflets 204, 206 and expanded to compress the leaflets outward against the two leaflet clamping portions of the device 20.



FIG. 3C is a schematic perspective view similar to FIG. 3A after delivery of a prosthetic heart valve 50 within the anchor device 20. As mentioned, the prosthetic heart valve 50 is outwardly expandable and sandwiches the mitral leaflets 204, 206 against the inner surfaces of the clamping portions of the ventricular portion 22. As mentioned above, the prosthetic heart valve 50 may be constructed in a variety of ways, and can include an expandable structural stent or frame 52 that supports flexible leaflets 54, such as bovine pericardial leaflets. A top edge of the frame 52 can be deployed such that it terminates within the anchor device 20, and as shown ends within the atrial portion 24. The ventricular portion 22 of the anchor device 20 has sufficient hoop strength to provide a robust inward reaction force against the expandable frame 52, which in turn provides sufficient compression of the mitral leaflets 204, 206 to retain the valve 50 in place. The flexible leaflets 54 of the prosthetic heart valve 50 then function normally and replace the native leaflets.



FIGS. 4A-4D are exemplary leak-preventing atrial portions that can be used with the anchor devices described herein. For example, the tubular atrial portion 24 shown above can be replaced with smaller structures that either provide a plug of sorts at the native valve commissures 220, 222 and/or exert a pinching force to the two mitral leaflets 204, 206 at the commissures, in both cases helping to reduce regurgitation of blood upward around the prosthetic heart valve 50 (termed “paravalvular leakage”).


For instance, FIG. 4A shows a pair of Y-shaped struts 60 formed on upper ends of the vertical posts 40. The struts 60 extend on the atrial side of the valve commissures 220, 222 and curl around to contact and urge the outer extents of the mitral leaflets 204, 206 toward each other, thus closing off any opening that may form outside of the prosthetic heart valve 50 at the native commissures. FIG. 4B is a similar structure wherein a small fabric cover 62 is added across the Y-shaped struts 60, which further helps close off any blood leakage.



FIG. 4C shows an alternative embodiment where a wire ring 70 is provided at the tops of each of the posts 40. The wire ring 70 may be Nitinol and shaped to apply a compressive force to the mitral leaflets 204, 206 at the native valve commissures 220, 222, which helps close any gap that may permit leakage. FIG. 4D shows the same wire ring 70 on each post 40 having a mesh or fabric cover 72 secured thereto. The cover 72 may be a braided metallic screen or a polymer fabric, and further assists in reducing paravalvular leakage.



FIG. 5 is an atrial plan view of the mitral valve leaflets 204, 206 indicating an exemplary circular dashed line outline 80 for an anchor device as described herein. A center point 82 of the outline 80 may be drawn, as well as a horizontal axis 84 through the center, roughly oriented along a major axis of the mitral valve annulus. That is, the mitral valve annulus typically presents as D- or kidney bean-shaped, or at least oval, with a longer dimension perpendicular to a shorter dimension. The shorter dimension, or minor axis, roughly bisects the two mitral leaflets 204, 206. Due to the mismatch of a circular anchor device expanded within the irregular-shaped mitral valve annulus, the horizontal axis 84 along a diameter of the anchor device will not likely intersect the native valve commissures 220, 222. Two dashed lines 86 have been drawn from the center point 82 through the commissures 220, 222. Since the upstanding vertical posts connecting the ventricular and atrial portions of the anchor device must pass through and therefore align with the commissures 220, 222, they may be positioned around the anchor device offset from the horizontal axis 84, and in particular along the dashed lines 86.



FIG. 6 is a top plan view of just a ventricular portion of an anchor device 90 configured to match the dashed line outline of FIG. 5. The anchor device 90 may be constructed the same as that described above, such that a series of struts 92 define peaks 94 intermediate valleys 96. Two upstanding posts 98 project upward at two of the valleys 96, as before, but are located slightly offset from the horizontal axis 84 as shown in FIG. 5 and represented in FIG. 6. The dashed lines 86 are also shown and pass through the upstanding posts 98. That is, the two upstanding posts 98 are located less than 180° from each other around a circumference of the anchor device 20. The angular offset of each of the upstanding posts 98 defined by the angle made by the dashed lines 86 with the horizontal axis 84 is desirably between about 5-15°. In other words, the two upstanding posts 98 are located between 150-170° from each other around a circumference of the anchor device 20. This ensures that the upstanding posts 98 more closely coincide with the location of the native valve commissures 220, 222 so as to limit deformation of the mitral annulus when the anchor device 90 is implanted.



FIG. 7 is an elevational view of the ventricular portion of the exemplary anchor device 20 with an undulating dashed line 100 superimposed thereon. The dashed line 100 has a sinusoidal shape to illustrate the basic undulations of the struts of the anchor device 20.



FIG. 8 is an elevational view of the ventricular portion of an alternative anchor device 102 with struts 104 shaped like the undulating dashed line 100 from FIG. 7. In this configuration all peaks and valleys have rounded ends to help reduce any sharp edges and possible abrasion of the mitral leaflets.



FIG. 9 is an elevational view of the ventricular portion of a further alternative anchor device 110 having undulating struts 112 and a fabric cover 114. The number of peaks and valleys are reduced to a minimum of one peak between the valleys from which upstanding posts 116 originate. This shows one extreme of the shape of the clamping portion of the anchor device 110, and illustrates what is meant by undulating. Namely, the anchor devices undulate between the clamping portions and the valleys from which the upstanding posts 116 project. This enables the upstanding posts 116 to be located within the mitral leaflets so as to be able to extend up to the atrial side thereof. At the same time, the clamping portions rise up and can be positioned to the outside of the mitral leaflets for clamping engagement with the prosthetic valve. The clamping portions can include just one peak or upward bend, or multiple peaks as in FIGS. 7 and 8. The fabric cover 114 can extend across multiple peaks and help avoid tangling with the chordae tendineae. The alternating peaks and valleys permit the anchor devices to be constricted into a small diameter profile for delivery through an access tube or sheath, but other compressible structures are contemplated.


While the invention has been described in terms of particular variations and illustrative figures, the invention is not limited to the variations or figures described. The features described with respect to one embodiment or variation may be used in other embodiments or variations. Methods described separately may be combined. In addition, where methods and steps described above indicate certain events occurring in certain order, the ordering of certain steps can be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Many modifications can be made to adapt a particular situation or device to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed herein, and to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.

Claims
  • 1. A system for securing a prosthetic valve at a native valve, comprising: an expandable/collapsible anchor device having a lower portion below an upper portion, the lower portion having an expandable tubular body about a vertical axis and comprising undulating struts, the tubular body defining at least two leaflet clamping portions each defined by at least one peak extending upward, wherein there are at least two downward valleys on the lower portion, one downward valley each on both sides of and adjacent the at least two leaflet clamping portions, the anchor device further including two and only two upstanding vertical posts each commencing at one of the at least two downward valleys and extending upward beyond a maximum height of the at least one peak of the leaflet clamping portion and terminating in the upper portion, wherein the lower portion further includes two or more integrally formed downwardly extending legs that extend downward below the valleys in buckles to facilitate manipulation and deployment of the anchor device.
  • 2. The system of claim 1, wherein the clamping portions each include at least two peaks and one valley therebetween.
  • 3. The system of claim 1, wherein each clamping portion is covered with fabric.
  • 4. The system of claim 1, wherein each undulating strut has an S-shape and terminates in an asymptotic manner at each end at a peak and a valley.
  • 5. The system of claim 1, wherein the upstanding vertical posts are located less than 180° from each other around a circumference of the anchor device.
  • 6. The system of claim 1, wherein at least one of the legs extends downward from the at least one peak of the leaflet clamping portion.
  • 7. The system of claim 1, wherein there are three of the downwardly extending legs and buckles.
  • 8. The system of claim 1, wherein the buckles form squares or rectangles with a hole therethrough.
  • 9. The system of claim 1, wherein the upper portion includes an annular ring of porous material attached to a top end of the vertical posts.
  • 10. The system of claim 9, wherein the annular ring of porous material is selected from the group consisting of polyester fabric, porous polymer material, ePTFE, and foam.
  • 11. The system of claim 1, wherein the upper portion includes a pair of Y-shaped struts at a terminal end of each vertical post.
  • 12. The system of claim 11, further including a fabric cover across each pair of Y-shaped struts.
  • 13. The system of claim 1, wherein the upper portion includes a wire ring at a terminal end of each vertical post.
  • 14. The system of claim 13, further including a fabric cover across the wire rings.
  • 15. The system of claim 1, further including an expandable prosthetic heart valve expanded within the anchor device.
  • 16. The system of claim 6, wherein the buckles form squares or rectangles with a hole therethrough.
  • 17. The system of claim 7, wherein the buckles form squares or rectangles with a hole therethrough.
  • 18. The system of claim 1, wherein the clamping portions are covered with fabric.
  • 19. A system for securing a prosthetic valve at a native valve, comprising: an expandable/collapsible anchor device having a lower portion below an upper portion, the lower portion having an expandable tubular body about a vertical axis and including undulating struts and two vertical posts, the tubular body defining at least two leaflet clamping portions each defined by at least one peak extending upward, wherein the undulating struts define one downward valley each on both sides of and adjacent the at least two leaflet clamping portions, and the expandable tubular body has an axial dimension extending between the peaks and the valleys, the anchor device further including two and only two of the vertical posts each of which commences at a downward valley and extends upward beyond a maximum height of the at least two leaflet clamping portions and terminates in the upper portion.
  • 20. The system of claim 19, wherein the clamping portions each include at least two peaks and one valley therebetween.
  • 21. The system of claim 19, wherein the clamping portions are each covered with fabric.
  • 22. The system of claim 19, wherein each undulating strut has an S-shape and terminates in an asymptotic manner at each end at a peak and a valley.
  • 23. The system of claim 19, wherein the two vertical posts are located less than 180° from each other around a circumference of the anchor device.
  • 24. The system of claim 19, wherein the lower portion further includes at least two integrally formed downwardly extending legs that extend downward below the valleys in buckles to facilitate manipulation and deployment of the anchor device.
  • 25. The system of claim 24, wherein at least one of the legs extends downward from the at least one peak of one of the leaflet clamping portions.
  • 26. The system of claim 24, wherein the buckles form squares or rectangles with a hole therethrough.
  • 27. The system of claim 19, wherein the upper portion includes an annular ring of porous material attached to top ends of the vertical posts.
  • 28. The system of claim 27, wherein the annular ring of porous material is selected from the group consisting of polyester fabric, porous polymer material, ePTFE, and foam.
  • 29. The system of claim 19, wherein the upper portion includes a pair of Y-shaped struts at a terminal end of each vertical post.
  • 30. The system of claim 29, further including a fabric cover across each pair of Y-shaped struts.
  • 31. The system of claim 19, wherein the upper portion includes a wire ring at a terminal end of each vertical post.
  • 32. The system of claim 31, further including a fabric cover across the wire rings.
  • 33. The system of claim 19, further including an expandable prosthetic heart valve expanded within the anchor device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a Continuation of Application PCT/US2018/033086 filed on May 17, 2018. Application PCT/US2018/033086 claims the benefit of U.S. Provisional Application 62/509,278 filed on May 22, 2017. The entire contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (299)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8216303 Navia Jul 2012 B2
8291570 Eidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8439970 Jimenez et al. May 2013 B2
8449599 Chau May 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100004735 Yang et al. Jan 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20160051362 Cooper et al. Feb 2016 A1
20160374802 Levi et al. Dec 2016 A1
20170014229 Nguyen-Thien-Nhon et al. Jan 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180071085 Rafi Mar 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180271654 Hariton Sep 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
20190159894 Levi et al. May 2019 A1
20190192288 Levi et al. Jun 2019 A1
20190192289 Levi et al. Jun 2019 A1
Foreign Referenced Citations (73)
Number Date Country
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0047139 Aug 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009094188 Jul 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
Non-Patent Literature Citations (11)
Entry
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications;” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Patrick W. Serruys, Nicolo Piazza, Alain Cribier, John Webb, Jean-Claude Laborde, Peter de Jaegere, “Transcatheter Aortic Valve Implantation: Tips and Tricks to Avoid Failure”; we file the table of contents and pp. 18 to 39 (Chapter 2) and pp. 102-114 (Chapter 8); the publication date according to the “Library of Congress Cataloging-in-Publication Data” is Nov. 24, 2009.
Walther T, Dehdashtian MM, Khanna R, Young E, Goldbrunner PJ, Lee W. Trans-catheter valve-in-valve implantation: in vitro hydrodynamic performance of the SAPIEN+cloth trans-catheter heart valve in the Carpentier-Edwards Perimount valves. Eur J Cardiothorac Surg. 2011;40(5):1120-6. Epub Apr. 7, 2011.
Related Publications (1)
Number Date Country
20200085573 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62509278 May 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/033086 May 2018 US
Child 16691244 US