The present invention relates generally to continuous flow chromatography, and more particularly, to Simulated Moving Bed (SMB) chromatography. The invention provides a novel strategy for small scale separations of liquid components in a stream, and a simplified valve design for directing liquids to appropriate destinations within the system.
In typical solid phase chromatography processes, a solution containing a mixture of substances is passed through a bed of adsorbent. One or more of the dissolved substances in the flow has a greater tendency to be adsorbed onto the solid matrix than others. In the case of gel filtration separation is based on molecular weight, with small substances permeating the gel which retards their movement through the gel relative to larger molecules which are excluded from the pores of the gel. In ion exchange chromatography, the principle of separation involves differential interaction with a resin of different molecules according to their charge properties. The resins may consist of a backbone polymer to which selected functional chemical groups are appended. Ionic interactions cause some molecules to bind to the resin, while others pass through the resin bed. Over the years, a large variety of resins and other chromatographic substrates have become commercially available.
Small scale laboratory solid chromatography is generally carried out in a column or cartridge. The column comprises a hollow cylinder with fittings at both ends, the bottom end of the cylinder containing a frit with pores of smaller size than the gel or resin particles to retain the solid substrate in the column. A slurry is poured into the column and the substrate is packed by eluting solution through the column. When a sample containing a mixture of molecules to be separated is applied to the appropriate resin bed, a molecule to be separated binds to the resin, and the unbound components travel through the column and out at the bottom. A desorbent is then eluted which releases the bound molecule, and it too passes through the column. Typically in a laboratory small aliquots of eluted liquid are collected in an automatic fraction collector. Since the column is now filled with desorbent, it must be washed with a starting buffer to regenerate the functional groups on the resin before another sample batch can be applied.
In the laboratory, the batch type chromatography process is satisfactory because many applications are analytical. Even when preparative quantities are recovered, the amounts needed are relatively small, and sufficient reagent is obtainable by one or a few batch runs. However, batch type chromatography is generally unsuitable for large industrial purifications. The time consumed by washing and regeneration of columns is not cost effective. Also, many writers have pointed out that in a batch system, only a fraction of the resin bed is actually in use in each cycle, resulting in production inefficiencies. See U.S. Pat. No. 5,156,736 and U.S. Pat. No. 4,379,751. Finally, batch processes are wasteful of reagents whose only function is to wash and regenerate the column.
Over forty years ago, a new process was developed specifically for large scale industrial purifications. U.S. Pat. No. 2,985,589 disclosed a chromatography system involving a separation tower divided into a number of individual separation beds. These beds are connected in series, and the outlet at the bottom most bed is connected to a pump that retuned flow in a continuous loop to the upper most bed. The inlet apparatus for each bed has a port connected to a downward flowing conduit. The conduits terminate in fittings attached to a rotary valve designed to control both ingress and egress of liquids into or from the inlets to each individual bed. The system is called Simulated Moving Bed (SMB) chromatography because the beds appear to be moving in a direction countercurrent to the direction of flow.
Referring again to
The continuous nature of SMB operation is characterized by very brief flow stoppages during the port switchovers in successive process steps. However, since all input and output conduits briefly stop at the same time, there are no significant pressure drops or surges in the system. Indexing of mechanical rotors is designed to effect rapid switchovers, even on very large industrial machines. Further, strategy in the design of process configuration is largely dictated by the affinity and release characteristics of bound species to the solid substrate, exclusion properties of unbound species, the bed volume required to obtain separation of by-product, and other factors. Where separations involve more than two components, the use of coupled SMB systems may be advantageous, as demonstrated in U.S. Pat. Nos. 6,379,554 and 6,662,420. In the case of the '554 patent, the desired product is removed in the raffinate of the first SMB loop, and further purified in a second loop to separate high molecular compounds, ash content, etc. See also U.S. Pat. No. 6,402,959. A similar system is disclosed in U.S. Pat. No. 5,122,275 in which two interconnected SMB trains of columns alternate, resulting in reduced processing time compared to a single train having twice as many columns.
In over forty years since the '589 patent issued, there have been over 200 patents issued on modifications of SMB disclosing improvements in separation efficiency generally, or in particular applications, enhanced purity and yield in the final products, or reduction in required volume desorbent. For example, in one variation disclosed in U.S. Pat. No. 5,156,736, separations are performed in a single bed preserving the principles of SMB by interposing at various levels in the bed a series of crossectionally functional collecting and distribution means for adding feedstock and recycled process liquid, collecting raffinate, distributing eluent, and recovering extract product. Equilibrium is established in the system by very precise flow and pressure control. In U.S. Pat. No. 5,595,665, flushing apparatus is provided generally comprising a fluid distribution manifold, whereby incoming line fluid will enter an equalization chamber and be removed by a connecting conduit. Contamination by trailing peaks is thereby reduced. Other flushing embodiments are described in U.S. Pat. No. 4,319,929. Another improvement is described in U.S. Pat. No. 6,652,775 for solving the problem of cumulative pressure drops between SMB columns, which greatly prolong the washing process in cleaning the system. The '775 patent discloses washing means which, singly or simultaneously, wash defined units of one or more columns, utilizing the inlet feedstock and desorbent ports; and raffinate and extract outlet ports for ingress and egress of wash solution.
The key to achieving SMB process control, is the valve system which directs flows through the system, and regulates inputs and outputs. The early '589 patent employed a valve capable in any cycle step in the process, of directing feedstock or desorbent into a predetermined chamber, or matching an open inlet port to the conduit rising up to any predetermined chamber. The rest of the valve positions in the rotor were blind, so liquid was thereby forced to flow downward into the next vertical chamber. Amore recent valve device having vertical indexing is disclosed in U.S. Pat. No. 6,196,266. The valve assembly indexes horizontally with ports presented in the vertical cylindrical wall of the valve body. However, some patents describe valve systems arranged co-axially, and designed to turn vertically, as in U.S. Pat. No. 4,625,763. Instead of a rotary valve, many SMB systems have been devised that employ sets of individual valves. U.S. Parent No. 4,434,051 discloses three tiers of three way valves to control the four processes flows. Another U.S. Pat. No. 5,635,072 utilizes a set of three valves per chamber, configured so that a continuously operated circulation pump can be eliminated, thereby conserving liquid volume in small, pilot scale system. U.S. Pat. No. 6,544,413 discloses a plural valve device having elements controlling input or output flow to each column in the SMB series. It has the advantage of reducing volume of liquid in the system for very small scale SMB systems.
Valves having a horizontally disposed plane of movement between stator and rotator are essentially of two types, one type in which stator portion is uppermost, and the other in which the stator is bottommost. The stator lowermost configuration was evident especially in the earlier large industrial units in which the columns were much too large to be moved. The rotary valve alone for some of these units (for example, U.S. Pat. No. 3,040,777) occupied an area of 64 sq. feet and weighed over 10 tons. U.S. Pat. No. 6,719,001 is a recent patent. An example of stator elements mounted in upper fixed position is disclosed in U.S. Pat. No. 4,764,276.
A persistent problem in the operation of rotary valves in SMB application is leaks, usually because of a failure of seals in gaskets in the valve assembly. Such sealing elements are prone to wear because of the substantial pressure under which they operate. In the '276 patent just referred to, sealing engagement is provided by the combination of a sealing wear ring and a compressible ring. Force is applied by a hydraulically actuated piston to obtain sealing of the rotating head assembly and its housing.
Most simulated moving bed (SMB) chromatography systems are designed for large scale industrial applications involving thousands of gallons of feedstock, and tons of final product. Flow in such systems is highly constrained because of the necessity of maintaining continuous flow of large volumes of liquid in each stage of the process. Small scale systems are not nearly so constrained in part because perturbations in flow are more readily tolerated when circulating flow volume is small compared to bed volume in the columns. It is therefore an object of the present invention to interrupt flow in the series at critical points where inflows and outflows from the system to prevent any possible unintended contamination of columns adjacent to the points of fluid ingress or egress, as will become apparent hereafter.
The key to efficiency of SMB in which each column in the series alternately performs a succession of chromatographic functions, is the valving system. The multi-port rotary valve of the present invention is designed for simplicity of construction, ease of assembly and disassembly, and minimization of wear on the moving parts. In one embodiment, the present valve comprises three substantially flat plates, and in a second embodiment four such plates, maintained in alignment. The bottom plate and a rigid plate composed of a fluorocarbon polymer attached to it are mounted on a frame or carousel, and rotate against an interfacing plate. Each of these structures has a plurality of bores arranged in two concentric arrays of equal number corresponding to the number of potential liquid flows with each outflow from one column connected to only one inflow of the next column in succession. The rigid plate has a lapped surface to a flatness tolerance of not greater than 15 microns, and preferably 1-3 microns, and can readily withstand up to 500 psi and 500 ft. lb of torque. All of the bore arrays are arranged to be in unobstructed alignment when the valve components are layered together. Means are provided to apply uniform pressure across the plates so as to attain a hydraulic seal able to withstand pressures of up to 200 psi.
The stationary interfacing plate similarly has two concentric arrays of bores corresponding in alignment to the bores of the first and rigid plates. The outer portions of these bores are partially threaded to receive connectors for attachment of cross-over conduits interconnecting one column to the next in the series. On the undersurface of the interfacing plate each array of bores is surrounded by a continuous concentric recess whose cavities are designed to receive a fabric entrained gasket. The gasket has holes corresponding to the position and size of the bores in the recess that receives it. The gasket is further made of material thicker than the depth of the recesses, so that when the valve components are assembled, the gasket provides not only sealing engagement between the rigid plate and the interfacing plate, but also reduces the coefficient of friction, and correspondingly the area of wear on the moving parts. It is also advantageous that the gasket is held in place mechanically without use of any chemical adhesive, to facilitate periodic replacement.
In a preferred embodiment of the present invention, cross-over conduits interconnecting the columns are replaced by channels machined into a fourth top plate. The lower surface of the top plate has a series of grooved recesses arranged radially. Each recess contains a vertical bore, substantially midway between the ends of the groove, and extending to the upper surface of the top plate. If such a bore is plugged, flow in the system passes upward from a conduit connecting the bottom of one column, traverses the communicating channel recess, and proceeds back down to the top of the next column in the series. In open configuration, these bores serve as predetermined inflow or outflow ports for addition of feedstock or desorbent, or removal of raffinate and extract, respectively. The spaced position of these inflow and outflow ports is selected by empirical determination from the purification profiles of the substances to be separated. Sealing means encompass and isolate each such outflow/inflow bore pairs, to prevent leakage and cross-contamination. Such a sealing barrier is typically an O-ring or a gasket partially seated in an oval shaped recess.
A machine for carrying out SMB chromatography on a small scale comprises valve means as hereinabove disclosed, means for rotating the lower plate and upper plate of such valve means while maintaining the interfacing plate thereof stationary, compression means to maintain sealing engagement of the valve means, control means to maintain the valve means in alignment, positioning means to accommodate chromatographic columns to receive correct inflow in a predetermined sequence, means to direct column eluents to predetermined destinations, means to add or remove liquid from the system at predetermined locations, and pump means to ensure liquid flow in a continuous loop through the columns.
More specifically, a machine embodiment for carrying out SMB chromatography comprises an inner support frame anchored fixedly to a rotating shaft extending perpendicularly from a drive train power means with indexing capability, and an outer support frame having a plurality of support pillars of equal height extending vertically. The inner frame has a central aperture of sufficient diameter to admit the shaft. The machine has a central carousel assembly capable of supporting a plurality of chromatographic columns. The carousel contains a plurality of pillars extending vertically anchored in the inner base plate. The carousel is also provided with a yoke plate having a series of apertures to accommodate insertion of a plurality of disposable separation columns, and at least one cutaway section in its body to facilitate passage therethrough of flexible conduits. The yoke plate is secured at a height on the pillars sufficient to accommodate the full length of the columns and their lower fittings. The support pillars of the carousel terminate in attachment to a plate which also serves as the lower plate of the multi-port rotary valve, described above. The rest of the valve components are mounted on the bottom plate.
An upper support plate is joined to the plurality of outer pillars and has a central aperture and bearing means to receive the upper most portion of the central shaft rising vertically from the inner frame base plate. The purpose of the outer frame is to maintain vertical alignment of the shaft and provide overall lateral stability. The central shaft is further characterized in having threads in the portion of shaft between the interfacing plate of the valve assembly and the outer support frame plate, Pressure sufficient to achieve sealing engagement of the valve components is obtained by exerting pressure on the interfacing plate of the valve by compressing a spring disposed between the interfacing plate and a threaded push plate held in place by a lock nut.
In another embodiment of the present invention, chromatographic columns are attached directly to the bottom side of a rotatable first plate by mating threads contained in a column collar to the threads of the threaded bores. A carousel structure is therefore not needed in this embodiment. The machine comprises an inner frame base plate having an upper and a lower surface anchored to a rotatable shaft extending perpendicularly from a drive power train having indexing controls, a plurality of support pillars extending perpendicularly from the upper surface of the frame base plate, and a valve assembly according to the embodiments heretofore described mounted on the support pillars. The machine is provided with an outer support comprising a plurality of pillars extending vertically, and terminating in threaded vertical extensions. The top plate of the valve has bores at the edges thereof, and the plate is of such size and shape that the bores are engage the pillar extension. The pillar extensions are fitted with spring loaded nuts to generate sufficient force to maintain the valve assembly components in liquid sealing engagement.
The method of the present invention can be used in any SMB of generic construction, in which the volume of liquid flow in the system is small enough not to result in large pressure spikes and depressions, or result in other fluid effects such as water hammer, rupture of conduits and fittings, and the like when interrupted at one or more points in the circulation loop for the time a columns remain in one index position. According to the method, flow is interrupted by interrupting means to any one of two positions occurring in a column immediately downstream from either or both of the inflows of feedstock or desorbent, and optionally interrupting the flow to columns upstream of the outflows of raffinate or extract. In practice, such interruption of flow prevents cross-contamination of columns adjacent to inlets and outlets, thereby sharpening the peaks of separation and optimizing recoveries of product. It is especially adaptable to very small SMB systems useful in drug discovery and separation of highly structurally related chemical compounds.
A quick disconnect connector device for facilitating SMB small scale operation comprises a first cylindrical female body portion having an outer surface and an upper substantially vertical cavity bearing a grooved thread of not greater than one turn of the cylinder. The cavity contains a centrally situated tapered nettle member extending upward from the cavity, and has a central communicating bore passing through the entire female portion body. A second cylindrical male portion body has a central bore and a tapered central cavity adapted to mate with the nipple member of the female portion body. The outer surface of the male cylindrical body portion has flange or tab like projections therefrom, mating with and engageable by the grooved thread situated on the inner surface of the female body portion. The angle of taper from the vertical perpendicular for the respective male and female tapered may differ from each other, but by not more than 5 degrees from the vertical, to ensure that in one or less turns of the thread upon the flange projections, a tight seal will be formed between the male and female connector bodies. It will be apparent to those skilled in the art that the central bores of the female and male connector bodies will connect when joined, and thereby provide a communicating liquid channel.
The principle of continuous flow chromatography relies on the phenomenon of preferential retention on a sorbent of one or more substances in a feedstock mixture, elimination of those substances in the stream not so retained, and release and subsequent recovery of the retained substances. The process involves a number of separate retention beds, interconnected classically by a continuous flow loop. As product is cleared and the sorbent is regenerated, that particular bed becomes the site for addition of more feedstock.
In large-scale industrial processes, equipment is dedicated to a particular separation, and once the configuration of process parameters is established, it is maintained indefinitely. In the laboratory, however, versatility and ease of changing process parameters is highly advantageous. There is a growing need for research laboratories to have available the means to produce preparative quantities of drugs, biologics, and chemical intermediates sufficient for animal studies, crystallography, invitro studies, and even limited clinical trials. The present invention combines versatility of operation with efficiency in adapting SMB chromatography to small scale preparative separations.
In SMB chromatography, a valving system is crucial to ensuring the systematic predetermined regulation of flows to a plurality of sorbent beds.
With the exception of the rigid fluorocarbon polymer plate, the valve components can most conveniently and inexpensively be machined from schedule 314 or 316 stainless steel. However, a high density plastic such as polyethylene or polypropylene, anodized aluminum, or titanium alloys may also be utilized. The rigid plate is preferably machined from common dense grades of fluorocarbon polymers sold under the tradename Teflon™, and selected from the group consisting of ethylene tetrafluoroethylene (PTFE), ethylene chlorotrifluoroethylene (ETFE), and polychlorotrifluoroethylene PCTFE), having high hydrophobicity and resistance to deformation up to pressures of about 500 psi.
One very important aspect of the rigid plate manufacture, is the proper preparation of the upper surface which rotates in contact with the interfacing plate 300. Treatments such as fine grinding with immobilized abrasives are not adequate to produce a flat, uniform surface that will not leak. In the preferred method of manufacture, the rigid plate is lapped to a tolerance of not greater than 15 microns, and preferably about 1-5 microns. This means the deviation between highest and lowest points on the surface is preferably 1-5 microns. Great care must also be taken not to scratch the surface when assembling, disassembling, and cleaning the device.
Referring again to
a shows an exploded view of the valve assembly 10 including an interfacing plate 300, which in operation, is held stationary, as hereafter more fully described. Two recesses 310 and 312, machined into the lower surface 308 of the interfacing plate 300 and extend concentrically and continuously in a circle to provide cavities adapted to receive gaskets of accommodating size and shape. As shown in
The selection of gasket material is crucial to the operation of the valve. Table 1 is a test grid of the various gasket materials that were examined in the valve application.
The pass fail criterion was simply whether or not the valve leaked after several hours of continuous use. Only the last one had sufficient stability and durability to pass the test. The gasket material suitable for use in the present invention is selected from a group of polyester fabric mesh entrained synthetic rubber products having a chemical composition of styrene butadiene or a neoprene blend, and a tensile strength of 300-500 psi (strengths are listed as psi). One further advantage of the preferred gasket material is that it retains stability without the use of adhesives to cement into the gasket cavities. Hence, gaskets are easily removed and replaced, without the need for adhesive solvents.
Referring to the flow diagram for SMB depicted in
In a second preferred embodiment, cross-over liquid transfer is accomplished by a fourth top plate.
Referring again to
The multi-port rotary valve is assembled into a machine for carrying out small scale SMB chromatography. The basic features of a machine include means for rotating the lower plate and rigid plate against the stationary plate, compressing means to ensure the valve components are under sufficient pressure to obtain a non-leaking sealing engagement, control means to maintain the valve parts in alignment, positioning means to accommodate the chromatographic columns to receive the correct inflows in a predetermined sequence in a sequence in which the columns physically move with respect to the valve means, means to direct column outflows to the correct destination, and means to add or remove liquid from the system. There are many possible mechanical variations of the configuration of the components necessary to carry out the basic machine functions. Herein is provided two major embodiments, but variations will be apparent to those skilled in the art.
A central shaft 512 is anchored in a movable bearing 514 and extends perpendicularly from the inner frame support plate 504 through the central aperture 522 of the yoke plate 508, and further extends through the central apertures or alignment bores of the valve assembly 30. The portion of the central shaft 514′ extending above the valve assembly 30 is characterized in having threads. A push plate 526 having compatible threads and a threaded locking nut 530 and threaded on the central shaft, threaded portion 514′. A spring 528 is disposed between the top plate 300 and the push plate 526. The push plate 526 and lock nut 530 are positioned so as to compress the spring 528, generating a downward pressure sufficient to establish sealing engagement amongst the valve assembly 30 components, 100, 200, and 300. This feature in a preferred embodiment ensures that the downward pressure exerted on the valve components is distributed uniformly to all parts of the valve component surfaces.
Referring again to
In a second embodiment of the present machine in which the cross-over liquid transfer is accomplished at the interface of the upper surface of the interfacing plate 308′ (
In this embodiment, the columns are limited in size for small scale SMB separations on the order of about 2 to 75 cubic centimeters in bed capacity, and are generally not of sufficient weight to require carousel support.
Columns fitted with conventional Luer-type connectors may be utilized in the present invention. However, one objective herein is to provide disposable sorbent containing columns or cartridges, easily and quickly interchangeable with replacement units. Luer-type fittings have become a staple of the chromatography industry. However, they have one major disadvantage; namely, they require several turns which require unthreading connection/disconnection, and also wrapping the threads with a substance such as Teflon™ tape to ensure sealing.
The present invention provides a quick disconnect fitting for column attachment to the valve assembly. Referring to
Other advantages of the present invention will be apparent from the following Example.
Experiments were conducted on a high fructose feedstock to measure separation efficiency of fructose and glucose utilizing an SMB chromatography as heretofore disclosed in the first embodiment. Sixteen columns containing approx. 150 cubic centimeters of packed Dowex Monosphere 99CA/320 ion exchange resin (Supelco) were installed in the machine, and allowed to equilibrate. Identification and quantitation of sugars in the extract and raffinate were carried out by HPLC on an HP 1090 liquid chromatograph, calibrated with pure glucose and fructose, under the following conditions: detection at 192 nm, HPLC column type Hypersil APS 5 micrometers, 150 mm×4.6 mm. The samples were diluted in water, acetonitrile in a 75:25 ratio. The mobile phase was 20:80 water-acetonitrile. The results are shown in
High concentration fructose (Archer Daniels, Midland No. 42) was introduced into the system as feedstock. The feed rate thereof and the desorbent rate were kept constant, and the extract rate was varied to generate a glucose fructose purity curve. Cycle time for indexed positions was maintained at 5 minutes. Table 2 summarizes the test conditions:
The feed and desorbent rates were measured on a hourly basis by weighing the amount left in the reservoir. The extract and raffinate were collected in flasks, which were weighed hourly to measure the flow rates. Samples were applied to the HPLC on an hourly basis to measure the concentration of glucose and fructose in the extract and raffinate. Purity was assessed as the fraction of fructose in the extract. Recovery was calculated as the ratio of the amount of fructose in the extract in the extract and the amount of fructose in the feedstock. Results depicted in
Number | Name | Date | Kind |
---|---|---|---|
2985589 | Broughton et al. | May 1961 | A |
4182633 | Ishikawa et al. | Jan 1980 | A |
4267054 | Yoritomi et al. | May 1981 | A |
4423109 | Greenman et al. | Dec 1983 | A |
4434051 | Golem | Feb 1984 | A |
4511150 | Séguenot | Apr 1985 | A |
4522726 | Berry et al. | Jun 1985 | A |
4574840 | Schumann et al. | Mar 1986 | A |
4614204 | Dolejs | Sep 1986 | A |
4614205 | Oroskar | Sep 1986 | A |
4625763 | Schick et al. | Dec 1986 | A |
4632149 | Oroskar et al. | Dec 1986 | A |
4633904 | Schumann et al. | Jan 1987 | A |
4638976 | Souplet et al. | Jan 1987 | A |
4705627 | Miwa et al. | Nov 1987 | A |
4764276 | Berry et al. | Aug 1988 | A |
4808317 | Berry et al. | Feb 1989 | A |
4923616 | Hirata et al. | May 1990 | A |
4990259 | Kearney et al. | Feb 1991 | A |
5102553 | Kearney et al. | Apr 1992 | A |
5122275 | Rasche | Jun 1992 | A |
5156736 | Schoenrock | Oct 1992 | A |
5203368 | Barstow et al. | Apr 1993 | A |
5395879 | Murray | Mar 1995 | A |
5456825 | Negawa et al. | Oct 1995 | A |
5457260 | Holt | Oct 1995 | A |
5465748 | Bowers | Nov 1995 | A |
5518625 | Priegnitz et al. | May 1996 | A |
5556546 | Tanimura et al. | Sep 1996 | A |
5565104 | Priegnitz | Oct 1996 | A |
5595665 | Noe | Jan 1997 | A |
5618972 | Funk et al. | Apr 1997 | A |
5635072 | Moran | Jun 1997 | A |
5645729 | Priegnitz et al. | Jul 1997 | A |
5676826 | Rossiter et al. | Oct 1997 | A |
5685992 | Cohen et al. | Nov 1997 | A |
5705061 | Moran | Jan 1998 | A |
5730877 | Heikkilä | Mar 1998 | A |
5750820 | Wei | May 1998 | A |
5770088 | Ikeda et al. | Jun 1998 | A |
5884777 | Pan et al. | Mar 1999 | A |
5912395 | Noe | Jun 1999 | A |
6017448 | Hotier et al. | Jan 2000 | A |
6063285 | Hotier et al. | May 2000 | A |
6068770 | Niermeyer et al. | May 2000 | A |
6096218 | Hauck et al. | Aug 2000 | A |
6099736 | Hotier | Aug 2000 | A |
6123849 | Purdom | Sep 2000 | A |
6146537 | Ferschneider et al. | Nov 2000 | A |
6149874 | Hotier | Nov 2000 | A |
6162949 | Gattuso | Dec 2000 | A |
6196266 | Breda | Mar 2001 | B1 |
6200390 | Kearney et al. | Mar 2001 | B1 |
6217774 | Nagamatsu et al. | Apr 2001 | B1 |
6224776 | Heikkilä et al. | May 2001 | B1 |
6261458 | Callebert et al. | Jul 2001 | B1 |
6284134 | Ferschneider et al. | Sep 2001 | B1 |
6284200 | Hotier | Sep 2001 | B1 |
6348637 | Harris | Feb 2002 | B1 |
6379554 | Kearney et al. | Apr 2002 | B1 |
6402959 | Dessapt et al. | Jun 2002 | B1 |
6455736 | Zinnen et al. | Sep 2002 | B1 |
6458955 | Gattuso | Oct 2002 | B1 |
6508938 | Maiefski et al. | Jan 2003 | B2 |
6544413 | Nagamatsu et al. | Apr 2003 | B1 |
6548662 | Ohsaki et al. | Apr 2003 | B1 |
6551512 | Britsch et al. | Apr 2003 | B1 |
6572775 | Heikkilä et al. | Jun 2003 | B2 |
6602420 | Kearney et al. | Aug 2003 | B2 |
6632200 | Potter et al. | Oct 2003 | B2 |
6652755 | Ikeda | Nov 2003 | B2 |
6712973 | Adam et al. | Mar 2004 | B2 |
6719001 | Ahlgren et al. | Apr 2004 | B2 |
6740243 | Wankat | May 2004 | B2 |
6752929 | Zahr et al. | Jun 2004 | B1 |
6770757 | Paananen et al. | Aug 2004 | B2 |
6779557 | Weiss | Aug 2004 | B2 |
6783673 | Horsman et al. | Aug 2004 | B2 |
6797175 | Hotier | Sep 2004 | B2 |
6805799 | Ma | Oct 2004 | B2 |
6843854 | Farrenburg et al. | Jan 2005 | B2 |
6875349 | Heikkilä et al. | Apr 2005 | B2 |
6896811 | Heikkilä et al. | May 2005 | B2 |
6896812 | Frey | May 2005 | B1 |
6951340 | Suzuki et al. | Oct 2005 | B2 |
6979402 | Sprague et al. | Dec 2005 | B1 |
20040241878 | Thommes et al. | Dec 2004 | A1 |
20050098962 | Duclos et al. | May 2005 | A1 |
20050194318 | Ozbal et al. | Sep 2005 | A1 |
20060185419 | Gamache et al. | Aug 2006 | A1 |
20070131615 | Moran et al. | Jun 2007 | A1 |
20080053543 | Baier et al. | Mar 2008 | A1 |
20080053901 | Mierendorf et al. | Mar 2008 | A1 |
20080053917 | Larson et al. | Mar 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20070068873 A1 | Mar 2007 | US |