Claims
- 1. A valve assembly for controlling the flow of a fluid between a plurality of ports including at least one high pressure port and one low pressure port, comprising:a base mounting said plurality of ports; and a valve member rotatable to a plurality of operational positions with respect to said base, said valve member having a control face facing said base to control the flow of fluid between said ports according to the position of the valve member with respect to said base, and an opposite face facing away from said base; said control face of the valve member being formed with a low pressure cavity in the central region thereof, and with an annular high pressure cavity in the outer region thereof completely circumscribing said low pressure cavity.
- 2. The valve assembly according to claim 1, further comprising:a slow-acting vent for applying high pressure from said high pressure cavity to said opposite face of the valve member, when the valve member is in an operational position, to firmly press the valve member into sealing contact with the base, and thereby to isolate the high pressure cavity from the low pressure cavity; a pilot valve which is normally closed but selectively openable to release the high pressure applied to said opposite face of the valve member, and thereby to enable the valve member to be moved to another operational position; and a passageway from said annular high pressure section of the valve member to said opposite face of the valve member to maintain said control face of the valve member sufficiently close to said base to substantially isolate the high pressure cavity from the low pressure cavity also when said pilot valve is open and said valve member is moved to another operational position.
- 3. The valve assembly according to claim 2, wherein said pilot valve, when opened, connects the high pressure at said opposite face of the valve member to said low pressure cavity to release the high pressure applied to said opposite face of the valve member.
- 4. The valve assembly according to claim 2, further comprising:a rotary motor drive including an electrical motor, and a control circuit therefor for selectively moving the valve member from one operational position to another operational position in order to change-over the connections between said high pressure and low pressure ports, or to an intermediate position between said two operational positions in order to control the fluid flow with respect to said ports without making a change-over of the connections between said high pressure and low pressure ports.
- 5. The valve assembly according to claim 4, wherein said control circuit controls said rotary motor drive to selectively move said valve member to any one of a plurality of intermediate positions.
- 6. The valve assembly according to claim 4, wherein said control face of the valve member is constructed such that moving the valve member to said intermediate position controls fluid leakage from said high pressure cavity to said low pressure cavity.
- 7. The valve assembly according to claim 4, wherein said control face of the valve member is constructed such that moving the valve member to said intermediate position controls the effective cross-sectional area of said low pressure port exposed to said low-pressure cavity of the valve member.
- 8. The valve assembly according to claim 4, wherein said rotary motor drive also controls said pilot valve to selectively open or close it at any one of said operational or intermediate positions.
- 9. The valve assembly according to claim 8, wherein said rotary motor drive drives said valve member via a coupling disk which is directly coupled to the rotary motor drive and is coupled to the valve member via a lost-motion coupling such that the coupling disk may be rotated a small amount to open or close the pilot valve without rotating the valve member.
- 10. The valve assembly according to claim 9, wherein said coupling disk includes a spring-biased pin receivable within a recess in the valve member to releasably retain the coupling disk in a normal position closing said pilot valve, but rotatable by said rotary motor drive with respect to said valve member to open or close said pilot valve in any position of the valve member.
- 11. The valve assembly according to claim 9, wherein said coupling disk includes a pair of diametrically opposed spring-biased pins receivable within diametrically-opposed recesses in the valve member to retain the coupling disk in said normal position with respect to said pilot valve.
- 12. The valve assembly according to claim 9, wherein said lost-motion coupling between said coupling disk and said valve member comprises a projection carried by said coupling disk movable within a slot in said valve member.
- 13. The valve assembly according to claim 1, wherein said control face of the valve member is formed with a rib formation including inner and outer concentric, closed-loop ribs defining said low pressure cavity within the inner closed-loop rib, and said high pressure cavity between the two closed-loop ribs.
- 14. The valve assembly according to claim 13, wherein said closed-loop ribs are shaped such that, at least at one intermediate position of the valve member between its two operational positions, said ribs partially shunt fluid from said high pressure cavity to said low pressure cavity.
- 15. The valve assembly according to claim 13, wherein said closed-loop ribs are shaped such that, at least at one intermediate position of the valve member between its two operational positions, said ribs reduce the effective cross-sectional area of the low pressure port exposed to said low pressure cavity.
- 16. The valve assembly according to claim 13, further comprising:at least one shunting port, and a shunting line from said shunting port for partially shunting fluid away from one of said cavities; said closed-loop ribs being shaped such that, at one intermediate position of the valve member, said ribs partially shunt fluid away from said one cavity.
- 17. The valve assembly according to claim 16, wherein there are a shunting port and a shunting line for each of said cavities, said closed loop ribs being shaped such that at each of two different intermediate positions of the valve member, said ribs partially shunt fluid away from one of said cavities via one of said shunting lines.
- 18. The valve assembly according to claim 1, further comprising:a rotary motor drive, and a coupling disk for driving said valve member; said base and valve member being enclosed in a hermetically-sealed housing; said rotary motor drive being located externally of said housing and coupled to said valve member by permanent magnets carried on a driving disk located externally of said housing and coupled to the rotary motor drive, and on a driven disk located within said housing and coupled to the valve member.
- 19. The valve assembly according to claim 1, wherein said plurality of ports include a third port and a fourth port located on opposite sides of said high pressure port such that: in a first operational position of the valve member, said third port is connected to said low pressure port and said fourth port is connected to said high pressure port; and in a second operational position of the valve member, said third port is connected to said high pressure port, and said fourth port is connected to said low pressure port.
- 20. The valve assembly according to claim 19, in combination with:a compressor having a high pressure side connected to said high pressure port, and a low pressure side connected to said low pressure port; a first heat exchanger connected to said third port; and a second heat exchanger connected to said fourth port; such that in one operational position of the valve member, the valve member connects said first heat exchanger to said low pressure port, and said second heat exchanger to said high pressure port; and in an second operational position of the valve member, the valve member connects said first heat exchanger to said high pressure port and said second heat exchanger to said low pressure port.
- 21. The valve assembly according to claim 19, further comprising:a first shunting port and a first shunting line from said first shunting port and second shunting port and a second shunting line from said second shunting port for at least partially shunting fluid away from one of said cavities via one of said shunting lines.
- 22. The valve assembly according to claim 21, wherein said pilot valve is an expansion valve which when opened, connects the high pressure at said opposite face of the valve member to said low pressure cavity to release the high pressure applied to said opposite face of the valve member.
- 23. The valve assembly according to claim 22, in combination with:a compressor having a high pressure side connected to said high pressure port, and a low pressure side connected to said low pressure port; a first heat exchanger connected to said third port; and a second heat exchanger connected to said fourth port; wherein said valve member connects said first heat exchanger to said low pressure port, and said second heat exchanger to said high pressure port; and such that, in one operational position of the valve member, the direction of flow is from said first heat exchanger to said second heat exchanger and in a second operational position of the valve member, the direction of flow is from said second heat exchanger to said first heat exchanger.
Priority Claims (2)
Number |
Date |
Country |
Kind |
121794 |
Sep 1997 |
IL |
|
123184 |
Feb 1998 |
IL |
|
Parent Case Info
This application is a continuation-in-part of Ser. No. 09/096,563 filed Jun. 12, 1998.
US Referenced Citations (33)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0702 176 |
Mar 1996 |
EP |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/096563 |
Jun 1998 |
US |
Child |
09/489806 |
|
US |