Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates to a hydraulic system in which pressurized fluid from a source is applied in a controlled manner to a plurality of hydraulic actuators that produce movement of different components on a machine, and in particular to devices that determine which of the hydraulic actuators are to be operable when insufficient fluid is available from the source to operate all the hydraulic actuators.
2. Description of the Related Art
Modern aircraft employ hydraulic systems to operate various mechanical components, such as ailerons, elevators and the rudder which are parts of the flight control system, as well as doors and landing gear. One or more hydraulic pumps furnish pressurized fluid to a plurality of valve assemblies, each controlling the application of the pressurized fluid to a hydraulic actuator that moves a component on the aircraft. A given valve may be mechanically operated by a member of the flight crew or may be electrically operated either by a crew member or by an electronic controller.
Normally, the pumps furnish sufficient hydraulic fluid so that as many of the hydraulic actuators can be operated simultaneously as is necessary. However, conditions occur in which the pumps are incapable of furnishing enough hydraulic fluid to operate all the desired actuators at the same time. At those times, it is desirable that the hydraulic actuators associated with flight control be able to operate as normally as possible. Therefore, when a limited amount of hydraulic fluid is available, that fluid should be allocated to the flight controls on a priority basis before being made available to less critical functions.
For that purpose, a priority control valve was incorporated in the hydraulic system to enable flight control actuators to operate as normally as possible, while limiting fluid flow to other less critical hydraulic actuators. Prior priority control valves sometimes exhibited an adverse condition commonly called “thrashing.” That condition occurred when the priority control valve attempted to close in response to the flow to the secondary actuators that caused a reduction in pressure to the primary actuators. The closing action resulted in an increase of the pressure for the flight control actuators to which the priority control valve reacted by attempting to reopen. It is possible for the response time of the hydraulic system to be such that this open-close-open cycle became a continuous, resonant cycling that was harmful to the system.
As a consequence, it is desirable to provide a device that automatically recognizes when insufficient hydraulic fluid is available for operating all the hydraulic actuators and allocating the available fluid only to high priority actuators. It is further desired to reduce or eliminate the thrashing condition encountered with previous priority control valves.
A hydraulic system has a plurality of hydraulic functions divided into a primary section and a secondary section. A primary supply line receives pressurized fluid from a source and conveys that fluid to the hydraulic functions in the primary section and a secondary supply line provides pressurized fluid to the hydraulic functions in the secondary section.
A priority valve controls the flow of fluid from the primary supply line to the secondary supply line. The priority valve has a valve bore with a valve seat therein. An inlet port, connected to the primary supply line, communicates with the valve bore on one side of the valve seat. An outlet port is connected to the secondary supply line and is in communication with the valve bore on another side of the valve seat.
A poppet is slideably received in the valve bore thereby defining a control chamber on a side of the poppet remote from the valve seat. Upon sliding in the valve bore, the poppet engages and disengages the valve seat. The poppet includes a spool bore that opens into the control chamber. A first passage provides a conduit for fluid to flow between the inlet port and the spool bore and an end passage creates another conduit for fluid from the inlet port to flow to adjacent the closed end of the spool bore. A second passage extends between the spool bore and the control chamber, while a third passage provides a conduit for fluid to flow between the spool bore and the outlet port.
A control spool is slideably received in the spool bore with a surface exposed to pressure adjacent the closed end of the spool bore. In a first position, the control spool creates a first path between the first and second passages and in a second position a second path is provided between the second and third passages. A spring mechanism, such as one or more springs for example, biases the control spool toward the first position.
When pressure at the inlet port is below a predefined level, the spring mechanism holds the control spool in the first position which keeps the poppet against the valve seat and the priority valve closed. When sufficient fluid becomes available for powering all the hydraulic functions, pressure at the inlet port increases above the predefined level. That pressure is conveyed adjacent the closed end of the spool bore which creates a force that moves the control spool into the second position. In this state, pressure in the control chamber is relieved through the third passage to the outlet port enabling the inlet port pressure to drive the poppet away from the valve seat to open the priority valve. Thereafter, if an inadequate amount of fluid becomes available, the inlet port decreases below the predefined level causing the control spool to return to the first position. This results in the poppet moving back against the valve seat closing the priority valve.
Although the present invention is being described in the context of a hydraulic system for an aircraft, it can be implemented on other types of hydraulically operated equipment where certain hydraulic functions have a higher operational priority than other functions.
With initial reference to
Each hydraulic function 17-20 controls motion of a machine member and comprises a control valve 24 and a hydraulic actuator 26, which may be a cylinder/piston assembly or a hydraulic motor, for example. The control valves 24 govern application of pressurized fluid from the primary supply line 16 to the respective actuator 26 and the return flow of fluid from the actuator to a return line 25 connected to the reservoir 12. The control valves 24 are illustrated as being electrically operated, three-position, four-way spool valves, however manual mechanically operated valves and other types of valves or combinations of valves may be used to control the fluid flow. By selectively operating a control valve 24 into different positions, the direction and speed of the associated actuator 26 is variably controlled.
The hydraulic system 10 incorporates a unique priority valve 28 which interfaces the primary supply line 15 in the primary section 21 to the secondary supply line 16 in the secondary section 22 and controls the fluid flow there between. When the pump 14 is unable to furnish sufficient fluid to adequately power all the functions 17-20, the priority valve 28 limits the flow of fluid to the low priority functions in the secondary section 22 to the extent necessary to enable the high priority functions primary section 21 to operate as fully as possible with the available amount of fluid.
With reference to
A poppet 40 is slideably received within the valve bore 36 without being biased by spring that acts directly on the poppet. The poppet has a nose 47 that selectively engages the valve seat 48 to open and close fluid communication between the inlet and outlet ports 32 and 34 and thereby control the flow of fluid through the priority valve 28. The pressure at the inlet port 32 thus is applied to the sides of the poppet 40 and the pressure at the outlet port 34 is applied to the nose 47 of the poppet. A control chamber 42 is formed within the valve bore 36 on a remote side of the poppet from the valve seat 48. A spool bore 44 extends part way into the poppet from the control chamber 42. A first passage 46 extends transversely through the poppet 40 from an external location that is in constant communication with the inlet port 32 to an intermediate location along the spool bore 44. An end passage 50 conveys fluid between the inlet port 32 and an opening adjacent the closed end of the spool bore 44. A second passage 52 extends from another intermediate location along the spool bore 44 to the control chamber 42. A third passage 54 extends from the poppet nose 47 on the side facing the outlet port 34 to an opening in the spool bore 44 between the opening of the second passage 52 and the control chamber 42.
A valve spool 62 is slideably received within the spool bore 44 in the poppet 40 and has an interior end that abuts the closed end of the spool bore in the illustrated closed state of the priority valve 28. A portion of the valve spool 62 at the interior end has a reduced diameter providing an end surface 60 on which pressure from the end passage 50 acts even when the spool end abuts the closed end of the spool bore. A second reduced diameter portion is located along the length of the spool forming an annular groove 64. In the closed state of the priority valve 28, the groove 64 provides a first path between the first and second passages 46 and 52, thereby creating a first passageway between the inlet port 32 and the control chamber 42.
The valve spool 62 extends out of the spool bore 44 in the poppet 40 and has an external end that is captured in a recess in a spring shaft 68, which combined function as a control spool 63. This two-piece construction of the valve and control spools 62 and 63 is preferred to reduce friction misalignment. Alternatively for less critical applications, the valve spool 62 and the spring shaft 68 can be integrated as a single piece. The remote upper end 74 of the spring shaft 68 extends through an aperture in the bore plug 49 and is exposed to the ambient pressure outside the priority valve 28. The control spool 63 is passive, meaning that it is not operated by an electrical actuator, such as a solenoid, or by an external mechanical actuator.
The spring shaft 68 projects through a spring retainer 70 that is engaged by one end of a spring 72 which has an second end abutting the bore plug 49. The force of the spring 72 biases the spring shaft 68 and the valve spool 62 toward the poppet 40.
Referring still to
As the pump begins operating, pressure in the primary supply line 15 increases, but pressure in the secondary supply line 16 remains at the initial relatively low level, because the priority valve 28 is closed. The primary supply line pressure is applied from the inlet port 32 through the first passageway to the control chamber 42 which further acts to hold the poppet 40 against the valve seat 48. Eventually the primary supply line pressure at the inlet port 32 increases to the point that exerts a force on the interior end surface 60 of the control spool 63 which balances against the opposing force applied by the spring 72. Because the upper end 74 of the control spool 63 extends out of the body 30, it is exposed to the lower ambient pressure at the location of the priority valve 28 in the aircraft. Therefore, pressure in the control chamber 42 does not act on the control spool 63 in a manner that counteracts the pressure at the interior end surface 60. Thus pressure at the closed end of the spool bore 44 that is applied to the lower end of the control spool, essentially acts only against the force of the spring 72.
Further pressure increase in the primary supply line 15 moves the control spool 63 relative to the poppet 40 and away from the closed end of the spool bore 44, as shown in
Continued movement causes the control spool 63 to travel far enough to reach the position shown in
In this state of the priority valve 28, the higher pressure from the primary supply line 15 at the inlet port 32 is cut off from being applied to the control chamber 42. The pressure in the control chamber 42, however, is relieved through the third passage 54, control spool groove 64 and the second passage 52 into the outlet port 34 and the secondary supply line 16. With the control chamber pressure released in this manner, the net force, from the inlet port pressure acting on a poppet shoulder 65, the outlet port pressure acting on the poppet nose 47 and pressure in the control chamber 42, causes the poppet 40 to follow the control spool 63 and move away from the valve seat 48 as shown in
The poppet continues to move away from the valve seat, further enlarging the opening between the inlet and outlet ports 32 and 34, as illustrated in
In this final opened state, the poppet 40 is held open by the equilibrium of forces from the port pressures and the spring 72. The priority valve 28 remains in this stated depicted in
Thereafter, if the pump 14 is incapable of furnishing enough hydraulic fluid to operate all the actuators 26 in the system, the priority valve 28 limits the amount of hydraulic fluid that is made available to the secondary section 22, while allocating as much of the available fluid as is needed to the high priority functions in the primary section 21. Specifically, when the total demand for fluid exceeds the amount available from the pump 14, the priority valve 28 closes to the extent necessary to maintain the pressure in the primary supply line 15 at an optimum level. At that time, pressure in the primary supply line 15 is below a level that keeps the priority valve 28 fully open, so that the force of the spring 72 moves the control spool 63 back into the spool bore 44 in the poppet 40 as shown in
As the inlet pressure continues to decrease, the spring force moves the control spool 63 farther into the spool bore 44 in the poppet 40 as shown in
If the amount of fluid demanded by the priority hydraulic functions 17-19 in the primary section 21 exceeds the amount of fluid available from the pump 14, the priority valve 28 closes completely returning to the state shown in
The poppet 40 and the control spool 63 form a two-stage priority valve 28 that has hysteresis with respect to the pressure levels at which the valve closes and opens. That hysteresis is provided by the control spool 63 having to travel some distance within the spool bore 44 before a new passageway through the poppet 40 is opened to allow the poppet to move. As a result, a significant pressure change must occur in the hydraulic system in order to affect the fluid flow through the priority valve 28, in effect adds damping which eliminate the thrashing cycle encountered with previous priority control techniques. In other words, the present priority valve 28 is resistant to oscillating between open and closed states due to minor pressure fluctuations.
The foregoing description was primarily directed to a preferred embodiment of the invention. Although some attention was given to various alternatives within the scope of the invention, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from disclosure of embodiments of the invention. Accordingly, the scope of the invention should be determined from the following claims and not limited by the above disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2744538 | Stevenson | May 1956 | A |
2968464 | Olson | Jan 1961 | A |
3125319 | Arbogast et al. | Mar 1964 | A |
3612476 | Leitgeb | Oct 1971 | A |
4630640 | DiBartolo | Dec 1986 | A |
4746093 | Scanderbeg | May 1988 | A |
4779837 | Mito et al. | Oct 1988 | A |
4942900 | Nozawa et al. | Jul 1990 | A |
5007458 | Marcus et al. | Apr 1991 | A |
5564674 | Kalin et al. | Oct 1996 | A |
5878647 | Wilke et al. | Mar 1999 | A |
7401751 | Holder | Jul 2008 | B2 |
Number | Date | Country |
---|---|---|
0 900 962 | Oct 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20090007974 A1 | Jan 2009 | US |