The invention will now be described with reference to the accompanying drawings in which
The refrigeration system shown in
The first diaphragm 8 and the second diaphragm 10 are connected via the first thrust pad 9, the second thrust pad 11, a valve rod 12 and a sphere 13. The sphere 13 ensures that forces transferred between the valve rod 12 and the first thrust pad 9 are transferred in an appropriate manner, i.e. without causing stress in any of the diaphragms.
The valve 4 further comprises a capillary tube 14 containing a filling fluid. The capillary tube 14 is fluidly connected to a bulb serving as a sensor (not shown) for sensing the temperature at the outlet side of a heat emitter of a refrigeration system in which the valve 4 is inserted. This sensing is used for controlling the valve 4. The capillary tube 14 is in fluid connection with a first side of the second diaphragm 10. Thus, the pressure of the filling fluid acts on the active area of the second diaphragm 10. Furthermore, this pressure acts on the active area of the first diaphragm 8 via the second diaphragm 10, the thrust pads 9, 11, the valve rod 12 and the sphere 13. Thereby a kind of ‘pressure gearing’ between the diaphragms 8, 10 is provided, and it is consequently not necessary to maintain a pressure of the filling fluid in the capillary tube 14 which is as high as the pressure of the refrigerant in the refrigerant system 6, 7. Therefore, in case the valve 4 is to be used in a high pressure refrigeration system, it is not necessary to manufacture special parts for, e.g. the capillary tube 14 or the second diaphragm 10, which are capable of withstanding the forces involved with a high pressure. Thereby it is possible to use standard parts for the valve 4 which were originally intended for use in low pressure refrigeration systems. The standard parts could include the part of the valve 4 comprising the capillary tube 14 and the second diaphragm 10. This is very advantageous and lowers the productions costs of the valve 4 considerably.
Between the diaphragms 8, 10 a chamber 15 is defined. This chamber 15 will typically contain atmospheric air or another suitable gas at atmospheric pressure. Thereby the active areas of first diaphragm 8 as well as the second diaphragm 10 are subject to the pressure from this gas. However, the pressure in the chamber 15 is typically much smaller than the pressure in the refrigerant system 6, 7 and the pressure in the capillary tube 14. Thus, the forces acting on the diaphragms 8, 10 and arising from the pressure in the chamber 15 will typically be negligible compared to forces acting on the active areas of the diaphragms 8, 10 and arising from the pressure of the refrigerant or the filling fluid, respectively, and the other diaphragm 8, 10 via the connecting arrangement 9, 11, 12, 13. Thus, when looking at the resulting force acting on the active area of a diaphragm 8, 10, it is sufficient to take the latter forces into consideration.
The valve 4 is further provided with a nozzle 16 for leading the refrigerant between the inlet part 6 and the outlet part 7 when the valve 4 is in an open state. The nozzle 16 is formed as an integrated part of a lower part 17 of the valve 4. This is advantageous from a productional point of view, since it is much easier and cost effective to manufacture the valve 4 in as few parts as possible. This is due to the fact that the various parts constituting the valve 4 need to be fitted very accurately together, and therefore the more parts, the more accurately each part needs to be manufactured. However, alternatively the nozzle 16 may be formed as a separate part being fitted into the lower part 17 of the valve 4.
While the present invention has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this invention may be made without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
PA 2004 01615 | Oct 2004 | DK | national |
This application is entitled to the benefit of and incorporates by reference essential subject matter disclosed in International Patent Application No. PCT/DK2005/000661 filed on Oct. 14, 2005 and Danish Patent Application No. PA 2004 01615 filed Oct. 21, 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK05/00661 | 10/14/2005 | WO | 00 | 7/20/2007 |