Containers exist in which a fluidic material, such as a dentrifice, is stored and dispensed. Such containers typically include a nozzle and cap. In a closed configuration the cap prevents the fluidic material from being released from the container, and in the open configuration the cap permits the fluidic material to be released from the container. Oftentimes, however, when the cap is in an open configuration and the user desires to be finished with dispensing the fluidic material, remnants of the fluidic material continue to be dispersed. Such continued dispersion of the fluidic material causes a mess that is undesired by the user. An example of this includes toothpaste that continues to be released from a toothpaste tube after a user ceases putting pressure upon the toothpaste tube. Thus, a need exists for a container that can dispense fluidic materials, such as dentifrice, without dispensing an undesired amount of the dentrifice onto the toothbrush or other areas.
The present invention is directed to a container. In an aspect the container may include a chamber, a dispensing passageway, and/or a valve. The chamber may contain a viscous fluidic material. The dispensing passageway may be configured to discharge the viscous fluidic material from the chamber. The valve may be operably coupled to the dispensing passageway. The valve may be resilient and may include a valve head and an orifice in the valve head. The orifice may be defined by an orifice edge of the valve head. The valve may be configured to transition from a normal state to a dispensing state upon a discharge pressure being applied to the chamber to allow the viscous fluidic material to be pass through the orifice of the resilient valve and be dispensed from the dispensing passageway as a string of the viscous fluidic material. The orifice may be open in the normal state. The valve may also, or alternatively, be configured to return from the dispensing state to the normal state upon cessation of the discharge pressure. The resilient valve may assume a pinching state while returning from the dispensing state to the normal state in which the string of the viscous fluidic material is pinched off by the orifice edge.
In another aspect a resilient valve for controlling the dispensing of a viscous fluidic material may be provided. The resilient valve may include a valve head comprising a first surface and a second surface opposite the first surface and an orifice in the valve head. The orifice may be defined by an orifice edge of the valve head. The resilient valve may be configured to transition from a normal state to a dispensing state upon a discharge pressure being applied to the first surface of the valve head to allow the viscous fluidic material to pass through the orifice as a string of the viscous fluidic material. The orifice may be open in the normal state. The may be configured to return from the dispensing state to the normal state upon cessation of the discharge pressure, the resilient valve assuming a pinching state while returning from the dispensing state to the normal state in which the string of the viscous fluidic material is pinched off by the orifice edge.
In another aspect a method of dispensing a viscous fluidic material from a container includes a resilient valve positioned in a dispensing passageway transitioning from a normal state to a dispensing state upon a discharge pressure being applied to a chamber of the container. The transitioning from the normal state to the dispensing state allowing the viscous fluidic material to pass through an orifice of the resilient valve, the orifice being open in the normal state. Upon cessation of the discharge pressure, the resilient valve may return from the dispensing state to the normal state. The resilient valve may assume a pinching state while returning from the dispensing state to the normal state in which the string of the viscous fluidic material is pinched off by the orifice edge.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should, be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
Embodiments of the present invention will now be described with respect to one or more personal care treatment systems. The personal care treatment systems may relate to oral care or oral treatment systems, for example. Embodiments of the oral care system may include a container that may store and/or dispense, without limitation, one or more of the following oral care fluids: tooth cleaning (e.g., dentrifice), tooth whitening, antibacterial, enamel protection, anti-sensitivity, anti-inflammatory, anti-attachment, fluoride, tartar control/protection, flavorant, sensate, colorant and others. However, other embodiments of the present invention may be used to store and dispense any suitable type of personal care fluid, and the invention is not limited to any particular personal care system or fluid alone.
Referring first to
The fluids stored and/or dispensed by the container 100 may be one or more fluids which provide oral health benefits to a user. In an embodiment, the oral care fluid may include a tooth cleaning solution (such as a dentrifice), but the oral care fluid is in no way limited to a tooth cleaning solution and may include fluids having active or inactive agents that deliver therapeutic, cosmetic, experiential and/or sensorial benefits to a tooth, soft tissue, tongue, or other portions of a consumer, such as to the consumer's oral cavity. The fluids may be a dentrifice, an anti-sensitivity agent, a fluoride, a tartar protection agent, an antibacterial agent, an oxidative or whitening agent, an enamel strengthening or repair agent, a tooth erosion preventing agent, a tooth sensitivity ingredient, a gum health active, a nutritional ingredient, a tartar control or anti-stain ingredient, an enzyme, a sensate ingredient, a flavor or flavor ingredient, a breath freshening ingredient, an oral malodor reducing agent, an anti-attachment agent or sealant, a diagnostic solution, an occluding agent, a dry mouth relief ingredient, a catalyst to enhance the activity of any of these agents, colorants or aesthetic ingredients, arginine bicarbonate, chlorohexidine, triclosan, CPC, zinc oxide, etc., including one or more combinations thereof.
As shown on
Container 100 may include a closing device. For example, container 100 may include a cap 110. Cap 110 may be permanently affixed to the container 100 in examples. In such examples, cap 110 and the container 100 may be integrated into a single component. For example, the container 100 and the cap 110 may be sealed directly to one another.
Container 100 may include a collapsible cavity, such as a collapsible tube. The collapsible cavity (e.g., tube) may be chamber 102 or may include chamber 102. Chamber 102 may be hollow or partially hollow. Chamber 102 may store and/or dispense a fluidic material, such as the viscous fluids described herein. In examples the proximal portion 104 of container 100 may be adjacent to, or aligned with, a bottom of the chamber 102. Chamber 102 may be compressible. For example, chamber 102 may be compressible via a squeezing of sidewall 107 which may cause the fluidic material to be moved from (e.g., discharged from) the chamber 102 via, a force. As an example, the force may move the fluidic material from chamber 102 and out of the container 100, for example, through dispensing passageway 136.
The collapsible tube may include a wall. As an example, the wall may form a multi-layer sheet that includes a flavor barrier layer. The flavor barrier may be formed of one or more materials, such as a copolymer material. Examples of the copolymer material may include ethylene vinyl alcohol (EVOH), although the copolymer material may include one or more other materials. The collapsible tube may generate a negative pressure. For example, upon cessation of the discharge pressure (e.g., upon cessation of the discharge pressure placed upon the collapsible tube), the collapsible tube may generate a negative pressure. The negative pressure may assist in returning valve 120 from the dispensing state to the normal state.
As described herein, cap 110 may be coupled to container 100. Cap 110 may be removeably or permanently coupled to container 100. In examples in which cap 110 is removably coupled to container 100, cap 110 may be coupled via a threading 137 located on container 100. Threading 137 may be formed as part of dispensing passageway 136. Threading 137 may extend from shoulders 139 that extend from chamber 102. In examples in which the cap 110 is integrated with container 100, shoulders may be excluded from container 100.
Chamber 102, shoulders 139, and/or cap 110 may be formed of one or more materials. For example, cap 110 may be formed of Polypropylene (PP) and/or the shoulders 139 may be formed of Polyethylene, although one or more other materials may be used to form these or other portions of container 100. As an example, container 100 may include a flavor barrier insert that may be made of Polyethylene terethalate or another barrier material such as Ethylene vinyl alcohol, silicone oxide coatings, etc.
As shown on
For example, hinge mechanism 148 may couple a bottom portion 140 of cap 110 with the top portion 142 of cap 110. Bottom portion 140 and/or top portion 142 of cap 110 may define a perimeter. Bottom portion 140 may include dispensing passageway 136, although dispensing passageway 136 may be formed absent bottom portion 140. Dispensing passageway 136 may form a cylindrical or round spout (e.g., a nozzle), although dispensing passageway 136 may be or include one or more other form factors. The nozzle may be formed of plastic (e.g., hard plastic) and/or may include a portion of dispensing passageway 136. Container 100 may include a nozzle component. Nozzle component may include an upper surface. The nozzle may protrude from the upper surface of nozzle component. A perimeter edge of the upper surface may define a perimeter. Perimeter may have a center, for example, when viewed from above. In examples an axis derived from nozzle may be spaced a distance from the center of the perimeter. The axis derived from nozzle may be spaced a distance from the center of the perimeter in a first direction.
Hinge mechanism 148 may couple nozzle component with closure component. Hinge mechanism 148 may be located a distance from the center of the perimeter. For example, the hinge mechanism 148 may be located a distance from the center of the perimeter, in a second direction. The second direction may be opposite the first direction.
Bottom portion 140 of cap 110 may include dispensing passageway 136 (e.g., nozzle). Bottom portion 140 may be, or include, nozzle component. Top portion 142 may be, or include, closure component. Closure component may close dispensing passageway 136 (e.g., nozzle). Opening the cap 110 (e.g., via hinge mechanism 148) may expose the dispensing passageway 136 and closing the cap 110 may close off dispensing passageway 136.
Container 100 may include a valve 120. Opening the cap 110 (e.g., via hinge mechanism 148) may expose the valve 120, as described herein. Valve 120 may be coupled to container 100. For example, valve 120 may be coupled to container 100 via dispensing passageway 136 (e.g., nozzle), shoulders 139, cap 110, and/or one or more locations (e.g., other locations) of container 100. Valve 120 may be integrally formed with container 100. For example, valve 120 may be overmolded to a portion (e.g., dispensing passageway 136, nozzle within a portion of dispensing passageway 136, etc.) of container 100.
As described herein, cap 110 may be detachably coupled to container 100 and/or cap 110 and container 100 may be integrated (e.g., molded) into a single component. Cap 110 may be configured to prevent the fluid from flowing out of container 100 (e.g., chamber 102 of container 100) through dispensing passageway 136 and/or valve 120. In other examples cap 110 may be configured to allow the fluid to flow out of container 100 (e.g., chamber 102 of container 100) through dispensing passageway 136 and/or valve 120. As described herein, cap 110 may move from an open configuration to a closed configuration via hinging mechanism 148. In examples, the hinging mechanism 148 may be formed from a piece of material (e.g., a thin piece of material) connecting a bottom portion 140 of the cap 110 with a top portion 142 of the cap 110.
Chamber 102 may include a proximal end 130 and a distal end 102. Proximal end 130 of chamber 102 may coincide with proximal portion 104 of container 100. Shoulders 139 may form from (e.g., extend from) distal end 102 of chamber 102. In examples, shoulders 139 may taper from the chamber 102. Shoulders 139 may form a portion of dispensing passageway 136, although shoulders 139 and dispensing passageway 136 may be separate components in examples.
Dispensing passageway 136 may protrude from the distal end 162 of the chamber 102 and/or towards distal portion 106 of container 100. The nozzle may terminate at the distal most surface (e.g., annular distal-most surface) defining a dispensing opening of the dispensing passageway 136. In examples dispensing passageway 136 may extend into the distal end 162 of chamber 102. Dispensing passageway 136 may extend to the distal end 162 of chamber 102 or dispensing passageway 136 may protrude into the chamber 102 beyond the distal end 162 of the chamber 102.
Valve 120 may define an orifice 131 through which the fluidic material may be permitted to pass or through which the fluidic material may be prevented from passing. One or more portions of valve 120 may be resilient. For example, one or more portions of valve 120 (e.g., flaps 138) may be configured to recoil or spring back into shape after bending, stretching, being compressed, or the like. Orifice 131 may be formed during formation of valve 120. For example, orifice 131 may be formed during an overmolding process that forms valve 120. Valve 120 may include one or more slits 132 that may form one or more flaps 138. For example, one or more of the slits may intersect one or more of the other slits to form one or more flaps 138.
Orifice 131 may be defined within, or about, dispensing passageway 136. Orifice 131 may define a passage in which the fluid may pass from the chamber 102 to the outside of the container 100. The fluid may pass through orifice 131 when flaps 138 of valves are in an opened position. The fluid may be prevented from passing through orifice 131 when flaps 138 of valves are in a closed position. As shown on
Valve 120 may be coupled (e.g., operably coupled) to dispensing passageway 136. Valve 120 may be formed of a resilient material, such as a thermoplastic elastomer. For example, one or more portions of valve 120 may be formed of a plastic material, a rubber (e.g., silicone rubber) material, although valve 120 may be formed of one or more other materials which may be resilient and/or may not be resilient. As described herein, valve 120 may include one or more slits 132. The slits 132 may define an orifice 131 that opens and closes, which may allow fluidic material to pass out of container 100 or which may retain the fluidic material within container 100. The opening and closing of valve 120 (including a pinching configuration of portions of valve 120) is described further herein.
Slits may form an opening, such as opening 135. For example, as shown on
When valve 120 is in the normal (e.g., resting) state, valve 12 may be open. For example, when valve 120 is in the normal (e.g., resting) state, valve 120 may be open via opening 135. Slits 132 may form one or more respective openings 135 within orifice 131 of valve 120. Opening 135 may be formed in a centered (e.g., substantially centered) position of valve 120, for example, although opening may be formed in one more other positions, including one or more off-centered positions. In examples the opening 135 of valve 120 in the normal state may be less than (e.g., smaller than) the opening of the valve 120 when valve is in the dispensing state (
Opening 135 may be formed from one or more slits 132, although valve 120 may be open while in the normal state via an opening other than opening 135. One or more of the slits 132, such as slits 132a, 132b, may intersect one or more other slits. The intersection of the slits 132 may form one or more flaps, such as flaps 138a, 138b, 138c (collectively flaps 138). While the valve 120 is in the normal (e.g., resting) state, the flaps 138 may prohibit the fluidic material from dispensing from the chamber 102 of the container 100 through of 131. While the valve 120 is in another state (e.g., the dispensing state), the flaps 138 may allow the fluidic material to pass through orifice 131 of valve 120.
When transitioning from the normal state to the dispensing state, valve 120 may be in a pinching state. Also, or alternatively, when transitioning to the normal state from the dispensing state, valve 120 may be in a pinching state. The orifice 131 of valve 131 may be closed (e.g., substantially closed) when the valve 120 is in a pinching state. The valve 120 may assume a pinching state prior to the fluidic material being moved from the container 100 (e.g., chamber 102 of the container 100) or subsequent to the fluidic material being moved from the container 100.
As described herein, valve 120 may include one or more flaps 138, such as flaps 138a, 138b, 138c. Flaps 138a, 138b, 138c may be movable (e.g., independently movable). Flaps (such as flaps 138a, 138b) may include one or more respective edges, such as edges 133a, 133b. Edges 133a, 133b of the flaps 138 may be centered upon the orifice 131, although the edges 133a, 133b of the flaps 138 may be located other than the center of orifice 131 in examples. As shown on
The force pushing the fluidic material towards the orifice 131 may be great enough to cause the flaps 138a, 138b of the valve 20 to move in an outward (e.g., convex) position, as shown on
In the dispensing state the fluidic material 150 may push through the opening 135 and may be dispensed from the container 100. Upon release, or decrease, a pressure to the sidewall 107, a negative pressure may be provided. For example, a negative pressure may assist the container 100 with the return of the chamber 102 of the container 100. The negative pressure may also, or alternatively assist valve 120 (e.g., resilient valve) to move from the dispensing state to the normal state.
Valve 120 may be self-biased. For example, upon the cessation of the pressure and/or force to chamber 102, in which the fluid is being caused to move from chamber 102, valve 120 may return to the normal (e.g., resting) state. Valve 120 may return to the normal state without user intervention. For example, the valve 120 may return to the normal state due to (e.g., solely due to) the resiliency of the material forming the valve 120. As described herein, valve 120 may continue to be open when in the normal state.
Valve 120 may be coupled to dispensing passageway 136. Dispensing passageway 136 may extend from container 100. For example, dispensing passageway 136 may extend from chamber 102 of container 100, irrespective of cap 110. In other examples, dispensing passageway 136 may be formed via an alignment of container 100 and cap 110. In still other examples, dispensing passageway 136 may be formed within cap 110 (e.g., irrespective of container 100). In examples in which dispensing passageway 136 is formed within cap 110, valve 120 may be coupled to dispensing passageway 136 within cap 110.
Valve 120 may have a ring configuration, such as an annular ring 143 configuration. The annular ring 143 may define an opening (e.g., central opening) that may form an orifice 131 for dispensing the fluidic material. Valve 120 may include valve head 145. Valve head 145 may be supported by annular ring 143 within the central opening of valve 120. The annular ring 143 may have an upper-most surface and a bottom-most surface. The valve 120 may be coupled to the dispensing passageway 136 via the annular ring 143. For example, the valve may be mounted to the dispensing passageway 136 (e.g., nozzle) so that the upper-most surface of the annular ring 143 of the valve 120 is flush (e.g., substantially flush) with and/or surrounded by the distal-most surface (e.g., annular distal-most surface) of the nozzle, as described herein.
A component (e.g., a nozzle component) may include a nozzle. In such examples the nozzle may include a side surface (e.g., an outer side surface) that may extend downward from the annular distal-most surface. As described herein, the bottom portion 140 of cap 110 may include dispensing passageway 136 (e.g., nozzle) and/or the top portion 142 of cap 110 may include a closure (e.g., closing) component. The closure component may include a sealing element. The sealing element may include a wall (e.g., an annular wall). The annular wall may terminate in a distal edge surface. The distal edge surface may be inclined relative to a central axis of the annular wall. The outer side surface of the nozzle may be inclined relative to a nozzle axis of the nozzle.
The closure component may include a wall, such as an annular skin wall. The annular skirt wall may be spaced from and/or may circumscribe the annular wall. The annular skirt wall may engage an upper surface of the nozzle component. In an example the nozzle may protrude from the upper surface. A perimeter edge of the upper surface may define a perimeter. The perimeter may have a center, for example, when viewed from above. The nozzle axis may be spaced a distance from the center of the perimeter, such as in a first direction. Hinge mechanism 148 may be located a distance from the center of the perimeter. For example, hinge mechanism 148 may be located a distance from the center of the perimeter, in a second direction. The second direction may be opposite the first direction.
The closure component may be alterable between two or more states. For example, the closure component ma be alterable between a sealed state and a dispensing state. In the sealed state a sealing element may seal the dispensing opening. For example, the sealing element may seal the dispensing opening via engagement of the annular wall with an outer side surface of the nozzle. Further, in the sealed state, the annular distal-most surface of the nozzle and/or the upper-most surface of the annular ring 143 may be free of contact with the sealing element. In the dispensing state the dispensing opening may be unobstructed by the sealing element.
Orifice 131 may be defined by an orifice edge 167, which may be defined by valve head 145 and/or annular ring 143. For example, in the normal state valve head 145 (e.g., a portion of valve head 145) may be located below a surface (e.g., a bottom most surface) of the annular ring 143.
Slits 132a, 132b, 132c, 132d may form one or more respective flaps 138a, 138b, 138c, 138d. One or more of the flaps may remain in a normal (e.g., rest) state, and/or one or more of the flaps 138 may move (e.g., move independently) in an outward and/or inward direction. For example, in a dispensing state one or more of the flaps 138 may move (e.g., move independently) in an outward direction. The dispensing state may be invoked when a pressure is applied to the container 100, such as a pressure being applied to a sidewall 107 of the container 100. When the flaps 138 move in an outward direction, the flaps 138 may be in a convex position. One or more portions of valve 120 may be resilient. For example, as described herein, one or more flaps 138 of valve 120 may be configured to recoil or spring back into shape after bending, stretching, or being compressed.
At 1602, a discharge pressure is applied to container 100, such as to chamber 102 of container 100. Discharge pressure may be applied to container 100 when valve 120 is in a normal state. After the application of the discharge pressure valve 120 may transition from a normal state to a dispensing state, at 1604. The valve 120 transitioning from the normal state to the dispensing state may allow a fluid to pass through orifice 131 of valve 120, for example, while the valve 120 is in the dispensing state. If discharge pressure is not applied to container 100, valve 120 may remain in a normal state, at 1603.
At 1606, it may be determined whether the discharge pressure has ceased. If the discharge pressure has not ceased, the valve 120 may continue to transition to the dispensing state, at 1604. In other examples, if the discharge pressure has not ceased, the valve may transition (e.g., transition fully) to the dispensing state.
If the discharge pressure has ceased, go to 1608. At 1608, valve 120 returns from the dispensing, state to the normal state. During the transition from the dispensing state to the normal state the valve 120 may assume a pinching state. While in the pinching state, valve (e.g., portions of valve 120, such as edges of flaps of valve) may pinch off the fluidic material previously being dispensed by container 100, as described herein. As described herein, valve 120 may be open while in the normal state.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments ma be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/950,621, filed Dec. 19, 2019. The disclosure of the above application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/070854 | 12/4/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/127680 | 6/24/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4616768 | Flier | Oct 1986 | A |
4749108 | Dornsbusch | Jun 1988 | A |
5033655 | Brown | Jul 1991 | A |
5115950 | Rohr | May 1992 | A |
5213236 | Brown | May 1993 | A |
5271531 | Rohr | Dec 1993 | A |
5927549 | Wood | Jul 1999 | A |
6045004 | Elliott | Apr 2000 | A |
6050451 | Hess, III et al. | Apr 2000 | A |
6186374 | Gross | Feb 2001 | B1 |
6494346 | Gross et al. | Dec 2002 | B2 |
6749092 | Olechowski et al. | Jun 2004 | B2 |
6951295 | Gaus et al. | Oct 2005 | B1 |
7543724 | Brunner et al. | Jun 2009 | B2 |
20070295764 | Socier | Dec 2007 | A1 |
20170021976 | Wang | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
0160336 | Nov 1985 | EP |
2013138087 | Sep 2013 | WO |
2021127680 | Jun 2021 | WO |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority issued in International Application PCT/US2020/070854 dated Mar. 17, 2021. |
Number | Date | Country | |
---|---|---|---|
20230029125 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
62950621 | Dec 2019 | US |