This invention relates to a valve for the control of a high pressure air pulse as might be employed, for example, in a reverse pulse filter cleaning system.
Reverse pulse filter cleaning systems are well known and different systems have control valves with particular attributes which provide different degrees of cleaning efficiencies for particular applications.
Generally, it is desirable that the valve which controls the pulse of air is able to open rapidly and should have a clear flow passage through the valve in order that the pulse of high pressure air which impacts the filter defines a relatively sharp peaked pressure wave which will in turn provide the most effective cleaning or particle dislodgement force.
The rapidity with which the valve opens and closes leads to improved efficiency in the system. A valve that closes slowly, for example, will tend to waste high pressure air, adding to the cost of running the cleaning system. Likewise, a valve which opens slowly will tend to produce a somewhat dissipated peak pulse which will be less effective in cleaning the filter.
Valves which are used in filter cleaning operations need to be serviced or maintained from time to time. Also, in a typical application there are a large number of valves which need to be fitted and, accordingly, the speed with which valves can be fitted, and removed and replaced for maintenance purposes, is relatively important. Thus, the mounting arrangement should preferably be relatively straightforward to employ but, whatever mounting arrangement is used, the efficiency of the valve should not be compromised because of the particular mounting arrangement that has been selected.
Typically, high pressure air which is used to provide the reverse pulse is conveyed or supplied in a conduit or tank to which the individual valves are mounted. The tank will normally be of sufficient capacity to enable individual valves to operate in the required sequence without decreasing the efficiency of the pulses due to insufficient air capacity. Thus, most systems employ a relatively large capacity tank to which individual valves are mounted, each valve being located above a filter element to be cleaned. In order to safely contain the pressurised air, such tanks are typically of cylindrical configuration, and thus the individual valves need to be mounted to a curved wall which adds to the difficulty of the mounting arrangement for the individual valves on the tank. Alternatively, a valve may be provided to allow for cleaning of an entire row of filters, whereby the filters are suspended below a blow tube which is typically in the form of a pipe having a series of holes with each hole corresponding to a filter element so as to distribute cleaning air into each of the filters.
According to a first aspect of the invention there is provided a valve for use in the control of pressurised air from a pressure tank, the pressure tank including a wall in which an outlet port is formed, the wall having an inner surface and an outer surface, the valve comprising:
The laterally extending mounting formation preferably comprises a pair of laterally extending flanges on the opposite side of the valve body. Preferably the flanges have an underside which is contoured so as to seat against the inner surface of the wall.
The valve seat may be located adjacent the inner end of the valve body, the valve closure member being located inside the pressure tank when the valve is operatively mounted to a tank.
Preferably the mounting collar includes a sealing means for forming a seal around the outlet port. The mounting collar may have a sealing face which seats against the outer surface of the wall. The sealing face may have an annular groove therein in which an annular sealing ring is located. The collar may have a sealing ring on the radially inner face thereof, the sealing ring forming a seal with the radially outer surface of the valve body. The mounting collar is preferably movable by means of a union nut which is in threaded engagement with screw threads formed on the valve body.
According to a second aspect of the invention there is provided a valve for use in the control of pressurised air from a pressure tank, the pressure tank including a wall in which an outlet port is formed, the wall having an inner surface and an outer surface, the valve comprising:
Preferably the cylinder is connected to the valve body by a plurality of cylinder support arms which hold the cylinder coaxially aligned with the valve seat, gaps between the arms defining the inlet to the flow passage.
The operating means preferably comprises a pilot valve adapted to either vent the cylinder to atmosphere or provide a source of high pressure fluid to cause the piston to move relative to the valve seat. The cylinder is preferably linked to the pilot valve via a pilot valve passage which passes along one of said cylinder support arms.
A further feature of the invention provides a valve closure member adapted to seal with a valve seat of a valve in use comprising, a piston disc and a valve closure disc, the two discs held coaxially together by a spindle, the piston disc having a sealing ring extending around its peripheral edge, the valve closure disc having a guide surface on its peripheral edge which assists in keeping the valve closure disc aligned with the valve seat in use.
These and further features of the invention will be made apparent from the description of an embodiment thereof given below by way of example. In the description reference is made to the accompanying drawings but the specific features shown in the drawings should not be construed as limiting on the invention.
Referring initially to
A cylinder 26 is located on the inner end of the valve body and contains in slidable manner a piston type valve closure member 28, described in detail below. The cylinder 26 is provided with a removable end wall 29 shown most clearly in
The valve is opened and closed by means of a pilot valve 35 which is connected, either directly or indirectly, to a pilot valve port 34. As is shown clearly in
For mounting purposes, the valve body is provided with a pair of outwardly directed flanges 40 located near the inner end of the valve body. These flanges 40 are shaped and dimensional so that they will fit within an outlet port 42 in the wall of a tank 16. As is shown diagrammatically in
Typically, the tank 16 will be of cylindrical configuration and thus the wall in which the valve body is mounted will be curved. Thus, the under surfaces 48 of the flanges 40 will be curved to match the curvature of the tank.
The diameter of the outlet port 42 will be selected so that by manipulating the valve body to first introduce one flange 40 inside the tank, and then the other flange to the tank both flanges 40 will be located inside the tank and will rest on the inner surface 44 of the tank. To achieve this arrangement the maximum distance between the opposite peripheral edges of the flanges 40 will be greater than the diameter of the outlet port 42. That is, each of the flanges 40 will rest on opposite sides of the outlet port 42 and removal of the valve when the valve is perpendicular to the wall will not be possible. At this point, the valve body will be clamped into position using a mounting collar 50, as shown in
As shown in
Thus, when the valve body is first introduced into the tank the mounting collar 50 will be in a retracted position, that is, the union nut 60 will have been screwed towards the outlet end 14 of the valve body. Once the flanges 40 have been located inside the tank, the union nut 60 will be screwed in the opposite direction, thereby urging the mounting collar 50 to engage the outer surface 46 of the tank.
To ensure that a seal is formed around the outlet port 42, the mounting collar has a pair of seals. The face of the mounting collar 60, which contacts the tank, that is, the sealing face 62 shown in
Likewise, the radially inner face 58 of the mounting collar has an annular groove 66 therein which will also receive an o-ring or like seal to enable that inner face 58 to seal with the smooth surface 56 of the valve body. It will be appreciated that these two seals will seal the outlet port 42 when the mounting collar 50 is firmly engaged against the outer surface 46 of the tank.
The union nut 60 will generally be screwed into position using a suitable tool such as a wrench or the like. A washer 68 is provided between the mounting collar 50 and the union nut 60 so that the urging of the mounting collar 50 is achieved as smoothly as possible. The washer 68 may be formed from a polymeric material having a relatively low friction coefficient so as to ensure smooth tightening of the union nut 60. Alternatively, the washer 68 may be formed from an elastomeric material.
It will be appreciated that in order to mount a valve of the type described herein to a pressure tank, all that will be required is the correct diameter outlet port will need to be drilled into the wall of the tank and thereafter the valve body can be fitted into position without requiring any further drilling, mounting screws, locking clips, or other mounting arrangements. All that will be required, once the flanges 40 have been correctly inserted through the outlet port will be for the union nut to be tightened to thereby urge the mounting collar into its clamped and sealed configuration.
It will of course be possible to use an urging means which is different from the union nut 60 described herein. For example, a plurality of individual screw means could be employed. However, it is considered to be advantageous that a valve body can be mounted in position by only drilling a single outlet port in the pressure tank.
It will be appreciated that the valve closure member 28 and the cylinder 26 are located inside of the tank, that is, upstream of the flow passage 18. The valve closure mechanism is a relatively short travel piston. The piston 38 is formed of two discs, that is, a piston disc 70 and a valve closure disc 72. The two discs are held coaxially aligned by spindle or neck 74 which in the present embodiment is of reduced diameter. The piston disc 70 has a peripheral edge 76 which includes a groove 78 in which an o-ring seal or the like is located. The piston disc 70 slides within the cylinder 26 towards and away from the valve seat 24. As will be clear from
In the embodiment shown in
Of course, it will be possible to operate the valve using high pressure air passing into the cylinder 26 through the pilot passage 36. The valve would need to be of a different configuration to that described above, but essentially the valve would operate in reverse, that is, using high pressure air will be used to keep the valve closed and dissipating that high pressure air will operate to open the valve.
It will be noted that the valve closure disc 72 has a periphery 86 which is in sliding contact with guide surfaces 88 formed on the inside of the cylinder support arms 30. These guide surfaces 88, together with the inner wall of the cylinder 26, serve to hold the valve closure member 28 aligned with the valve seat 24, that is, the undersurface 90 of the sealing disc 72 will be parallel to the valve seat 24 as the valve closure member 28 moves towards and away from the valve seat 24.
It is envisaged that the valve closure member 28 could be formed from a relatively light weight plastics material, such as a high quality nylon material or the like. Suitable plastics materials which will stand the rigours of the opening and closing movements, and yet will not distort in use, could be moulded and hence be relatively inexpensive.
Various different embodiments of piston type valve closure members are shown in
It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.
It will also be understood that the term “comprises” (or its grammatical variants) as used in this specification is equivalent to the term “includes” and should not be taken as excluding the presence of other elements or features.
Number | Date | Country | Kind |
---|---|---|---|
2005905498 | Oct 2005 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2006/001286 | 9/1/2006 | WO | 00 | 4/1/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/038826 | 4/12/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2778598 | Bolling, Jr. | Jan 1957 | A |
3729168 | Natho et al. | Apr 1973 | A |
4003399 | Fischer | Jan 1977 | A |
4239058 | Peters | Dec 1980 | A |
4267861 | Roth | May 1981 | A |
5662140 | Rucker | Sep 1997 | A |
5884895 | Wolz et al. | Mar 1999 | A |
7434780 | Hayashi et al. | Oct 2008 | B2 |
Number | Date | Country |
---|---|---|
0849513 | Jun 1998 | EP |
905071 | Sep 1962 | GB |
Number | Date | Country | |
---|---|---|---|
20080251135 A1 | Oct 2008 | US |