The invention relates to a valve-coupler system that enables one-hand operation including coupling to and sealing to a valve stem.
Attaching a valve-coupler to a valve stem takes two hands, one to press and hold the valve-coupler over the valve stem and one to actuate a lever to produce a seal with the valve stem. This operation requiring two hands is cumbersome. For example, when coupling a valve-coupler to a bicycle tire, one hand may be required for holding the tire or the bicycle, thereby making it difficult to secure the valve coupler to the valve stem.
The invention is directed to a valve-coupler system comprising a valve body and a seal actuator that incorporates a lever for one-hand operation. The lever extends below the valve body from a rocker end to a handle end. The handle end is proximal to the inlet end of the valve body and the rocker end is proximal to the valve-coupler opening in the valve body for attachment over a valve stem. The valve-coupler opening, or opening as used herein, is configured substantially orthogonally to the length axis of the valve coupler body, such as within about 70 to 110 degrees from the length axis. This unique configuration of the lever and valve-coupler opening enables attachment and sealing of the valve-coupler to a valve e with one hand.
In an exemplary embodiment, a gas inlet valve is configured along the gas conduit extending through the valve coupler body from the inlet end to the opening for placement over a valve stem. An exemplary gas inlet valve, such as a lever or body-valve, enables opening of said valve by simple pressing on the valve actuator. A body-valve may be configured on the top or side of the valve body to allow pressing and opening of the body-valve with the same hand that is used to located and seal the valve-coupler to a valve stem. One hand may be used to squeeze the lever to actuate the seal around the valve stem and the thumb may be used to press the body-valve to allow compressed air to flow through the gas conduit, through the valve stem and into a receiving body, such as an inflatable body. A lever-valve is configured on the valve body in a location such that the lever will actuate the lever-valve when rotated past a sealing angle. A lever-valve may be configured on the bottom of the valve body, below the length axis of the valve body, for example A user may use one hand to locate the opening of the valve body over the valve-stem and then squeeze the lever to actuate the seal around the valve stem. The user may then squeeze the lever further to actuate the lever-valve to allow compressed gas to flow through the gas conduit, through the valve stem and into the receiving body. When the user has filled the receiving body with a desired amount of gas, the lever can be released to rotate it back to close the lever-valve. The lever can be rotated further back to release the seal from around the valve stem to allow removal of the valve-coupler from the valve stem.
The exemplary valve-coupler of the present invention can also be used with pumps, such as hand pumps, wherein no additional valve along the gas conduit is required. The gas conduit may extend through the valve body with no valve to block the flow of gas through the gas conduit. In an exemplary embodiment, a gas inlet valve, may have an actuation mechanism or actuator that does not require continuous pressure to be applied, such as a lever or knob for example. A user may open the gas inlet valve such as by manipulating the actuator to open the gas inlet valve. The user may then inflate a receiving body with a pump, such as a hand or floor pump.
A receiving body is any reservoir for receiving air through the valve-coupler and may be a tank that is rigid or an inflatable body, such as a tire that inflates with air or gas received through the exemplary valve-coupler as described herein. Any suitable gas may be passed through the valve-couple and into a receiving body including air, noble gases such as argon, or nitrogen that is commonly used for tire inflation, hydrocarbons such as natural gas, methane or butane and the like.
A valve stem may be any suitable type of valve stem for receiving gas into a receiving body. In an exemplary embodiment, the valve-coupler is configured to seal around a Presta valve (also called Sclaverand valve or French valve). A Presta valve is a valve commonly found in high pressure road style and some mountain bicycle inner tubes. It comprises an outer valve stem and an inner valve body. A Presta valve also has a small screw and captive nut on the top of the valve body that permits the valve to be screwed shut and ensure that it remains tightly closed. The nut must be unscrewed to permit airflow in either direction. A Presta valve requires a greater pressure from the valve-coupler to open the valve within the Presta valve to allow gas to flow into the Presta valve. An exemplary valve-coupler may be configured to seal to Schrader valve, having a pin that must be pressed to open the valve to allow air flow into the Schrader valve. An exemplary seal actuator of a valve-coupler comprises a post for pressing on the pin of Schrader valve.
The summary of the invention is provided as a general introduction to some of the embodiments of the invention, and is not intended to be limiting. Additional example embodiments including variations and alternative configurations of the invention are provided herein.
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the figures. The figures represent an illustration of some of the embodiments of the present invention and are not to be construed as limiting the scope of the invention in any manner. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Certain exemplary embodiments of the present invention are described herein and are illustrated in the accompanying figures. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain modifications, combinations and improvements of the described embodiments, will occur to those skilled in the art and all such alternate embodiments, combinations, modifications, improvements are within the scope of the present invention.
Referring to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the spirit or scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner, Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit of U.S. provisional patent application No. 62/621,046, entitled Valve-Coupler Actuating System, filed on Jan. 24, 2018 and currently pending; the entirety of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1261546 | Jungjohann | Apr 1918 | A |
2082886 | Hardy | Jun 1937 | A |
5645100 | Chuang | Jul 1997 | A |
5902097 | Wu | May 1999 | A |
6035885 | Schuessler, Jr. et al. | Mar 2000 | A |
6146116 | Wu et al. | Nov 2000 | A |
6220274 | Wang | Apr 2001 | B1 |
6223764 | Charlesbois et al. | May 2001 | B1 |
6615704 | Chuang | Sep 2003 | B2 |
6676042 | Howlett, Jr. et al. | Jan 2004 | B2 |
6843270 | Wang | Jan 2005 | B1 |
7040355 | Wu | May 2006 | B2 |
7562671 | Wang | Jul 2009 | B2 |
8156955 | Wang | Apr 2012 | B2 |
8424555 | Wu | Apr 2013 | B2 |
8764125 | Vezzoli et al. | Jul 2014 | B2 |
9309980 | Ward | Apr 2016 | B2 |
9328834 | Wang | May 2016 | B2 |
10203059 | Chuang | Feb 2019 | B2 |
20020078754 | Chen | Jun 2002 | A1 |
20040202546 | Kayukawa et al. | Oct 2004 | A1 |
20050230499 | Wang | Oct 2005 | A1 |
20070062579 | Leidenheimer | Mar 2007 | A1 |
20130236333 | Wang | Sep 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
62621046 | Jan 2018 | US |