The present disclosure relates generally to valve assemblies including valve seals and seats for ball valves. More particularly, the present disclosure relates to valve seals and seats for a ball valve that are designed to prevent extrusion of a seal within the ball valve.
A valve seat (e.g., valve seal, etc.) is, in general, used to establish a seal between components in a fluid transfer assembly. For example, valve seats are typically utilized between the ball and body of a ball valve in a fluid piping system. Typically, valve seats are standard O-rings that are sandwiched in an interface between a ball and a body of a ball valve. During operation of the ball valve, it is possible for the valve seat to become dislodged from the interface and to protrude into an interior portion of the ball valve. In these cases, the protruding valve seat may impede movement of the ball or may be damaged through unintended interaction with the ball. When such events occur, the ball valve may not operate as intended and fluid may leak through the interface.
Referring generally to the FIGURES, a valve assembly is shown, according to various exemplary embodiments. The valve assembly described herein may be used with various fluid systems and components such as heating, ventilation, and air conditioning systems as well as other fluid transfer systems in building management systems. The valve assembly described herein includes various components for preventing extrusion of an O-ring or other seal or seat, positioned between a ball and a shoulder, into a flow path of the valve assembly. In traditional valve assemblies, O-rings are typically located between a ball and a valve body. However, these O-rings are prone to extruding into a flow path of the valve assembly when the ball is rotated. When extrusion occurs, the O-ring may become compromised and the valve assembly may not perform in a desirable manner which may lead to maintenance or replacement of the valve assembly.
The valve assembly described herein is intended to prevent extrusion of the O-ring through a variety of mechanisms. In one configuration, the valve assembly utilizes an annular retaining member which includes an outer retaining ring and an inner surface. In this configuration, the annular retaining member cooperates with an annular seal to maintain a position of the O-ring between the annular seal and a valve body, thus preventing extrusion of the O-ring. In another configuration, the valve assembly utilizes an annular seat which includes a groove that interfaces with a projection in a valve body. In this configuration, the annular seat and the valve body cooperate to maintain a position of the O-ring between the annular seat and a valve body, thus preventing extrusion of the O-ring.
As shown in
Referring to
Bore 240 may be selected based on a desired flow rate of valve assembly 100. According to various embodiments bore 240 is circular. However, in other applications the bore 240 may be elliptical, hexagonal, rectangular, or otherwise polygonal. Similarly, it is understood that ball 230 may be various shapes and be of various sizes and materials. For example, ball 230 may be circular and constructed from brass. In other examples, ball 230 may be constructed from stainless steel.
According to an exemplary embodiment, valve assembly 100 includes a seating assembly (e.g., sealing assembly etc.), shown as seating assembly 250. Seating assembly 250 is positioned between body 110 and ball 230. Seating assembly 250 is configured to substantially prevent fluid flow from entering inner chamber 220 between ball 230 and body 110. Seating assembly 250 includes a first seal (e.g., gasket, O-ring, etc.), shown as annular seal 260, and a retaining member, shown as annular retaining member 270. Annular seal 260 and annular retaining member 270 interface to form seating assembly 250. Annular retaining member 270 includes a first portion, shown as outer retaining ring 280, and a second portion, shown as inner retaining ring 290. Outer retaining ring 280 is located between annular seal 260 and body 110. Inner retaining ring 290 interfaces with fluid in valve assembly 100. When fluid transfer through valve assembly 100 is enabled, inner retaining ring 290 is configured to cooperate with bore 240 to provide a fluid channel. Inner retaining ring 290 may be thought of as an annular retaining band that extends generally perpendicularly relative to outer retaining ring 280. In some applications, annular retaining member 270 is generally T-shaped. For example, outer retaining ring 280 and inner retaining ring 290 may intersect to form a generally T-shaped structure. According to various embodiments, valve assembly 100 includes two annular retaining members 270 on opposite sides of ball 230. In these embodiments, inner retaining rings 290 are substantially aligned.
As shown in
Referring specifically to
Shoulder 400 includes a first face, shown as first face 402, a second face, shown as second face 404, and a third face, shown as third face 406. In one embodiment, first face 402 is located proximate inlet 200 and does not contact annular retaining member 270. Second face 404 is located adjacent first face 402. Third face 406 is located proximate ball 230 and opposite first face 402. In various embodiments, shoulder 400 includes an edge, shown as exterior edge 408, between first face 402 and second face 404. According to some embodiments, exterior edge 408 is beveled. In an exemplary embodiment, exterior edge 408 includes a recess, shown as recess 410. Recess 410 may extend through first face 402 and second face 404. In an alternative embodiment, recess 410 extends through third face 406.
Second face 404 may be larger or smaller depending on the configuration of shoulder 400. In some alternative applications, second face 404 includes protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to interface with annular retaining member 270 to maintain a position (e.g., resist movement, etc.) of annular retaining member 270. These protrusions may be configured to be received in corresponding recessions in annular retaining member 270. Similarly, annular retaining member 270 may include protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to be received in recessions in second face 404. Alternatively, annular retaining member 270 may be adhesively attached to second face 404.
According to various embodiments, inner retaining ring 290 includes a first edge, shown as front edge 412. Front edge 412 may contact second face 404 of shoulder 400 or exterior edge 408 of shoulder 400. In some embodiments, inner retaining ring 290 also includes a first face, shown as first tapered portion 414. First tapered portion 414 is adjacent front edge 412. First tapered portion 414 may extend into a third face (e.g., cylindrical surface, etc.), shown as cylindrical portion 416. Cylindrical portion 416 may be substantially parallel to second face 404 of shoulder 400. In one embodiment, cylindrical portion 416 is coaxial with bore 240. Inner retaining ring 290 also includes a second edge, shown as rear edge 418. Rear edge 418 may contact annular seal 260. In some embodiments, inner retaining ring 290 includes a fourth face, shown as second tapered portion 420. Second tapered portion 420 may extend from rear edge 418 to cylindrical portion 416. In some alternative embodiments, inner retaining ring 290 does not include first tapered portion 414 or second tapered portion 420 and cylindrical portion 416 is adjacent both front edge 412 and rear edge 418.
According to an exemplary embodiment, outer retaining ring 280 includes a first surface, shown as front surface 422. Front surface 422 is adjacent front edge 412. Front surface 422 is configured to interface with second surface 404 of shoulder 400. Outer retaining ring 280 also includes a second surface, shown as shoulder surface 424. Shoulder surface 424 is adjacent front surface 422. Shoulder surface 424 is configured to interface with third face 406. In some embodiments, shoulder surface 424 is substantially orthogonal to front surface 422. Outer retaining ring 280 also includes a third surface, shown as annular edge 426. Annular edge 426 is adjacent shoulder surface 424. Annular edge 426 may be substantially orthogonal to shoulder surface 424. According to various embodiments, annular edge 426 is configured to be received in a recess in body 110, shown as retaining ring recess 428. Retaining ring recess 428 is adjacent third face 406 of shoulder 400. Annular edge 426 is configured to interface with retaining ring recess 428. Outer retaining ring 280 also includes a fourth surface, shown as seal surface 430. Seal surface 430 is adjacent to annular edge 426. In one embodiment, seal surface 430 is substantially parallel to shoulder surface 424. Seal surface 430 is configured to interface with annular seal 260. Outer retaining ring 280 also includes a fifth surface, shown as rear surface 432. Rear surface 432 is adjacent seal surface 430 and rear edge 418. Rear surface 432 may be substantially parallel to front surface 422.
According to various embodiments, annular seal 260 includes a face, shown as first face 434. First face 434 is configured to interface with seal surface 430 of outer retaining ring 280. Annular seal 260 also includes a recess, shown as receiving recess 436. Receiving recess 436 is positioned adjacent first face 434. Receiving recess 436 is configured to receive a seal, shown as O-ring 438. Receiving recess 436 cooperates with a recess in shoulder 400, shown as seal recess 440, to constrain O-ring 438 between annular seal 260 and body 110. In some embodiments, annular seal 260 further includes a first protrusion (e.g., protuberance, etc.), shown as first seal edge 442, a second protrusion (e.g., protuberance, etc.), shown as second seal edge 444, and a surface therebetween, shown as ball surface 446.
O-ring 438 is configured to interface with body 110, shoulder 400, and annular seal 260 to inhibit flow of fluid between ball 230 and body 110 into inner chamber 220. According to various embodiments, O-ring 438 is configured to be biased against body 110 by annular seal 260 through an interaction with seal recess 440. Annular retaining member 270 is configured to prevent extrusion of O-ring 438 into a flow path of fluid. For example, annular retaining member 270 is configured to prevent extrusion of O-ring 438 between annular seal 260 and body 110. In an exemplary operation, fluid flows through ball 230, over annular seal 260, and over annular retaining member 270 when ball 230 is in the open position.
In operation, ball 230 may contact first seal edge 442, second seal edge 444, and/or ball surface 446. First seal edge 442 may provide a seal with ball 230 and body 110 such that fluid does not pass between first seal edge 442 and ball 230. Ball surface 446 is configured to interface with ball 230 along various points of ball surface 446 as ball 230 is rotated. For example, ball surface 446 may provide a seal with ball 230 such that fluid does not pass between ball surface 446 and ball 230. Second seal edge 444 is configured to interface with annular retaining member 270. In some embodiments, second seal edge 444 and annular retaining member 270 cooperate such that no fluid passes between second seal edge 444 and annular retaining member 270. According to various embodiments, second seal edge 444 is configured to interface with rear surface 432 and body 110.
First seal edge 442 and second seal edge 444 may provide increased structural integrity to annular seal 260. According to an exemplary embodiment, annular seal 260 is configured to provide a sealing pressure on ball 230. The sealing pressure may be related to the area of ball surface 446 (i.e., the area of annular seal 260 in contact with ball 230) and the material of annular seal 260. For example, a firmer material (e.g., less resilient material, etc.) for annular seal 260 may facilitate a greater sealing pressure on ball 230. According to an exemplary embodiment, first seal edge 442 and second seal edge 444 are configured to be beveled. However, first seal edge 442 and second seal edge 444 may be chamfered, filleted, or rounded.
First tapered portion 414 is configured to gradually transition a flow between a coupler (e.g., pipe, fitting, hose, etc.) and cylindrical portion 416. Similarly, cylindrical portion 416 may be configured to gradually transition a flow to bore 240. Front edge 412 is configured to provide structural support to first tapered portion 414 and rear edge 418 is configured to provide structural support to second tapered portion 420. In many applications, front edge 412 and rear edge 418 are rounded, chamfered, or filleted.
Referring to
Referring now to
As shown in
Body 110 may be coupled to various pipes, fittings, hoses, gauges, and other components in a fluid transfer assembly. For example, body 110 may be placed between two fluid transfer pipes and configured to selectively control the flow of fluid from one fluid transfer pipe to another fluid transfer pipe. Accordingly, body 110 may be altered and reconfigured depending on the fluid transfer assembly. For example, inlet 200 and/or outlet 210 may be threaded to receive a threaded fluid transfer pipe. Alternatively, inlet 200 and/or outlet 210 may be threaded to be received in a threaded fluid transfer pipe. Body 110 may be constructed from various materials such as brass, aluminum, stainless steel, plastic, polymers, metallic alloys, resilient materials, and other suitable materials. Body 110 may be assembled from several different pieces. The pieces may be joined through the use of fasteners, adhesives, or through the use of a permanent bonding method such as welding, riveting, and fusing. Shoulder 400 may be constructed to be structurally integrated with body 110 or may be attached to body 110 through any of the methods and mechanisms previously mentioned.
Annular seal 260, O-ring 438, and annular retaining member 270 may be constructed from various materials suitable for use in a fluid transfer assembly. For example, annular seal 260, O-ring 438, and annular retaining member 270 may be constructed from butadiene rubber, butyl rubber, fluoroelastomer, nitrile rubber, silicon rubber, thermoplastics, synthetic rubbers, resilient materials, and other similar materials. In an alternative embodiment, annular seal 260, O-ring 438, and annular retaining member 270 are structurally integrated forming a single seal performing the various functions of annular seal 260, O-ring 438, and annular retaining member 270. In another alternative embodiment, any combination of annular seal 260, O-ring 438, and annular retaining member 270 may be structurally integrated. For example, O-ring 438 may be structurally integrated within annular seal 260. In another example, annular seal 260 and annular retaining member 270 may be structurally integrated. As described herein, structurally integrated indicates that two otherwise separate components, features, or structures are formed in, or otherwise caused to be, a single component, feature, or structure. For example, structural integration may be achieved through various molding processes (e.g., injection molding, extrusion molding, pressure molding, transfer molding, etc.).
It is understood that any of annular seal 260, O-ring 438, and annular retaining member 270 may be compressible (e.g., configured to be compressed). In this way, compression of annular seal 260, O-ring 438, and annular retaining member 270 may enhance the ability of annular seal 260, O-ring 438, and annular retaining member 270 to inhibit undesirable fluid flow (e.g., to inner chamber 220, etc.). Similarly, rotational lock 700 may be compressible such that rotational lock 700 is secured in recess 410. Alternatively, rotational lock 700 may be fused and/or adhesively attached to recess 410.
In some alternative embodiments, annular retaining member 270 includes several holes between shoulder surface 424 and seal surface 430. The holes may be designed to reduce cost of annular retaining member 270. In other alternative embodiments, annular retaining member 270 and shoulder 400 have more than one rotational lock 700 and recess 410. For example, annular retaining member 270 may have three different rotational locks 700. Similarly, annular retaining member 270 may not utilize rotational lock 700. In some alternative embodiments annular seal 260 and O-ring 438 may have a rotational lock similar to rotational lock 700 configured to interface with a recess similar to recess 410.
Referring now to
In
Referring specifically to
Annular shoulder 1700 includes a first face, shown as first face 1702, a second face, shown as second face 1704, a third face, shown as third face 1706, a fourth face, shown as fourth face 1708, and a projection, shown as annular projection 1710, on fourth face 1708. First face 1702 of annular shoulder 1700 interfaces with a first face of annular seat 1550, shown as seat face 1712. Annular seat 1550 includes a recess, shown as receiving recess 1714. Receiving recess 1714 is configured to receive a seal, shown as O-ring 1716. Receiving recess 1714 cooperates with first face 1702 and second face 1704 of annular shoulder 1700 to constrain O-ring 1716 between annular seat 1550 and annular shoulder 1700.
O-ring 1716 is configured to interface with end portion 1520, annular shoulder 1700, and annular seat 1550 to inhibit flow of fluid between ball 230 and end portion 1520 into inner chamber 220. According to various embodiments, O-ring 1716 is configured to be biased against annular shoulder 1700 by annular seat 1550 through an interaction with receiving recess 1714. In an exemplary operation, fluid flows through ball 230, over annular seat 1550, and over end portion 1520 when ball 230 is in the open position.
Annular seat 1550 includes a second face, shown as second face 1718. Second face 1718 of annular seat 1550 interfaces with third face 1706 of annular shoulder 1700. Annular seat 1550 also includes a third face, shown as third face 1720. Third face 1720 of annular seat 1550 interfaces with fourth face 1708 of annular shoulder 1700. According to various embodiments, annular seat 1550 includes an annular groove, shown as annular groove 1722. Annular groove 1722 is configured to receive annular projection 1710 of annular shoulder 1700. Annular projection 1710 and annular groove 1722 may cooperate to maintain a position (e.g., resist movement, etc.) of annular seat 1550 relative to annular shoulder 1700. Annular groove 1722 may be shaped in various configurations to substantially match annular projection 1710.
In some alternative applications, annular seat 1550 includes protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to interface with annular shoulder 1700 to maintain a position (e.g., resist movement, etc.) of annular seat 1550. These protrusions may be configured to be received in corresponding recessions in annular shoulder 1700. Similarly, annular shoulder 1700 may include protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to be received in recessions in annular seat 1550. Alternatively, annular seat 1550 may be adhesively attached to annular shoulder 1700.
Annular seat 1550 further includes a fourth face, shown as inner surface 1724. Inner surface 1724 interfaces with fluid in valve assembly 100. According to various embodiments, annular seat 1550 includes a first protrusion (e.g., protuberance, etc.), shown as first seal edge 1726, a second protrusion (e.g., protuberance, etc.), shown as second seal edge 1728, and a surface therebetween, shown as ball surface 1730. Ball surface 1730 interfaces with ball 230. For example, as ball 230 rotates, ball 230 slides along ball surface 1730.
In operation, ball 230 may contact first seal edge 1726, second seal edge 1728, and ball surface 1730. First seal edge 1726 and second seal edge 1728 may provide a seal with ball 230 and end portion 1520 such that fluid does not pass between first seal edge 1726 or second seal edge 1728 and ball 230. Ball surface 1730 is configured to interface with ball 230 along various points of ball surface 1730 as ball 230 is rotated. For example, ball surface 1730 may provide a seal with ball 230 such that fluid does not pass between ball surface 1730 and ball 230.
First seal edge 1726 and second seal edge 1728 may provide increased structural integrity to annular seat 1550. According to an exemplary embodiment, annular seat 1550 is configured to provide a sealing pressure on ball 230. The sealing pressure may be related to the area of ball surface 1730 (i.e., the area of annular seat 1550 in contact with ball 230) and the material of annular seat 1550. For example, a firmer material for annular seat 1550 may facilitate a greater sealing pressure on ball 230. According to an exemplary embodiment, first seal edge 1726 and second seal edge 1728 are configured to be beveled. However, first seal edge 1726 and second seal edge 1728 may be chamfered, filleted, or rounded.
In
Referring specifically to
Annular seat 1800 includes a recess, shown as receiving recess 1804. Receiving recess 1804 is configured to receive a seal, shown as O-ring 1806. Receiving recess 1804 cooperates with first face 1702 and second face 1704 of annular shoulder 1700 to constrain O-ring 1806 between annular seat 1800 and annular shoulder 1700.
O-ring 1806 is configured to interface with end portion 1520, annular shoulder 1700, and annular seat 1800 to inhibit flow of fluid between ball 230 and end portion 1520 into inner chamber 220. According to various embodiments, O-ring 1806 is configured to be biased against annular shoulder 1700 by annular seat 1800 through an interaction with receiving recess 1804. In an exemplary operation, fluid flows through ball 230, over annular seat 1800, and over end portion 1520 when ball 230 is in the open position.
First face 1702 of annular shoulder 1700 interfaces with a first face of annular seat 1800, shown as seat face 1802. Annular seat 1800 also includes a second face, shown as second face 1808. Second face 1808 of annular seat 1800 interfaces with fourth face 1708 of annular shoulder 1700. According to various embodiments, annular seat 1800 includes an annular groove, shown as annular groove 1810. Annular groove 1810 is configured to receive annular projection 1710 of annular shoulder 1700. Annular projection 1710 and annular groove 1810 may cooperate to maintain a position (e.g., resist movement, etc.) of annular seat 1800 relative to annular shoulder 1700. Annular groove 1810 may be shaped in various configurations to substantially match annular projection 1710.
In some alternative applications, annular seat 1800 includes protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to interface with annular shoulder 1700 to maintain a position (e.g., resist movement, etc.) of annular seat 1800. These protrusions may be configured to be received in corresponding recessions in annular shoulder 1700. Similarly, annular shoulder 1700 may include protrusions (e.g., protuberances, ribs, ridges, features, etc.) that are configured to be received in recessions in annular seat 1800. Alternatively, annular seat 1800 may be adhesively attached to annular shoulder 1700.
Annular seat 1800 further includes a third face, shown as inner surface 1812. Inner surface 1812 interfaces with fluid in valve assembly 100. According to various embodiments, annular seat 1800 includes a first protrusion (e.g., protuberance, etc.), shown as first seal edge 1814, a second protrusion (e.g., protuberance, etc.), shown as second seal edge 1816, and a surface therebetween, shown as ball surface 1818. Ball surface 1818 interfaces with ball 230. For example, as ball 230 rotates, ball 230 slides along ball surface 1818.
In operation, ball 230 may contact first seal edge 1814, second seal edge 1816, and ball surface 1818. First seal edge 1814 and second seal edge 1826 may provide a seal with ball 230 and end portion 1520 such that fluid does not pass between first seal edge 1814 or second seal edge 1816 and ball 230. Ball surface 1818 is configured to interface with ball 230 along various points of ball surface 1818 as ball 230 is rotated. For example, ball surface 1818 may provide a seal with ball 230 such that fluid does not pass between ball surface 1818 and ball 230.
First seal edge 1814 and second seal edge 1816 may provide increased structural integrity to annular seat 1800. According to an exemplary embodiment, annular seat 1800 is configured to provide a sealing pressure on ball 230. The sealing pressure may be related to the area of ball surface 1818 (i.e., the area of annular seat 1800 in contact with ball 230) and the material of annular seat 1800. For example, a firmer material for annular seat 1800 may facilitate a greater sealing pressure on ball 230. According to an exemplary embodiment, first seal edge 1814 and second seal edge 1816 are configured to be beveled. However, first seal edge 1814 and second seal edge 1816 may be chamfered, filleted, or rounded.
As shown in
Annular seat 1550, annular seat 1800, and annular shoulder 1700 may further include a protrusion (e.g., protuberance, etc.), such as a rotational lock similar to rotational lock 700. The rotational lock may interact with a recess in either annular seat 1550 and/or annular seat 1800, or annular shoulder 1700 to inhibit rotation of annular seat 1550 and/or annular seat 1800. In other applications annular seat 1550, annular seat 1800, and/or annular shoulder 1700 may include a depression, such as a depression similar to depression 800. The depression may be configured to assist in inhibiting rotation of annular seat 1550 and/or annular seat 1800.
Body 1500 may be coupled to various pipes, fittings, hoses, gauges, and other components in a fluid transfer assembly. For example, body 1500 may be placed between two fluid transfer pipes and configured to selectively control the flow of fluid from one fluid transfer pipe to another fluid transfer pipe. Accordingly, body 1500 may be altered and reconfigured depending on the fluid transfer assembly. Body 1500, including main body 1510 and end portions 1520, may be constructed from various materials such as brass, aluminum, stainless steel, plastic, polymers, metallic alloys, and other suitable materials. Main body 1510 and end portions 1520 may be joined through the use of fasteners, adhesives, or through the use of a permanent bonding method such as welding, riveting, and fusing. Annular shoulder 1700 may be constructed to be structurally integrated with end portion 1520 or may be attached to end portion 1520 through any of the methods and mechanisms previously mentioned.
Annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 may be constructed from various materials suitable for use in a fluid transfer assembly. For example, annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 may be constructed from butadiene rubber, butyl rubber, fluoroelastomer, nitrile rubber, silicon rubber, thermoplastics, synthetic rubbers, and other similar materials. In an alternative embodiment, annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 are structurally integrated forming a single seal performing the various functions of annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824. In another alternative embodiment, any combination of annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 may be structurally integrated. For example, O-ring 1716 may be structurally integrated within annular seat 1520. As described herein, structurally integrated indicates that two otherwise separate components, features, or structures are formed in, or otherwise caused to be, a single component, feature, or structure. For example, structural integration may be achieved through various molding processes (e.g., injection molding, extrusion molding, pressure molding, transfer molding, etc.).
It is understood that any of annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 may be compressible (e.g., configured to be compressed). In this way, compression of annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 may enhance the ability of annular seat 1520, O-ring 1716, annular seat 1800, O-ring 1806, and O-ring 1824 to inhibit undesirable fluid flow (e.g., to inner chamber 220, etc.).
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.