The invention relates generally to flexible packaging and more specifically to the fluid connectors used to connect the flexible packaging to their end uses.
A number of flexible plastic containers are well known in the art for storing and dispensing wine, soft drink syrup, dairy products, enteral feeding solutions, fruit juices, tea and coffee concentrates, puddings, cheese sauces, cleaning chemicals and many other flowable materials. The flexible containers described above typically have walls fabricated from polymeric films having either a monolayer or multiple layer structure. The particular polymers constituting the container film layers will often vary depending upon the type of material to be placed in the container.
In some instances, the film layers may additionally include an oxygen barrier material layer to prevent contact between such materials and oxygen or other gas sensitive contents. In some applications, the walls of the containers may be metallized, or coated with a metallic layer such as aluminum to prevent incursion of oxygen or other gases. A separate metallized enclosure may also encase the polymeric container.
These flexible polymeric containers 1 generally have inlets and/or spouts 2 for filling and dispensing the contents (
The BIBs which are used to store and dispense soft drink syrup typically use fluid flow connectors to connect the containers to fountain dispensing machines. The fluid flow connectors generally have valves that remain closed until the connectors are attached to the spouts of the containers. Such valves include plungers that fit into the inlet of the fluid flow connector so as to regulate the flow of the soft drink syrup.
The plunger includes a member which is made of a hard plastic and an O-ring that is fitted to a distal end of the member. When the fluid flow connector is not attached to a BIB, the plunger is biased towards a closed position with the O-ring being pushed against the inlet of the fluid flow connector to provide a fluid tight seal. When the fluid flow connector is attached to a BIB, the spout of the BIB causes the plunger to be pushed away from the inlet thereby allowing fluid to flow through the inlet.
The O-rings which are used in BIB systems for dispensing soft drink syrup are made of ethylene propylene diene monomer or “EPDM”. It has been discovered by the applicant that, when the fluid flow connectors described above are attached to BIBs containing syrup for diet soft drinks, the O-rings swell. This swelling causes the fluid connectors to leak because the O-rings can no longer provide a fluid tight seal when the connectors are not connected to the containers. The leaking fluid flow connectors also lets air into the fountain dispensing machines, causing a loss of vacuum or suction and, in some cases, an adverse effect on the taste of the dispensed soft drinks. The swelling of the O-rings additionally creates another problem; the swollen O-rings decrease the flow rate through the fluid flow connectors when the connectors are attached to the spouts of containers and fluid is being dispensed from the containers.
For example, one study performed by the applicant showed that the EPDM O-ring used with existing fluid flow connectors swelled to 0.05 inches in a matter of weeks when it was exposed to diet soft drink syrup at elevated temperatures. This same swelling occurs over a matter of months for EPDM O-rings exposed to diet soft drink syrup at ambient temperatures. As a result of the swelling of the O-rings and the subsequent leakage of syrup, a large number of service calls are made by the syrup suppliers to replace the fluid connectors, plungers and/or the O-rings.
The above-described problems generate increased operating costs for the soft drink syrup suppliers who have to make additional service calls to soda fountain retailers to repair leaking fluid flow connectors. Moreover, fountain soda retailers incur increased operating costs because of the clean-up of leaked syrup caused by the leaking fluid connectors. The retailers also lose sales of diet fountain soda while waiting for the leaking fluid flow connectors to be repaired or from the connectors not being able to dispense the syrup properly.
The present invention is designed to provide advantages over the presently used system described above. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
The present invention is directed to a fluid flow connector that is coupled with the spouts of fluid containers to overcome the problems associated with prior art fluid flow connectors. The present invention also includes a method of manufacturing the fluid flow connectors.
The present invention includes a fluid flow connector that utilize a valve having a plunger that has a soft exterior which is overmolded to a hard core. The soft exterior replaces the EPDM O-rings that are used in the prior art to provide fluid tight seals with the inlet of fluid flow connectors. The present invention, thus, does not have the above-described problems associated with the prior art fluid flow connectors.
One embodiment of the present invention includes a fluid flow connector having an adapter for attaching the fluid flow connector to a spout of a fluid container. The fluid flow connector also includes a valve that is actuated to allow flow through the connector when the connector is attached to the spout of the fluid container. The valve includes a plunger that has a hard core and a soft exterior that is overmolded to the hard core. The hard core of the plunger is made of a thermoplastic material and the soft exterior is made of a thermoplastic elastomer that will provide a fluid tight seal with the inlet of the fluid flow connector.
One of the advantages of the present invention is that because the plunger is formed by overmolding, EPDM O-rings do not have to be used in the valve to provide a fluid tight seal with the inlet of the fluid flow connector. The present invention can thus provide a fluid flow connector that does not utilize EPDM O-rings which have a tendency to swell when the fluid flow connectors are used in applications having diet soft drink syrup.
For example, in one study completed by the applicant, plungers were manufactured for fluid flow connectors consisting of soft exteriors made of Santoprene™ TPV 271-55 which were overmolded to hard cores made of polyoxymethylene copolymer. The results of the study showed that the soft exteriors of the plungers embodying the present invention had significantly less swelling than did the EPDM O-ring of prior art plungers when the fluid connectors were used in applications having diet soft drink syrup. The present invention can thus be utilized for a significantly longer period of time without encountering the problems which occur from connectors having swollen O-rings.
It should be appreciated that the present invention is not limited to the above-described materials. Depending on the applications, other suitable materials may be used to manufacture the present invention.
It should also be understood that the term “overmolding” encompasses both insert and multi-shot molding processes. The present invention incorporates both techniques. For example, in one embodiment of the present invention, the hard core of the plunger is molded first and then transferred to second mold where the soft exterior is shot around one of the distal ends of the hard core. This technique is referred to as insert molding.
In another embodiment of the present invention, a multi-shot molding technique is used. In this embodiment, a press with multiple barrels is used, allowing the materials used for both the soft exterior and the hard core to be shot into the same mold.
The present invention also includes different methods of attaching the soft exterior to the hard core to form the plunger. In one embodiment of the present invention, the hard core is first formed. Then, once the hard core is cured, the soft exterior is overmolded to the hard core. The second overmolding of the soft exterior to the hard core occurs within a reasonable time subsequent to the molding of the hard core, so that the soft exterior tends to molecularly bond to the underlying hard core and form a single unit.
In another embodiment of the present invention, the hard core of the plunger is formed with at least one opening or aperture at the distal end of the hard core where the soft exterior will be overmolded to. The soft exterior can then be overmolded to the core at any time after the hard core has been formed. The soft exterior of the plunger is injected so that the soft exterior forms around the apertures and may be mechanically attached to the hard core of the plunger.
It should be appreciated that the soft exterior of the plunger can be overmolded to the hard core so that it is both mechanically attached and molecularly bonded to the hard core.
Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention includes embodiments in many different forms, the embodiments shown in the drawings and described herein are preferred embodiments. Those preferred embodiments are to be considered exemplifications of the principles of the invention and are not intended to limit the broad aspect of the invention to the embodiments illustrated and described herein.
The present invention is directed to a fluid flow connector 10 having an adapter 12 for attaching the fluid flow connector 10 to a spout of a fluid container. One embodiment of the present invention is illustrated in
The hard core 18 has an elongate plunger rod 57 having three intersecting ribs 58 extending axially, upwardly from the first flange 52 in a direction opposite from the second flange 54 to define a generally three-pointed star shaped body 60 when viewed in horizontal cross-sectional dimension. A finger 61 extends from an upper surface 62 of each of the ribs 58. The fingers 61 extend axially, upwardly and terminate in an enlarged distal end 66 having a hook shape extending radially inwardly. As shown in
Prior art fluid flow connectors 10, like the one illustrated in
The present invention is directed to a fluid flow connector 10 which does not involve the use of O-rings 26 but instead utilizes overmolding to mold a soft exterior 20 to plunger 16 as shown in
In one embodiment of the present invention, the hard core 18 of the plunger 16 is molded having holes or apertures 28 (
The soft exterior 20 can also be molecularly bonded to the hard core 18 of plunger 16. In this method of the present invention, the hard core 18 is first molded and then the soft exterior 20 is overmolded within a reasonable time subsequent to the molding of the hard core 18. In that way, the soft exterior 20 tends to molecularly bond to the underlying hard core 18 and form a single unit. The present invention also includes embodiments wherein the soft exterior 20 is both molecularly bonded and mechanically attached to the hard core 18.
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying Claims.
The present application is a continuation of U.S. Ser. No. 11/312,884, filed Dec. 20, 2005, now U.S. Pat. No. 8,091,864 issued Jan. 10, 2012, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2904060 | Fausek et al. | Sep 1959 | A |
3013768 | La Mastra | Dec 1961 | A |
3319537 | Pittman | May 1967 | A |
3326520 | Guenther | Jun 1967 | A |
3379214 | Weinberg | Apr 1968 | A |
3445089 | Murray | May 1969 | A |
3861646 | Douglas | Jan 1975 | A |
4096754 | Beveridge, Jr. et al. | Jun 1978 | A |
4196886 | Murray | Apr 1980 | A |
4214507 | Hock et al. | Jul 1980 | A |
4286636 | Creddle | Sep 1981 | A |
4331266 | Bond | May 1982 | A |
4336920 | Murray | Jun 1982 | A |
4353488 | Schneiter et al. | Oct 1982 | A |
4380310 | Schneiter et al. | Apr 1983 | A |
4421146 | Bond et al. | Dec 1983 | A |
4525910 | Bohemer | Jul 1985 | A |
3381352 | Kidner et al. | May 1986 | A |
4601410 | Bond | Jul 1986 | A |
4913316 | Richter | Apr 1990 | A |
4979721 | Gilbert | Dec 1990 | A |
5022313 | Shonz et al. | Jun 1991 | A |
5158479 | Mouissie | Oct 1992 | A |
5230149 | Martin | Jul 1993 | A |
5282412 | Ebbing | Feb 1994 | A |
5421306 | Talaski | Jun 1995 | A |
5477883 | Totten | Dec 1995 | A |
5529738 | Mercereau | Jun 1996 | A |
5577641 | Laforcade et al. | Nov 1996 | A |
5643521 | Nehm | Jul 1997 | A |
5647511 | Bond | Jul 1997 | A |
5749493 | Boone et al. | May 1998 | A |
5795337 | Grimard | Aug 1998 | A |
5878798 | Harris et al. | Mar 1999 | A |
5901761 | Rutter et al. | May 1999 | A |
5902276 | Namey, Jr. | May 1999 | A |
5983964 | Zielinksi et al. | Nov 1999 | A |
6070763 | Gueret | Jun 2000 | A |
6077245 | Heinrich et al. | Jun 2000 | A |
6196552 | Peterson et al. | Mar 2001 | B1 |
6250516 | Story et al. | Jun 2001 | B1 |
6284181 | Gaster | Sep 2001 | B1 |
6347785 | Copp et al. | Feb 2002 | B1 |
6490964 | Buynacek | Dec 2002 | B2 |
6607097 | Savage et al. | Aug 2003 | B2 |
6612545 | Rutter et al. | Sep 2003 | B1 |
6629624 | Stillinger et al. | Oct 2003 | B2 |
6631823 | Stillinger et al. | Oct 2003 | B2 |
6637725 | Davis et al. | Oct 2003 | B2 |
6702337 | Rutter et al. | Mar 2004 | B2 |
6893000 | Rutter et al. | May 2005 | B2 |
6926178 | Anderson et al. | Aug 2005 | B1 |
20030150498 | Williams | Aug 2003 | A1 |
20040112562 | Khoury | Jun 2004 | A1 |
20040210196 | Bush, Jr. et al. | Oct 2004 | A1 |
20040245673 | Allsop | Dec 2004 | A1 |
20050065472 | Cindrich et al. | Mar 2005 | A1 |
20070219508 | Bisegna et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2364560 | Jan 2002 | GB |
Entry |
---|
Communication from European Patent Office, Dec. 14, 2012. |
Response to the Extended European Search Report, Jun. 27, 2013. |
Number | Date | Country | |
---|---|---|---|
20120223095 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11312884 | Dec 2005 | US |
Child | 13347523 | US |