1. Field of the Invention
The invention is based on a method for producing a valve assembly, in particular for a hydraulic vehicle brake system with traction control and to a valve assembly produced by the method.
2. Description of the Prior Art
From International Patent Disclosure WO 99/44872, an electromagnet valve is known, having a valve housing that receives valve components and is secured in a stepped bore of a thermoplastic valve block. The diameter of the valve housing is reduced in the joining direction by a shoulder, which is adjoined by a recess embodied as an annular groove. Moreover, the material comprising the valve block has a lesser material hardness than the material of the valve housing. During the insertion motion of the electromagnet valve into the stepped bore of the valve block, the shoulder of the valve housing takes on the function of a calking die, which plastically displaces the softer material of the valve block positively into the annular groove of the valve-housing. This creates a positive-engagement connection between the valve housing of the electromagnet valve and the valve block.
A brake force regulator of twin-design is also known from International Patent Disclosure WO 95/14594; it has two regulating valves, whose housings are embedded in a plastic valve block in the production of the valve block. A magnet valve is also secured to the valve block by calking.
The method of the invention has the advantage of the prior art that the in the assembly of the valves, no impact loads that could damage the valve components or the valve block occur in the receiving bores. Because of the melting of the valve block, made of thermoplastic, in the region of the inner wall of the receiving bore as a result of the previously heated and then inserted valve, a readily flowing viscous melt is created, which does not penetrate into even tiny indentations in the valve housing or the valve holder. Since moreover the strength properties of the melted and re-hardened plastic are not significantly different from those of untreated plastic, a reliable positive-engagement connection is assured. This makes an especially gentle installation of the valves possible.
A valve assembly produced according to the method of the invention provides that the retracted region has knurled features and/or cross-hatched knurled features, embodied on the outer circumference of the valve housing, and additionally has two annular grooves, spaced apart from one another in the axial direction, of which one annular groove is disposed in the region of a radially outer shoulder that reduces the outer diameter of the valve housing, as viewed in the joining direction, and that is braced against a first radially inner shoulder of the receiving bore, and that a sealing ring, preferably embodied as an O-ring, is fastened in an annular chamber that is defined in the radial direction by the valve housing and the inner wall of the receiving bore of the valve block and in the axial direction by the inner wall of the receiving bore of the valve block and by the valve holder or the valve housing, or only by the valve housing. In that case it suffices to bring the outer region of the valve holder or valve housing to the melting temperature of the plastic, while the valve components located farther inside are exposed to a lesser temperature and the valve can therefore be installed still more gently. Furthermore, the encircling knurled features make a relatively large-area attachment of the valve holder or valve housing in the receiving bore possible. Moreover, by means of the fastened sealing ring, a pressure- and fluid-tight sealing off of the valve in the valve block is attained in a simple way.
By the provisions recited in the dependent claims, advantageous refinements of and improvements to the invention defined by claim 2 are possible.
Exemplary embodiments of the invention are shown in the drawings and explained in further detail in the ensuing description.
Exemplary embodiments of the invention are described in further detail herein below, with reference to the drawings, in which:
In the exemplary embodiment of
As can be seen from
The bushlike valve holder 30 is slipped onto the valve housing head 16 and surrounds it axially almost completely; only a lower portion 36 of the valve housing head 6 that is only insignificantly longer than the diameter of the cross section of the O-ring 32 protrudes. The valve holder 30, on its head end, has a radially inner shoulder 38, which fits over the edge of the end face 40 on the head end of the valve housing 12 in the preassembled state. The radially outer circumferential face 42 of the valve housing head 16 is cylindrically smooth and can therefore be produced simply and economically.
As best seen from
For installation in the receiving bore 4, the above-described preassembled unit 34 is heated and forced or inserted into the receiving bore 4 until the radially outer shoulder 54 of the valve holder 30 strikes the first radially inner shoulder 24 of the receiving bore 4, and the lower portion 36 of the valve housing head 16, protruding from the valve holder 30, strikes the third radially inner shoulder 28 of the receiving bore 4. A disklike upper end face 60 of the valve holder 30 is flush with the edge of the receiving bore 4.
Since the inside diameter of the upper portion 20, oriented toward the valve holder 30, of the receiving bore 4 is only insignificantly greater than the outside diameter of the valve holder 30, the outer circumference 44 of the valve holder 30 rests in heat-transferring fashion on the inner wall 14 of the receiving bore As a result, the thermoplastic of the inner wall 14 of the receiving bore 4 is melted and can flow into the retracted regions formed by the two annular grooves 50 the knurled features 46, and the cross-hatched knurled features 48. After the accordingly thermally deformed plastic has cooled down, a positive-engagement connection exists between the valve holder 30 and the receiving bore 4.
As a result of the positive engagement, the valve housing head 16 is braced between the radially inner shoulder 38 of the valve holder 30 and the third radially inner shoulder 28 of the receiving bore 4. Moreover, the O-ring 32 is thus clamped in an annular chamber 62, which is defined in the axial direction by the bottom end face 58 of the valve holder 30 and the second radially inner shoulder 26 of the receiving bore 4 and in the radial direction by the lower portion 36, protruding from the valve holder 30, of the valve housing head 16 and the part 64 of the inner wall 14 of the receiving bore 4 that adjoins the first radially inner shoulder 24 in the joining direction. The O-ring 32 serves to seal off the annular conduit 10, communicating with the outlet conduit 8 in the valve block, in pressure- and fluid-tight fashion toward the head of the valve 6.
Since the valve housing head 16 is preferably essentially the same length as the valve holder 30, the length of the lower portion 36, protruding from the valve holder 30, of the valve housing head 16 is equivalent to that of the radially inner shoulder 38 of the valve holder. Then the O-ring 32 can utilize the annular chamber 62, which is created by the axial offset of the valve housing 12 as a result of the radially inner shoulder 38 on the valve holder 30, so that an axially compact structure is obtained, and the upper portion 20 of the receiving bore 4, which receives the valve housing head 16, can be relatively short.
In a second embodiment, shown in
In a distinction from the first and second embodiments, in a third embodiment shown in
Instead of providing a valve holder, the knurled features 46c, 48c and the two annular grooves 50c can be embodied directly on the outer circumference 80c of the valve housing 12c, as is shown for the fourth embodiment in
The foregoing relates to preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
199 52 855 | Nov 1999 | DE | national |
This application is a 35 USC 371 application of PCT/DE 00/03815 filed on Oct. 28, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE00/03815 | 10/28/2000 | WO | 00 | 1/31/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/32486 | 5/10/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5895026 | Linkner et al. | Apr 1999 | A |
6439265 | Gruschwitz et al. | Aug 2002 | B1 |
6450590 | Leventhal | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
WO 9514594 | Jun 1995 | DE |
197 09 741 | Sep 1998 | DE |
0 758 719 | Feb 1997 | EP |
WO 94 01708 | Jan 1994 | WO |
WO 99 44872 | Sep 1999 | WO |