This application claims the benefit under 35 U.S.C. §371 of International Application No. PCT/EP2012/063252, filed Jul. 6, 2012, which claims the benefit of Danish Patent Application No. PA201170371, filed Jul. 8, 2011, which are incorporated by reference herein in their entirety.
The invention relates to a valve with a valve housing, in particular for controlling the liquid flow in a plant for central heating, said valve comprising an insert part with a first part and a second part for controlling a liquid flow through the valve, said first part and said second part being mutually rotatable and provided with complementary through-flow openings that combine to define a common opening area, said through-flow openings being configured such that, upon mutual rotation between the first and the second part, a larger or a smaller total opening area is provided.
From Danish patent application No. 2001 00281 a roller membrane valve is known for maintaining constant liquid flow in a heating or cooling system. That valve comprises an electric regulator unit which is adapted to the valve.
By that known valve it is not possible to set a maximal flow within which the valve subsequently modulates or regulates.
From Danish patent disclosure DK 176350 B2 a valve is known wherein a maximal flow can be set by means of two concentrically journalled valve bodies.
It is a drawback of that system: that each of the valve bodies is expensive and complex, and that it is consequently not easy or inexpensive to replace those concentrically journalled valve parts.
It is an object of the invention to provide a system by which those drawbacks are minimised.
This is accomplished by it further comprising a closure part which is disposed such that, upon axial displacement, it is capable of completely or partially closing off the total opening area through the through-flow openings. At the same time it is accomplished that the ongoing regulation of the valve takes place by means of a body (the closure part) which does not influence the setting of the maximal flow.
Embodiments are set forth in the dependent claims.
In the following, an embodiment of the invention will be explained with reference to the figures, wherein:
The valve as such may be a differential-pressure-independent valve that comprises two subunits, viz. a so-called regulator part and a differential pressure part.
The units of the differential pressure part as such are not of any consequence to the functionality of the regulator part, and consequently they will not be subject to more detailed explanation.
The valve comprises internal parts for regulating the maximal flow through the valve. Those parts are a first valve part 4, a second valve part 2, and a closure part 3. The valve part 4 which is, in the shown embodiment, fixated within the valve housing, is configured with a recess 4′. In the shown example, the recess extends about 180 degrees, but, of course, that may be varied within the ordinary work of the person skilled in the art, typically within the angular interval of about 90 degrees to about 270 degrees, preferably from about 105 degrees to about 255 degrees, from about 120 degrees to about 240 degrees, from about 135 degrees to about 225 degrees, from about 150 degrees to about 210 degrees, from about 165 degrees to about 195 degrees, from about 170 degrees to about 190 degrees, or from about 175 degrees to about 185 degrees.
In the shown example, the part 4 is, as mentioned, fixated within the valve housing, but, of course, that need not always be the case. To the right of the valve part 4, a number of other recesses 4″ are shown. They serve as exit conduits from the valve part when it is inserted into the valve housing to the effect that a liquid running into the valve housing via the inlet first travels into the valve part interior via the recess 4′ and subsequently leaves the valve part interior via the recesses 4″ to subsequently leave the valve housing via the outlet.
To the left of the valve part 4, a gasket 5 is provided. That gasket can be introduced into the valve part 4 and its purpose is to accomplish a tight connection between the first 4 and the second 2 part of the valve when the second part 2 is introduced into the first part. This is accomplished in that the bottom of the second valve part 2 (seen to the right in the figure) has to abut on the gasket in use.
When the second part (also designated the pre-setting part) has been introduced into the first part (also designated the stationary part), the openings 2′ in the pre-setting part will be flush with the openings 4′ in the stationary part and a mutual rotation between those parts will therefore expose a larger or a smaller area which is, in the following, designated the common opening area.
Between the stationary part and the pre-setting part, a cylindrical closure part 3 is shown having a lower edge 3′ which is intended for being introduced into the pre-setting part 2. In use of the shown valve, the closure part will be situated within the pre-setting part 2 that will, in turn, be situated within the stationary part 4, but that configuration is not final either since the mutual location of those three parts can, of course, be varied within the ordinary work of the person skilled in the art. Preferably the closure part 3 is configured in plastics.
In the shown embodiment, the pre-setting part and the stationary part cannot be shifted axially in use, but rather they can be rotated relative to each other in such a way that the recesses in the two parts slide across each other. Thereby a larger or smaller common opening area is revealed/ exposed.
In contrast, the closure part 3 can be displaced axially within the pre-setting part 2, and thereby the closure part will gradually close off the common opening area to an increasing extent, as it is introduced, and finally it will block through-flow completely.
This principle is used in the valve to obtain a valve wherein, via a rotary knob 15, one may turn the pre-setting part to a desired maximal flow, while the axial position of the closure part 3 as such can be regulated; thereby thus also enabling regulation of the through-flow through the valve within the set maximal flow via conventional equipment such as e.g. an actuator working via the peg 6.
The valve shown in
The assembly as such of the valve appears best from
Moreover, one will also see that, between
Albeit it will appear from the above that closure part, pre-setting part, and the stationary part are all constituted by cylindrical bodies that can be turned relative to each other, this is not a prerequisite. For instance, the pre-setting part and the closure part may very well be formed such that they cannot be turned relative to each other, but rather only allow an axial mutual displacement. The most important is that, upon axial displacement, the closure part will be able to cover the common opening area.
Albeit, in the example explained above, the stationary part is stationary relative to the valve housing, it is, as also mentioned above, also an option that it may be movable relative to the valve housing. The most important is that this part is rotatable relative to the pre-setting part or, in other words, that those two parts are mutually turnable to thereby alter the common opening area.
In the following the term “comprising” in the claims does not exclude other elements or steps, while the terms “a” or “an” as used in the claims do not exclude a plurality.
Number | Date | Country | Kind |
---|---|---|---|
2011 70371 | Jul 2011 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/063252 | 7/6/2012 | WO | 00 | 3/19/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/007633 | 1/17/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2943792 | Moen | Jul 1960 | A |
2951501 | Thylefors | Sep 1960 | A |
3100620 | Kates | Aug 1963 | A |
3538952 | Bayer | Nov 1970 | A |
4702279 | Giese | Oct 1987 | A |
5178324 | Moesby | Jan 1993 | A |
5860591 | Gylov et al. | Jan 1999 | A |
6167904 | Nielsen et al. | Jan 2001 | B1 |
20080245428 | Jorgensen | Oct 2008 | A1 |
20090321672 | Ibsen et al. | Dec 2009 | A1 |
20110068284 | Jorgensen | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2001 00281 | Aug 2002 | DK |
176350 | Sep 2007 | DK |
0 119 503 | Sep 1984 | EP |
2 466 174 | Jun 2012 | EP |
186205 | Jun 1998 | PL |
183490 | Jan 1999 | PL |
WO 2006136158 | Dec 2006 | WO |
WO 2008-052553 | May 2008 | WO |
WO 2009006893 | Jan 2009 | WO |
WO 2009132658 | Nov 2009 | WO |
WO 2009135490 | Nov 2009 | WO |
Entry |
---|
PCT International Preliminary Report on Patentability for International Application No. PCT/EP2012/063252, date of completion Sep. 10, 2013. |
PCT Int'l Search Report for International Application No. PCT/EP2012/063252, mailing date Sep. 14, 2012. |
Polish Patent Office Prior Art Report dated Jun. 3, 2014 for Polish Application No. P.404536. |
Number | Date | Country | |
---|---|---|---|
20140191148 A1 | Jul 2014 | US |