This disclosure generally relates to a reservoir for a hydraulic system. More particularly, this disclosure relates to control of fluid pressure to minimize a maximum pump inlet pressure.
A closed-loop hydraulic system includes a pump that drives fluid through the system. A reservoir is provided within the system to accommodate changes in the working fluid due to thermal expansion and contraction along with other variables. A bootstrap reservoir includes a piston movable between a high pressure chamber and a low pressure chamber to maintain a desired minimum pump inlet pressure. The minimum fluid pressure at an inlet to the pump is desired to provide efficient operation of the pump. A fluid pressure that is lower than desired can adversely affect pump operation and durability. Accordingly, a minimum pressure provided by the bootstrap reservoir is set well above the minimum desired inlet pressures. Because the low end of the pressure range is fixed by the bootstrap reservoir, the high end of the pressure range may be higher than desired. Higher pressures require that all system components be sufficiently robust to perform at the higher pressures. Accordingly, components in the fluid system are designed to withstand higher pressures that results in increased cost and weight.
A disclosed closed loop fluid system includes a pump for pumping fluid at a desired pressure and flow to hydraulically operated devices such as valves or other hydraulic actuators, or devices which exchange heat with the system fluid such as heat exchangers or electronic motor controllers. Volume fluctuations within the system are compensated by a bootstrap reservoir. A control system is included that minimizes pressure fluctuations in the bootstrap reservoir to maintain a desired minimum pressure at the pump inlet. Moreover, the control system reduces a maximum system pressure by reducing the magnitude of pressure fluctuations encountered by the bootstrap reservoir.
The control system includes a pressure sensor, controller and valve. The pressure sensor measures pressure indicative of pressure at the inlet of the pump. Measurements from the pressure sensor are utilized to drive and operate the control valve. The control valve modulates pressure within the system to minimize the effects of fluid pressure drops caused by the device on the bootstrap reservoir. The reduction in pressure fluctuations provides for a lower upper pressure limit, and thereby reduces overall system and component requirements.
These and other features disclosed herein can be best understood from the following specification and drawings, the following of which is a brief description.
Referring to
A pump 18 drives a fluid flow through the conduits 44 of the closed loop system 10 and includes an inlet 32 and an outlet 34. Fluid pressure at the inlet 32 is maintained above a minimum desired operating pressure. The desired operating pressure at the pump 18 is set to a minimum level. As appreciated, if the fluid pressure at the inlet 32 drops below a minimum pressure, cavitation can occur within the pump 18 that causes a degraded operating capacity.
Accordingly, in the example closed loop system 10, a bootstrap reservoir 20 is set parallel to the pump 18 to maintain a minimum pressure at the pump inlet 32. The example bootstrap reservoir 20 includes a high pressure chamber 22 and a low pressure chamber 26. The high pressure chamber 22 and the low pressure chamber 26 are separated by a piston 30. A piston 30 moves responsive to system volume change and differential pressures within the high pressure chamber 22 and the low pressure chamber 26.
An area 24 of the high pressure chamber 22 is different than an area 28 of the low pressure chamber 26. The difference in area provides the balance of the high pressure chamber 22 and the low pressure chamber 26 that sets a minimum pressure level for fluid pressure within the conduits 44 of the closed loop system 10. In order to maintain a desired minimum operating pressure within the system, the areas 24 and 28 are balanced to provide the desired minimum fluid pressure in view of operation of the device 16. The bootstrap reservoir 20 further adjusts pressure within the system 10 to accommodate changes in the working fluid encountered during operation. Such changes can include thermal expansion and contraction along with losses due to leakage or other operational functions.
The example bootstrap reservoir 20 is designed with a desired ratio by varying the ratio of an area 24 of the piston 30 acted on by fluid in the high pressure chamber 22 with an area 28 acted on by the low pressure chamber 26. The specific ratio between the high pressure area 24 and the low pressure area 28 sets the minimum desired pressure at the pump inlet 32.
The pressure at the high pressure chamber 22 of the bootstrap reservoir 20 fluctuates in direct proportion to the system pressure. Therefore pressure changes encountered due to operation of the device 16 are translated to changes in pressure in the high pressure chamber 22 of the bootstrap reservoir 20. Changes in the high pressure chamber 22 result in a wide range of corresponding pressures in the lower pressure chamber 26 of the bootstrap reservoir 20. In turn, pressure within the low pressure region 14 and at the pump inlet 32 falls within a wide range. For this reason, the bootstrap reservoir 20 is designed to satisfy the minimum operating pressures for the inlet 32 under all operating conditions, including the lowest pressure drops. This results in an overall higher system operating pressure during normal conditions to compensate for the lowest pressure drops.
In the example closed loop system 10 shown in
In the example closed loop system 10, the valve 36 is modulated by a controller 40 in response to a pressure measured by the pressure sensor 38. Modulation of the valve 36 varies the pressure drop between node X and node Y which provides for control of pressure within the low pressure chamber 26 and therefore control of pressure at pump inlet 32 in response to varying pressure drops produced by actuation and operation of the device 16.
The example valve 36 can comprise a variable orifice valve that changes the flow area in order to control pressure drops within the system and at the low pressure chamber 26 of the reservoir 20. The valve 36 may also be an on/off valve that is modulated between open positions and closed positions to limit the range of pressures encountered at the bootstrap reservoir 20.
In operation, the pump 18 outputs fluid at desired flow and pressure through the outlet 34. Fluid pressure and flow is communicated from the pump 18 to both the high pressure chamber 22 of the bootstrap reservoir 20 and the device 16. The valve 36 is disposed between the device 16 and the pump 18. In the event of a pressure drop caused by actuation of the device 16, the pressure sensor 38 will communicate the change in pressure to a controller 40. The controller 40 commands the valve 36 to move to a more closed position to minimize the effects of pressure drops within the high pressure portion 12 of the system 10. Closing of the valve 36 reduces the impact the pressure drop experienced behind the valve caused by actuation and operation of the device 16 such that the high pressure chamber 22 and low pressure chamber 26 do not experience a large drop in pressure. The valve 36 reduces the effect of varying pressure drops of the device 16 on the system and particularly on the pump inlet 32.
The reduced range of pressure drops between node X and node Y provides a corresponding reduction in a range of pressures encountered in the low pressure region 14 and thereby at the pump inlet 32. In response to an increase in pressure drop caused, for example by the closing of valves of the device 16, the controller 40 will command the valve 36 to move to a more open condition to reduce pressure within the high pressure chamber 22.
Referring to
Referring to
Referring to
Accordingly, the example system provides for the minimizing of pressure variations within a closed loop system and thereby provides for a reduction in overall system maximum design operating pressure.
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1663647 | Brush | Mar 1928 | A |
4077746 | Reynolds | Mar 1978 | A |
4187682 | Shen | Feb 1980 | A |
4376619 | Haushalter et al. | Mar 1983 | A |
4538972 | Gooden | Sep 1985 | A |
4691739 | Gooden | Sep 1987 | A |
4906166 | Seidel | Mar 1990 | A |
4991800 | Schwarz | Feb 1991 | A |
5020322 | Schwarz | Jun 1991 | A |
5231846 | Goshaw et al. | Aug 1993 | A |
5305604 | Phillips | Apr 1994 | A |
6109886 | Schonfeld et al. | Aug 2000 | A |
6241485 | Warwick | Jun 2001 | B1 |
6547862 | Dean | Apr 2003 | B2 |
6652240 | Wichert | Nov 2003 | B2 |
20100288369 | Chang et al. | Nov 2010 | A1 |
20110000202 | Gronli | Jan 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130037119 A1 | Feb 2013 | US |