This application claims the benefit of German Patent Application No. 10 2009 019 680.3, filed Apr. 30, 2009, which is incorporated herein by reference as if fully set forth.
The invention relates to a valve drive system with a support element and a switchable cam follower linked to this support element in an articulated way.
The valve drive system emerging from EP 1 143 120 A2 is considered to be the closest prior art. Here, a cam follower is connected on one end to a head of a support element in an articulated way. Coupling pistons that can be displaced, for the coupled case, by the force of a compression spring directly into a borehole of the head of the support element sit, in the decoupled case, in bushings of side walls of the cam follower. On the inside at the ends, the coupling pistons contact slides of the borehole of the support element that can be loaded, for a decoupled case, on their inner ends with hydraulic medium and that exert a force outward in the radial direction onto the coupling pistons. Thus, there is a complicated slide assembly. In the decoupled case, the cam follower detached from the head of the support element pivots in the direction of the support element, wherein its restoring position in the cam direction is realized by a helical compression spring (lost-motion spring) enclosing the support element and sitting in the cylinder head on one end.
For the construction noted above, it is disadvantageous that this construction cannot perform partial strokes and thus gives only limited variability. In addition it has been determined that through the arrangement of the coupling pistons in the pivoting cam follower, its mass moment of inertia is increased unnecessarily and the cylinder head of the combustion engine must be changed for integration of the helical compression spring. In addition, in the decoupled mode there is the risk that the cam follower pivots so far that the borehole of the head of the support element is exposed and thus the slides are no longer secured.
Therefore, the objective of the invention is to create a valve drive system of the type noted above in which the listed disadvantages are eliminated. In particular, a reliably switching valve drive system that can be delivered as one structural unit should be created and that has a small mass moment of inertia with simultaneously greater variability compared with the state of the art.
This objective is met by the invention. Here, a valve drive system is provided whose cam follower linked in an articulated way includes an outer lever between whose arms runs an inner lever, wherein at least the outer lever is provided on its top side with a contact surface for a lifting cam, the inner lever has, on a bottom side on a first end, a contact for a gas-exchange valve and at least on the other end two side walls that are spaced apart and in which opposing boreholes extend, with the side walls being bridged by a tubular axle piece sitting in the boreholes in whose opening two diametrically opposed coupling pistons run. The axle piece sits between the side walls in a cross borehole of a head of the support element, and, in the region of one end, the levers run on a common swivel pin and the arms of the outer lever have, on the other end, a catch surface for the coupling pistons that can be brought into engagement with the catch surface, in the coupled case, section-wise, out from their opening such that a large valve stroke is realized, and, when decoupled, a comparatively smaller valve stroke or a zero valve stroke is presented, and the outer lever is forced back by a restoring spring from its pivot mode.
Thus a valve drive system is provided in which the disadvantages described above are eliminated.
A tilt-free assembly unit is created whose costs are kept within limits. Due to the articulated connection on the head of the support element (pressure piston), a safety device against spalling is simultaneously also provided. Due to the decoupling mechanism implemented in the axle piece and the arrangement of additional, essential components, such as the restoring spring in the support element region, a valve drive system with a relatively small mass moment of inertia is proposed (also in the decoupled state). Because the restoring spring that is formed in one refinement of the invention as at least one rotary leg spring is integrated into the lever system, the changes described above in the cylinder head region can be eliminated.
Due to the possibility of its two-stage construction (full stroke/partial stroke), the valve drive system has greater variability than the system according to the prior art described above. However, it is also conceivable and provided to represent a valve stroke deactivation by the proposed valve drive system.
For the tubular axle piece in the head of the support element, a simple mass part can be used. As the coupling pistons, in particular, cylindrical elements are conceivable, but it is also provided to flatten these in the coupling region. Likewise, the invention also functions with only one coupling piston.
It is especially preferred when both levers (outer lever, inner lever) are made from a lightweight material, such as thin-walled sheet steel. For production, a stamping-bending method can be used. It is also provided to produce the levers, e.g., by casting material or the like.
One simple variant of a construction of the outer lever provides that its arms should reach only up to the axle stumps and should be provided there with a half-shell-like or quarter-shell-like, roof-like segment as a catch surface. In the coupled case, the corresponding segment grips over the extended coupling pistons section-wise, so that a large valve stroke is possible, wherein simultaneously the corresponding coupling pistons meet, on an inner end of the segment, a stop in the extension direction.
According to another preferred refinement of the invention, the coupling pistons are shifted in their coupling direction by hydraulic medium that can be led out from the support element. A simple displacement in its decoupling direction is proposed by the force of an outer spring that is formed, for example, in an additional realization, as a simple staple that bridges an end region of the lever on the other end with its middle piece and that acts with its end pieces running on arms on outer ends of the coupling pistons.
Optionally, a displacement of the coupling pistons in their coupling direction can take place via a spring force and they can move hydraulically in the decoupling direction. In addition, it is conceivable and provided to displace the coupling pistons in at least one direction by an electromagnetically loaded actuating element or the like. Optionally, its displacement in both displacement directions is possible by hydraulic medium pressure or by an electromagnetic actuating element.
In order to prevent the end pieces of the staple mentioned above from slipping from the outer end of the corresponding coupling piston, it is provided to provide at least the outer ends of the corresponding coupling pistons with a recess in which the end piece then engages in the assembled state. Here it is especially advantageous when all ends of the coupling pistons are provided with the recess, so that an oriented assembly of the coupling pistons is unnecessary.
An especially low friction pivot connection of the inner lever on the axle piece is provided when, in the connection region, a roller bearing like a needle bearing is applied. Optionally, the arms of the inner lever could also sit tightly on the axle piece, wherein the axle piece can then rotate relative to the borehole in the head of the support element.
A simple guide of the pivoting outer lever is then provided when this, as proposed, is guided on end surfaces of the axle stumps that project slightly past the boreholes of the inner lever.
In one embodiment of the invention it is also provided that the inner lever has two advantageously continuous, beam-like side walls between which is held a roller or a plate for low-friction lifting-cam contact. Optionally, a sliding surface could also be applied at this position.
In addition, it is the subject matter of the invention to provide the top sides of the arms of the outer lever with vane-like, projecting sliding surfaces for run-on of, for example, low-stroke cams. Instead of these sliding surfaces, rollers or plates could also be applied.
A “double-flow” supply of the support element with hydraulic medium is also proposed. First, a hydraulic medium path should lead to the hydraulic play compensation device in the support element. Second, another hydraulic medium path goes into a storage space in the support element and from there in the direction toward the pressure space in the axle piece.
It is especially advantageous when the at least one rotary leg spring noted above is provided as the restoring spring. This is positioned with its windings, advantageously by a separate sleeve, on a cross axle that projects laterally from the inner lever and that sits in the region of the other end of the valve drive system, wherein overall two restoring springs or a restoring spring with connected inner legs are provided.
An inner leg of the restoring spring is snapped or bent according to the invention behind a holding opening of the inner lever, wherein an outer leg of the restoring spring acts under a stop on an outer side of the corresponding arm of the outer lever. For low-friction contact in the contact region, an involute profile is proposed.
A simple measure for reinforcing the outer lever is also provided in that the arms of the outer lever are connected on the bottom side by at least one reinforcement bracket. The latter could be provided as a height stop for the outer lever in its restoring direction, but does not have to be provided.
Finally, a simple stop for the coupling piston in the axle piece (decoupled position) is proposed. Here, for example, a simple snap ring, securing ring, or the like could be used. A pin projecting inward in the radial direction is also conceivable.
The invention is explained in detail with reference to the drawing. Shown are:
Shown is a valve drive system 1 with a hydraulic support element 2 and a switchable cam follower 3 connected to the support element in an articulated way. The latter is made from an elongated outer lever 4 with two arms 5. A similarly elongated inner lever 6 runs between the arms 5.
Run-on surfaces 8 projecting outward for large-stroke cams are shown integrally on a top side 7 of the arms 5 of the outer lever 4. These are constructed as sliding surfaces 42. Between its side walls 13, the inner lever 6 has, in contrast, a rotating and also rolling bearing supported roller 40 (see also
The inner lever 6 has on a bottom side 9 at a first end 10, a contact 11 for a gas-exchange valve. At the other end 12, the inner lever 6 has two opposite boreholes 14 between its side walls 13. A tubular axle piece 15 sits in the boreholes 14.
As is visible from
A stop element 56 that is constructed as a thin-walled ring and that is used for limiting a path for the coupling pistons 17 in their decoupling direction is allocated to the coupling piston 17 on the inside in the opening 16.
As is visible from
According to
The arms 5 noted above for the outer lever 4 have an approximately quarter-shell-like segment 23 on the side of the other end 12 as a catch surface 21 for the coupling piston 17 in the coupled state.
As
As
A displacement of the coupling pistons 17 in the decoupling direction is realized by the force of an outer spring 32 that is here constructed as a thin-walled staple. The staple has a middle piece 33 that lies behind an end area 34 of the levers 4, 6. Arms 36 project from the middle piece 33 on both sides in the direction toward the first end 10. The arms 36 have end pieces 35 that engage in the recesses 38 noted above in the outer end 37 of the corresponding coupling piston 17. For an extension movement of the coupling piston 17 in the coupling direction, the arms 36 of the spring means 32 are thus spread apart.
For a return displacement of the outer lever 4 pivoting relative to the inner lever 6 in the decoupled case, there are two restoring springs 22 that are formed as rotary leg springs. For supporting the restoring springs 22 there is a cross axle 47 that runs in the direct vicinity of the axle piece 15 in the side walls 13 of the inner lever 6 and projects outward like a stump past the side walls 13. Each stump-like projection extending outward in the cross axle 47 is enclosed by a sleeve on which sits the respective restoring spring 22 with its windings 46.
Each restoring spring 22 has an inner leg 48 that is snapped into a holding opening 49 on the other end 12 of the inner lever 6. The respective holding opening 49 is a component of a projecting holding clamp 50 projecting integrally from the inner lever 6.
The outer legs 51 of the restoring springs 22 extend on the outer sides 52 of the arms 5 of the outer lever 4 in the direction toward the first end 10. With their end 53, they are each guided under a projection 54 extending from a bottom side of the run-on surface 8. A special feature on the contact region is that here an involute profile is realized, so that only extremely low friction is to be taken into account.
Both lever parts 4, 6 are produced from thin-walled sheet steel using a stamping-bending method.
In the coupled state of the levers 3, 6, which emerges from
Number | Date | Country | Kind |
---|---|---|---|
10 2009 019 680 | Apr 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
7159551 | Cecur et al. | Jan 2007 | B2 |
7637237 | Evans et al. | Dec 2009 | B2 |
20050247279 | Rorig et al. | Nov 2005 | A1 |
20070101958 | Seitz | May 2007 | A1 |
20080196683 | Hayman et al. | Aug 2008 | A1 |
20090000584 | Rorig et al. | Jan 2009 | A1 |
20090007872 | Bugescu | Jan 2009 | A1 |
20090056653 | Schmidt et al. | Mar 2009 | A1 |
20110005483 | Manther et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1143120 | Oct 2001 | EP |
1143120 | Oct 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20100275864 A1 | Nov 2010 | US |