The present invention relates to a valve for closing a gas container, the valve comprising a valve body having a continuous longitudinal bore along a longitudinal axis, in which longitudinal bore a displaceably guided valve tappet is mounted, wherein the valve body extends in a longitudinal direction parallel to the longitudinal axis from a connection region having a connection-side end face to a fastening region with a gas container-side end face, wherein the fastening region has a smaller diameter than the connection region and the connection region has a stop surface in order to provide a stop for a base body head of the gas container when the fastening region is inserted into the base body head through an opening thereof.
Gas containers filled with gas can be connected in a gas-tight manner to a device, such as a soda siphon, a whipping cream siphon, or a pressure regulator, to provide an appropriate gas supply to the siphon or device.
It is known to produce carbonated beverages, in particular soda, as well as whipped cream for the needs of a user by means of a siphon cooperating with a corresponding gas container, wherein the water is enriched with carbon dioxide (CO2) or the cream with nitrous oxide (N2O) from the gas container. Furthermore, gas containers filled with nitrogen (N2) or argon (Ar) are also becoming increasingly important for a wide range of applications, especially with siphons or siphon bottles.
Since high pressures are required to ensure optimum results, there is a risk of uncontrolled bursting of the gas container. Similarly, the use of any valves, which in the case of commercially available capsule-shaped gas containers are each arranged in the area of a gas container neck, involves the risk of the valve or its valve body being forced out of the gas container by the high pressures. Likewise, if the gas container neck is weakened by the arrangement of the valve, ductile bursting may occur, especially at temperatures higher than 130° C., resulting in possible injuries to the user.
In this respect, EP 0 867 656 B1 discloses a pressurized gas capsule having a valve body, with the valve body being pressed to the gas container only via a simple groove, so that at high pressure there is a risk of the valve body being pressed out of the gas container, To limit the freedom of movement of a valve tappet mounted for displacement along a longitudinal axis in a continuous longitudinal bore, the valve body has projections projecting radially inwards only in a plane normal to the longitudinal axis, but these projections do not perfectly ensure a secure pressure-based movement or even retention of the valve tappet.
It is therefore an object of the present invention to create a valve for a gas container which avoids the disadvantages mentioned. In particular, in the valve according to the invention, even at a high pressure of the gas in the gas container, a safeguard against a possible pressing out or pushing out of the valve or a valve body of the valve from the gas container is to be ensured, wherein preferably additionally a secured pressure-based movement as well as holding of a valve tappet displaceably mounted in the valve body is to be ensured.
In order to solve the aforementioned problem, in a valve for closing a gas container, the valve comprising a valve body having a continuous longitudinal bore along a longitudinal axis, in which longitudinal bore a displaceably guided valve tappet is mounted, wherein the valve body extends in a longitudinal direction parallel to the longitudinal axis from a connection region with a connection-side end face to a fastening region with a gas container-side end face, wherein the fastening region has a smaller diameter than the connection region and the connection region has a stop face in order to provide a stop for a base body head of the gas container when the fastening region is inserted into the base body head through an opening in the base body head, it is provided according to the invention that the valve body has a double groove on the circumferential surface in the fastening region, wherein the double groove comprises two individual grooves following one another in the longitudinal direction, which are separated from one another by a sealing lug facing away from the longitudinal axis, in order to permit gas-tight pressing of the base body head with the fastening region in the region of the double groove when the fastening region with the double groove is pushed into the base body head.
The terms “connection side” and “gas container side” are to be understood with regard to the intended use. Likewise, one could speak of a first end face (instead of an end face on the connection side) and a second end face (instead of an end face on the gas container side).
In other words, two individual grooves lying one behind the other are arranged on the circumferential surface of the valve body in the fastening region in such a way that an elevation is formed between them. This elevation forms the sealing lug through which the valve body can be connected in a gas-tight manner to the gas container or its gas container neck or base body head by means of two pressings formed one behind the other. This means that double pressing of the valve body to the gas container is achieved by means of a forming process, preferably a roller burnishing process (known manufacturing process for forming rotationally symmetrical semi-finished products, wherein in the case of tubular semi-finished products, circumferential beads or grooves are produced by controlled feeding of internal and/or external shape-determining tools and by continuous rolling on the workpiece), whereby any bursting of the gas container, in particular in the area of the gas container neck, or any pressing of the valve body out of the gas container neck or the base body head at more than 500 bar can be reliably avoided, preferably up to a maximum pressure of 550 bar.
In detail, such an arrangement ensures that the gas container maintains its integrity or shape at a pressure generated at a maximum permissible fill factor of 0.75 kg/l (for carbon dioxide (CO2) or nitrous oxide (N2O)) and a temperature of about 130° C. At the same time, the double groove takes optimum account of the limited installation space available.
With regard to the connection region, it should be noted that this extends in the longitudinal direction from an initial region (comprising the connection-side end face) to an end region (comprising the stop face). The diameter of the connection region is larger than the diameter of the fastening region, especially in its end region, which typically applies to the entire fastening region.
Each individual groove has an individual groove base. The sealing lug projects beyond these individual groove bases.
As mentioned, a reliable press fit between the base body head and the fastening region in the area of the double groove is made possible when the fastening region together with the double groove is inserted into the base body head. Preferably, the fastening region is inserted completely or to such an extent into the base body head that the base body head contacts the stop surface acting as a stop.
In a preferred embodiment, the continuous longitudinal bore comprises at least three bore sections with at least two different diameters. This enables different functionalization of the bore sections, with larger diameters being advantageous, for example, with regard to unhindered gas flow and a smaller diameter proving advantageous for the mounting of the valve tappet.
In a particularly preferred embodiment of the valve according to the invention, it is provided that at least a first bore section is arranged in the connection region and that at least a second and third bore section are arranged in the fastening region. This arrangement not only proves to be particularly favorable in terms of manufacturing technology, but can also be advantageous with regard to the different functionality of the individual bore sections. In particular, if, for example, the bore section provided for the mounting of the valve tappet is arranged in the fastening region, a mechanically extremely stable bearing is ensured if the fastening region is inserted into the base body head of the gas container and is press-fitted to it in a gas-tight manner.
It is obviously also conceivable that more than one first bore section are arranged in the connection region and/or that more than two bore sections (or more than the second bore section and the third bore section, e.g. a fourth or a fourth and a fifth bore section) can be provided in the fastening region.
In accordance with the above, in a particularly preferred embodiment of the valve according to the invention, it is provided that the second bore section lying between the first bore section and the third bore section has a smaller diameter than the first bore section and the third bore section, wherein the valve tappet is displaceably mounted in the second bore section.
In a preferred embodiment of the valve according to the invention, it is provided that the valve body has a first snap lug arrangement in the longitudinal bore in the fastening region, preferably in a third bore section of the longitudinal bore, by means of which first snap lug arrangement a sectional narrowing of the longitudinal bore hi the fastening region, preferably in the third bore section of the longitudinal bore, is ensured, wherein the first snap lug arrangement has at least one bulge facing towards the longitudinal axis. This first snap lug arrangement serves to ensure a secured pressure-based movement as well as retention of the valve tappet in the valve body during a filling of the gas container with gas. Specifically, the valve tappet can be moved longitudinally along the longitudinal axis from a closed position, in which the valve or longitudinal bore is sealed in a gas-tight manner by the valve tappet, to a filling position. In the filling position, the valve tappet releases the valve or the longitudinal bore for gas, so that gas can flow through the valve or the longitudinal bore, with the valve tappet abutting the first snap lug arrangement. This means that the first snap lug arrangement prevents further movement of the valve tappet in the longitudinal direction by positive locking.
However, by applying a sufficiently large force in the longitudinal direction—or in principle also against the longitudinal direction—the valve tappet can be pushed at least in sections over the first snap lug arrangement or over its at least one bulge, wherein the at least one bulge recedes elastically away from the longitudinal axis. This elasticity can be ensured by the choice of material of the valve body.
In order to ensure both the greatest possible freedom of movement and retention of the valve tappet, it is provided in a particularly preferred embodiment of the valve according to the invention that the first snap lug arrangement comprises three bulges which are arranged at least in sections in a plane normal to the longitudinal axis. This sectional constriction caused by the three bulges results in a particularly reliable positive positional fixing of the valve tappet.
An angular distance of the bulges from one another allows unhindered gas flow when the valve tappet is in the filling position and is in contact with the first snap lug arrangement. In a particularly preferred embodiment of the valve according to the invention, it is provided that the three bulges of the first snap lug arrangement are arranged, preferably symmetrically, at an angular distance of 120° from one another in each case, wherein the angular distance is measured around the longitudinal axis. This guarantees an unhindered gas flow in a particularly reliable manner, so that the gas can flow between the valve tappet, the bulges and an inner wall of the longitudinal bore when filling the gas container as well as when emptying the gas container.
In a particularly preferred embodiment of the valve according to the invention, it is provided that the valve body has a second snap lug arrangement in the longitudinal bore in the fastening region, preferably in the third bore section, between the first snap lug arrangement and the gas container-side end face, by means of which second snap lug arrangement a further sectional narrowing of the longitudinal bore in the fastening region, preferably in the third bore section, is ensured, wherein the second snap lug arrangement has at least one bulge facing towards the longitudinal axis. This second snap lug arrangement serves for secure pressure-based movement as well as retention of the valve tappet in the valve body during emptying of the gas container, wherein the gas flows from the gas container into a device, preferably into a siphon. This means that, in this emptying position, the valve tappet is longitudinally slid in a sectional manner over the first snap lug arrangement such that a section of the valve tappet is disposed between the first and second snap lug arrangements. Further movement in the longitudinal direction beyond the second snap lug arrangement is basically prevented by positive locking.
However, by applying a sufficiently large force in the longitudinal direction—or in principle also against the longitudinal direction—the valve tappet can be pushed at least in sections over the second snap lug arrangement or over its at least one bulge, wherein the at least one bulge recedes elastically away from the longitudinal axis. This elasticity can be ensured by the choice of material of the valve body.
Accordingly, when the valve is assembled, the valve tappet can be pushed against the longitudinal direction over the second snap lug arrangement as well as over the first snap lug arrangement.
In order to ensure the highest possible degree of freedom of movement and retention of the valve tappet, it is provided in a particularly preferred embodiment of the valve according to the invention that the second snap lug arrangement comprises three bulges which are arranged at least in sections in a plane normal to the longitudinal axis. This sectional constriction caused by the three bulges results in reliable positive positional fixing of the valve tappet.
An angular distance of the bulges of the second snap lug arrangement from one another allows unobstructed gas flow when the valve tappet is in the emptying position and is in contact with the second snap lug arrangement. In a particularly preferred embodiment of the valve according to the invention, it is provided that the three bulges of the second snap lug arrangement are arranged, preferably symmetrically, at an angular distance of 120° from one another, wherein the angular distance is measured around the longitudinal axis. This particularly reliably guarantees an unhindered gas flow, so that the gas can flow between the valve tappet, the bulges of the second snap lug arrangement and an inner wall of the longitudinal bore both when the gas container is emptied and when the gas container is filled.
In order to ensure an optimum gas flow that is as unobstructed as possible when the valve tappet is in the emptying position, it is provided in a particularly preferred embodiment of the valve according to the invention that the bulges of the first and second snap lug arrangements, as seen along the longitudinal axis, are arranged congruent with each other or rotated by 60° with respect to each other.
In order to prevent the valve tappet from sliding out of the valve body, in particular during filling of the gas container, it is provided in a particularly preferred embodiment of the valve according to the invention that the valve tappet has a thickening which is directed towards the container-side end face, extends conically at least in sections and has, at least in sections, in particular in an end region facing towards the gas container-side end face, a maximum diameter which is greater than the diameter of the sectional constriction formed by the first snap lug arrangement. As already explained above, this defines in particular the filling position, i.e. when the tappet moves from the closed position in the longitudinal direction until it is in contact with the first snap lug arrangement.
Similarly, in a particularly preferred embodiment of the valve according to the invention, it is provided that the maximum diameter of the thickening is larger than the diameter of the further sectional constriction formed by the second snap lug arrangement. This defines, as already explained above, in particular the emptying position, i.e. when the valve tappet moves further in longitudinal direction from the filling position (at least with a section having the maximum diameter) over the first snap lug arrangement until it abuts against the second snap lug arrangement.
This ensures secure pressure-based movement and retention of the valve tappet, which is displaceably mounted in the valve body. Accordingly, the valve tappet serves on the one hand as a sealing element to the valve body and on the other hand as an opening element.
It is important to note that the maximum diameter of the valve tappet is smaller than a diameter of an opening cross-section of the longitudinal bore in the fastening region or the third bore section. This allows gas to flow past between the thickening and the inner wall of the longitudinal bore or the inner wall of the third bore section.
In a preferred embodiment, the valve tappet is made of metal, preferably steel or stainless steel or brass, or of ceramic.
In a particularly preferred embodiment of the valve according to the invention, it is provided that the valve body is made of a high-temperature-resistant plastic, in particular polyethersulfone (PES) or polysulfone (FSU) or polyetheretherketone (PEEK) or polyphenylene sulfide (PPS) or polyphenylsulfone (PPSU) or polyetherimide (PEI). In interaction with the valve tappet, optimum tightness can thus be achieved, while stability at temperatures of at least about 130° C. is also ensured.
Further, there is sufficient elasticity of the material to implement the first and second snap lug arrangements with elastic protrusions integral with the valve body.
Analogous to the above, a gas container having a valve according to the invention is provided, the gas container comprising a base body with a base body head having an opening, wherein the base body forms, at least in sections, an inner volume for receiving gas, wherein the fastening region with the double groove is inserted or pressed into the base body head through the opening, preferably until the stop surface is contacted by the base body head, and wherein the base body head is pressed in a gas-tight manner with the fastening region in the region of the double groove. Here, the connection region of the valve body serves to connect the gas container filled with gas to a device, preferably to a cream or soda siphon.
Thus, a gas container is created, which is not designed to be refillable according to ÖNORM EN 16509, which concerns small transportable cylinders, wherein it is a so-called disposable gas capsule. Economic disadvantages due to high costs of refillable capsules, which are based on considerably higher normative requirements, such as individual labeling, recurring individual testing or ensuring food purity during refilling, etc., are thus reliably avoided.
The invention will now be explained in more detail by means of an exemplary embodiment. The figures are exemplary and are intended to illustrate the idea of the invention, but in no way to restrict it or even to reproduce it conclusively. Further advantageous designs, details and further developments of the invention are also to be taken from the figures, wherein:
In this connection, it is provided in accordance with the invention that the valve body 1 has a double groove 4 on the circumferential surface in the fastening region 19, wherein the double groove 4 comprises two individual grooves 41 which follow one another in the longitudinal direction 40 and are separated from one another by a sealing lug 5 facing away from the longitudinal axis 2, in order to permit gas-tight pressing of the base body head 27 with the fastening region 19 in the region of the double groove 4 when the fastening region 19 with the double groove 4 is pushed into the base body head 27. In other words, two individual grooves 41 lying one behind the other are arranged in the fastening region 19 on the circumferential surface of the valve body 1 in such a way that a sealing lug 5 in the form of an elevation is formed therebetween, as a result of which any pressing of the valve body 1 out of the gas container 24 can be avoided even at an increased pressure.
It can be seen in
To enable both optimum gas filling and gas draining, the second bore section 9 located between the first bore section 8 and the third bore section 10 has a smaller diameter 12 than the first bore section 8 and the third bore section 10, with the valve tappet 17 being displaceably mounted in the second bore section 9.
Furthermore, in the illustrated exemplary embodiment, to ensure a secured pressure-based movement as well as retention of the valve tappet 17 in a specific position for gas filling, which is referred to below as filling position A, a first snap lug arrangement 6 with three bulges 6′ facing towards the longitudinal axis 2 is arranged in the third bore section 10, whereby a sectional narrowing of the third bore section 10 is provided. The three bulges 6′ of the first snap lug arrangement 6 are arranged at least in sections in a plane normal to the longitudinal axis 2. In order to ensure as uniform a narrowing as possible, the three bulges 6′ are arranged symmetrically within the third bore section 10 with an angular spacing of 120° from one another in each case, with the angular distance being measured around the longitudinal axis 2, cf. in particular
In order to ensure safe gas draining, in the illustrated exemplary embodiment the third bore section 10 between the first snap lug arrangement 6 and the gas container-side end face 21 has a second snap lug arrangement 7 with three bulges 7′ facing towards the longitudinal axis 2, by means of which a further sectional constriction of the third bore section 10 is ensured. This further sectional constriction serves to fix the position of the valve tappet 17 between the first snap lug arrangement 6 and the second snap lug arrangement 7 in a emptying position C, see also
The bulges 7′ are also arranged at least in sections in a plane normal to the longitudinal axis 2. To ensure the most uniform narrowing possible, the three bulges 7′ are arranged symmetrically at an angular distance of 120° from each other, wherein the angular distance is measured around the longitudinal axis 2.
In detail,
It can be seen in both
To ensure tightness (when the valve 39 is closed), either the valve tappet 17 should be made of a harder material than the valve body 1 or the valve body 1 should be made of a harder material than the valve tappet 17, which is why in the embodiment shown the valve tappet 17 is made of metal, preferably steel or stainless steel or brass, or of ceramic, while the valve body 1 is formed of a high-temperature-resistant plastic, in particular of polyethersulfone (PES) or polysulfone (PSU) or polyetheretherketone (PEEK) or polyphenylene sulfide (PPS) or polyphenylsulfone (PPSU) or polyetherimide (PEI).
Here, it can also be seen in
Specifically, in the third step, the valve tappet 17 is moved based on a pressure difference inside the base body 26 of the gas container 24 to atmospheric pressure, according to the drawn flow lines.
In contrast,
In detail, the inlet valve 31 according to
For this purpose,
In detail, the following steps are required to empty the gas container 24:
Number | Date | Country | Kind |
---|---|---|---|
21166300.0 | Mar 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/058218 | 3/29/2022 | WO |