1. Field of the Invention
Embodiments of the present invention relate to a method and apparatus for delivery of one or more reactants to a substrate processing chamber. More particularly, embodiments of the present invention relate to a valve assembly for rapid delivery of pulses of one or more reactants to a substrate processing chamber.
2. Description of the Related Art
Reliably producing sub-micron and smaller features is one of the key technologies for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. However, as the fringes of circuit technology are pressed, the shrinking dimensions of interconnects in VLSI and ULSI technology have placed additional demands on the processing capabilities. The multilevel interconnects that lie at the heart of this technology require precise processing of high aspect ratio features, such as vias and other interconnects. Reliable formation of these interconnects is very important to VLSI and ULSI success and to the continued effort to increase circuit density and quality of individual substrates.
As circuit densities increase, the widths of vias, contacts, and other features, as well as the dielectric materials between them, decrease to sub-micron dimensions (e.g., less than 0.20 micrometers or less), whereas the thickness of the dielectric layers remains substantially constant, with the result that the aspect ratios for the features, i.e., their height divided by width, increase. Many traditional deposition processes have difficulty filling sub-micron structures where the aspect ratio exceeds 4:1, and particularly where the aspect ratio exceeds 10:1. Therefore, there is a great amount of ongoing effort being directed at the formation of substantially void-free and seam-free sub-micron features having high aspect ratios.
Atomic layer deposition is one deposition technique being explored for the deposition of material layers over features having high aspect ratios. One example of atomic layer deposition comprises the sequential introduction of pulses of gases. For instance, one cycle for the sequential introduction of pulses of gases may comprise a pulse of a first reactant gas, followed by a pulse of a purge gas and/or a pump evacuation, followed by a pulse of a second reactant gas, and followed by a pulse of a purge gas and/or a pump evacuation. The term “gas” as used herein is defined to include a single gas or a plurality of gases. Sequential introduction of separate pulses of the first reactant and the second reactant may result in the alternating self-limiting adsorption of monolayers of the reactants on the surface of the substrate, thus forming a thin layer of material for each cycle. The cycle may be repeated to a desired thickness of the deposited material. A pulse of a purge gas and/or a pump evacuation between the pulses of the first reactant gas and the pulses of the second reactant gas serves to reduce the likelihood of gas phase reactions of the reactants due to excess amounts of the reactants remaining in the chamber. However, various problems exist with current gas delivery apparatuses used to perform atomic layer deposition, such as slow delivery of reactants, generation of particles, and/or failure over time of components of the gas delivery apparatuses.
Therefore, there is a need for new apparatuses and methods to perform gas delivery.
Embodiments of the present invention relate to a method and apparatus for rapid delivery of pulses of one or more reactants to a substrate processing chamber. One embodiment of a valve body includes a first inlet, a second inlet, and an outlet. A valve chamber is in fluid communication with the first inlet, the second inlet, and the outlet. A valve seat is formed at least around the first inlet. The valve chamber further includes an annular groove formed around the valve seat coupling the second inlet and the outlet.
One embodiment of a pneumatic valve assembly includes a valve body having at least two ports. A valve seat surrounds one of the ports. The pneumatic valve assembly further includes a diaphragm assembly having a diaphragm movable to open and close the one port. A piston housed in a cylinder is coupled to the diaphragm to actuate the diaphragm. An actuation chamber is formed between the cylinder and the piston. In certain embodiments, the internal volume of the actuation chamber is about 3.0 cm3 or less.
Another embodiment of a pneumatic valve assembly includes a valve body having at least two ports. The pneumatic valve assembly further includes a pneumatic piston coupled to move a diaphragm between an open position and a closed position. The diaphragm in the closed position closes one of the at least two ports. The pneumatic piston is adapted to move the diaphragm between the open position and the closed position in a response time of about 50 milliseconds or less.
One embodiment of substrate processing chamber includes a chamber body and one or more valves adapted to provide one or more reactants into the chamber body. Each valve includes a valve body having at least two ports, a valve seat surrounding one of the ports, and a diaphragm assembly. The diaphragm assembly includes a diaphragm movable to open and close the one port, a piston coupled to the diaphragm, and a cylinder to house the piston. The cylinder forms an actuation chamber. In certain embodiments, the internal volume of the actuation chamber is about 3.0 cm3 or less. The substrate processing chamber may further include an electronically controlled valve adapted to provide pressurized gas to the actuation chamber of the valves from a pressurized gas supply.
One embodiment of a method of delivering pulses of a reactant into a substrate processing chamber includes introducing a pressurized gas to an actuation chamber of a valve assembly and releasing the pressurized gas from the actuation chamber of the valve assembly. Introducing the pressurized gas and releasing the pressurized gas provides a pulse time of about 1.0 second or less.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention relate to a valve assembly for delivery of one or more reactants to a substrate processing chamber. More particularly, embodiments of the present invention relate to a valve assembly for rapid delivery of pulses of one or more reactants to a substrate processing chamber. Reactants can be precursors, reducing agents, oxidizing agents, catalysts, and mixtures thereof.
Referring to
Referring to
Referring to
In certain preferred embodiments, in a closed position, the diaphragm 134 does not block the in flow of the purge gas from the purge inlet 114 through the valve chamber 111 to the outlet 116 and into the chamber body 20. As shown in
Still referring to
The valve body 110 may further comprise one or more mounting holes 140 for mounting the valve assembly 100 to chamber components. The valve body 110 may further include a receptacle 118 around each of the reactant inlet 112, the purge inlet 114, and the outlet 116 for receiving an o-ring 119 to prevent leaks between the valve body 110 and chamber components. The receptacle 118 preferably has a round cross-section to better house an o-ring 119. The receptacle 118 may also be any other suitable shape. The o-rings 119 may be made of a polymer (i.e. synthetic or natural rubber), a metal, or metal alloy and is preferably made of an elastic polymer. In addition or alternatively, chamber components may include receptacles for receiving o-rings.
In operation, the electronically controlled valve 152 when open supplies pressurized gas through the connector 349 into the actuation chamber 346 creating a pressure that forces the piston 342 and the stem 336 downward against the elastic force of spring 344. The center portion of the diaphragm 134 is pressed downward by stem 336 and comes into contact with the valve seat 120 closing the inflow of reactant from the reactant inlet 112 to the outlet 116. When the diaphragm 134 is in contact with the valve seat 120, the diaphragm 134 does not block off the groove 122 and a purge gas may flow from the purge gas inlet 114 to the outlet 116. The electronically controlled valve 152, when closed, stops the supply of pressurized gas and releases the pressurized gas inside the actuation chamber 346. When the supply of pressurized gas is stopped and pressure inside the actuation chamber 346 is released, the piston 342 and the stem 336 are raised by the elastic force of the spring 344. As the piston 342 and the stem 336 rise, the diaphragm 134A moves away from the valve seat 120 of the valve body 110 allowing the inflow of reactant from the reactant inlet 112 to the outlet 116.
In operation, the electronically controlled valve 152, when open, supplies pressurized gas through the connector 449 into the actuation chamber 446 creating a pressure that forces the piston 442 and the stem 436 upward against the elastic force of spring 444. The center portion of the diaphragm 134B is pulled upward by stem 436 away from the valve seat 420 allowing inflow of reactant from the reactant inlet 112 to the outlet 116. The electronically controlled valve 152 when closed stops the supply of pressurized gas and releases the pressurized gas inside the actuation chamber 446. When the supply of pressurized gas is stopped and pressure inside the actuation chamber 446 is released, the piston 442 and the stem 432 are lowered by the elastic force of the spring 444 so that the diaphragm 134B comes into contact with the valve seat 120 closing the inflow of reactant from the reactant inlet 112 to the outlet 116. When the diaphragm 134B is in contact with the valve seat 120, the diaphragm 134B does not block off the groove 122 and the purge gas may flow from the purge gas inlet 114 to the outlet 116.
In reference to
In one aspect, pneumatic control of the diaphragm 134 provides a “soft” landing of the diaphragm 134 against the valve seat 120 in comparison to diaphragms driven up and down by a solenoid. The “soft” landing reduces the formation of particles during movement of the diaphragm between an open position and a closed position caused by the impact of the diaphragm 134 against the valve seat 120. The “soft” landing also provides the reactant through the valve assembly 100 in more of a laminar flow in comparison to a “hard” landing caused by moving the diaphragm directly by a solenoid.
In certain embodiments, the internal volume of the actuation chamber 346, 446 comprises a small volume, preferably about 3.0 cm3 or less, more preferably about 1.0 cm3 or less. The term “internal volume of the actuation chamber” as used herein refers to the inner volume of the actuation chamber when the pressure inside the actuation chamber is released and includes the inner volume of the connector 349, 449 and any gas lines between the actuation chamber 346, 446 and the electrically controlled valve 152. A small internal volume of the actuation chamber 346, 446 can be pressurized more rapidly and as a consequence can actuate the diaphragm 134A, B more rapidly.
Reducing the response time of a valve assembly permits more cycles of pulses of reactants to be provided over time. Therefore, throughput of processing substrates is increased. However, the valve assembly can be operated to any desired pulse time 720. The term “pulse time” as used herein is defined as the time to move the diaphragm from a fully closed position to a fully open position and back to fully closed position. The valve assembly 100 may be operated to provide pulse times of about 1.0 second or less, about 500 milliseconds or less, and even about 200 milliseconds or less.
As shown in
Referring to
In one embodiment, the valve assembly 100 may be used with a chamber lid, such as the chamber lid 32 as described in reference to
The expanding channel 34 comprises a channel which has an inner diameter which increases from an upper portion 37 to the lower portion 35 of the expanding channel 34 adjacent the bottom surface 60 of the chamber lid 32. Whether a gas is provided toward the walls of the expanding channel 34 or directly downward towards the substrate, the velocity of the gas flow decreases as the gas flow travels through the expanding channel 34 due to the expansion of the gas. The reduction of the velocity of the gas flow helps reduce the likelihood the gas flow will blow off reactants adsorbed on the surface of the substrate.
At least a portion of the bottom surface 60 of the chamber lid 32 may be tapered from the expanding channel 34 to a peripheral portion of the chamber lid 32 to help provide an improved velocity profile of a gas flow from the expanding channel 34 across the surface of the substrate (i.e., from the center of the substrate to the edge of the substrate). In one embodiment, the bottom surface 60 is tapered in the shape of a funnel. Not wishing to be bound by theory, in one aspect, the bottom surface 60 is downwardly sloping to help reduce the variation in the velocity of the gases as it travels between the bottom surface 60 of the chamber lid 32 and the substrate to help provide uniform exposure of the surface of the substrate to a reactant.
The chamber lid 32 is further described in commonly assigned U.S. Ser. No. 10/032,284, entitled “Gas Delivery Apparatus and Method for Atomic Layer Deposition,” filed on Dec. 21, 2001, and issued Sep. 13, 1988 as U.S. Pat. No. 6,916,398, which claims benefit of U.S. Ser. No. 60/346,086, entitled “Method and Apparatus for ALD Deposition,” filed Oct. 26, 2001, which are both incorporated by reference in their entirety to the extent not inconsistent with the present disclosure.
The valve assembly 100 may be used with other chamber lids. For example, the valve assembly 100 may be used with the chamber lid described in commonly assigned U.S. Ser. No. 10/032,293 entitled, “Chamber Hardware Design For Titanium Nitride Atomic Layer Deposition,” filed on Dec. 21, 2001, and published as US 2003-0116087, which is incorporated by reference in its entirety to the extent not inconsistent with the present disclosure. The valve assembly 100 may also be used with the chamber lid as described in U.S. Ser. No. 10/016,300, entitled “Lid Assembly For A Processing System To Facilitate Sequential Deposition Techniques,” filed on Dec. 12, 2001, and issued on Apr. 12, 2005 as U.S. Pat. No. 6,878,206, which claims priority to U.S. Ser. No. 60/305,970, filed on Jul. 16, 2001, which are both incorporated by reference in their entirety to the extent not inconsistent with the present disclosure. The valve assembly 100 may also be used with the chamber lid as described in commonly assigned U.S. Pat. No. 6,911,391, issued Jun. 28, 2005, which claims priority to U.S. Ser. No. 60/352,191, which are both incorporated by reference in their entirety to the extent not inconsistent with the present disclosure.
The valve assembly 100 as shown and described in reference to
The valve assembly 100 may be used to form tantalum nitride, tantalum, tantalum silicon nitride, copper, copper aluminum, titanium nitride, titanium, titanium silicon nitride, tungsten nitride, tungsten, tungsten silicon nitride, metal oxides, organosilanes or organosiloxanes, other refractory metals, other refractory metal nitrides, other refractory metal compounds, other metals, other metal alloys, other high dielectric constant materials, and other low dielectric constant materials.
For example, a substrate processing chamber, such as chamber 10 of
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. Ser. No. 10/199,482, filed Jul. 19, 2002 now U.S. Pat. No. 7,066,194, which is herein incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3173814 | Law | Mar 1965 | A |
3592440 | McFarland et al. | Jul 1971 | A |
3721583 | Blakeslee | Mar 1973 | A |
3930908 | Jolly | Jan 1976 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4741354 | DeMild, Jr. | May 1988 | A |
4834831 | Nishizawa et al. | May 1989 | A |
4993357 | Scholz | Feb 1991 | A |
5225366 | Yoder | Jul 1993 | A |
5281274 | Yoder | Jan 1994 | A |
5294286 | Nishizawa et al. | Mar 1994 | A |
5374570 | Nasu et al. | Dec 1994 | A |
5413139 | Kusumoto et al. | May 1995 | A |
5441703 | Jurgensen | Aug 1995 | A |
5443647 | Aucoin et al. | Aug 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5483919 | Yokoyama et al. | Jan 1996 | A |
5503875 | Imai et al. | Apr 1996 | A |
5674786 | Turner et al. | Oct 1997 | A |
5711811 | Suntola et al. | Jan 1998 | A |
5755428 | Olliver | May 1998 | A |
5796116 | Nakata et al. | Aug 1998 | A |
5807792 | Ilg et al. | Sep 1998 | A |
5820105 | Yamaji et al. | Oct 1998 | A |
5835677 | Li et al. | Nov 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
6015590 | Suntola et al. | Jan 2000 | A |
6015917 | Bhandari et al. | Jan 2000 | A |
6035609 | Evans et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6123097 | Truong et al. | Sep 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6176438 | Sato et al. | Jan 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6197683 | Kang et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6207487 | Kim et al. | Mar 2001 | B1 |
6231672 | Choi et al. | May 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6284646 | Leem | Sep 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6306216 | Kim et al. | Oct 2001 | B1 |
6321780 | Iwabuchi | Nov 2001 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6348376 | Lim et al. | Feb 2002 | B2 |
6358829 | Yoon et al. | Mar 2002 | B2 |
6372598 | Kang et al. | Apr 2002 | B2 |
6379748 | Bhandari et al. | Apr 2002 | B1 |
6391785 | Satta et al. | May 2002 | B1 |
6399491 | Jeon et al. | Jun 2002 | B2 |
6416577 | Suntola et al. | Jul 2002 | B1 |
6416822 | Chiang et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6447607 | Soininen et al. | Sep 2002 | B2 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6451695 | Sneh | Sep 2002 | B2 |
6468924 | Lee et al. | Oct 2002 | B2 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475910 | Sneh | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6481945 | Hasper et al. | Nov 2002 | B1 |
6482262 | Elers et al. | Nov 2002 | B1 |
6482733 | Raaijmakers | Nov 2002 | B2 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6551406 | Kilpi | Apr 2003 | B2 |
20010000866 | Sneh et al. | May 2001 | A1 |
20010002280 | Sneh | May 2001 | A1 |
20010009140 | Bondestam et al. | Jul 2001 | A1 |
20010009695 | Saanila et al. | Jul 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010013312 | Soininen et al. | Aug 2001 | A1 |
20010014371 | Kilpi | Aug 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010025979 | Kim et al. | Oct 2001 | A1 |
20010028924 | Sherman | Oct 2001 | A1 |
20010034123 | Jeon et al. | Oct 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010042523 | Kesala | Nov 2001 | A1 |
20010042799 | Kim et al. | Nov 2001 | A1 |
20010047826 | Ishigaki | Dec 2001 | A1 |
20010054377 | Lindfors et al. | Dec 2001 | A1 |
20010054730 | Kim et al. | Dec 2001 | A1 |
20010054769 | Raaijmakers et al. | Dec 2001 | A1 |
20020000196 | Park | Jan 2002 | A1 |
20020000598 | Kang et al. | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020020869 | Park et al. | Feb 2002 | A1 |
20020021544 | Cho et al. | Feb 2002 | A1 |
20020031618 | Sherman | Mar 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020048635 | Kim et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020066411 | Chiang et al. | Jun 2002 | A1 |
20020068458 | Chiang et al. | Jun 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076481 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020076837 | Hujanen et al. | Jun 2002 | A1 |
20020082296 | Verschoor et al. | Jun 2002 | A1 |
20020086106 | Park et al. | Jul 2002 | A1 |
20020092471 | Kang et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020106536 | Lee et al. | Aug 2002 | A1 |
20020108570 | Lindfors | Aug 2002 | A1 |
20020134307 | Choi | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020144657 | Chiang et al. | Oct 2002 | A1 |
20020146511 | Chiang et al. | Oct 2002 | A1 |
20020155722 | Satta et al. | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020164421 | Chiang et al. | Nov 2002 | A1 |
20020164423 | Chiang et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020182320 | Leskela et al. | Dec 2002 | A1 |
20020187256 | Elers et al. | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20030004723 | Chihara | Jan 2003 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030031807 | Elers et al. | Feb 2003 | A1 |
20030042630 | Babcoke et al. | Mar 2003 | A1 |
20030049942 | Haukka et al. | Mar 2003 | A1 |
20030072975 | Shero et al. | Apr 2003 | A1 |
20030075273 | Kipela et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20040011404 | Ku et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
1 167 569 | Jan 2002 | EP |
2 355 727 | May 2001 | GB |
5898917 | Jun 1983 | JP |
4291916 | Oct 1992 | JP |
5047666 | Jun 1993 | JP |
5206036 | Aug 1993 | JP |
5234899 | Sep 1993 | JP |
5270997 | Oct 1993 | JP |
6224138 | Aug 1994 | JP |
2000319772 | Nov 2000 | JP |
2001020075 | Jan 2001 | JP |
2001111000 | Apr 2001 | JP |
2001172767 | Jun 2001 | JP |
WO 9617107 | Jun 1996 | WO |
WO 9901595 | Jan 1999 | WO |
WO 9929924 | Jun 1999 | WO |
WO 9965064 | Dec 1999 | WO |
WO 0016377 | Mar 2000 | WO |
WO 0054320 | Sep 2000 | WO |
WO 0079576 | Dec 2000 | WO |
WO 0115220 | Mar 2001 | WO |
WO 0117692 | Mar 2001 | WO |
WO 0127346 | Apr 2001 | WO |
WO 0127347 | Apr 2001 | WO |
WO 0129280 | Apr 2001 | WO |
WO 0129891 | Apr 2001 | WO |
WO 0129893 | Apr 2001 | WO |
WO 0136702 | May 2001 | WO |
WO 0166832 | Sep 2001 | WO |
WO 0208485 | Jan 2002 | WO |
WO 0208488 | Jan 2002 | WO |
WO 0243115 | May 2002 | WO |
WO 0245167 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060213557 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10199482 | Jul 2002 | US |
Child | 11432063 | US |