1. Field of the Invention
The present invention relates generally to injection molding technology, and more particularly to the dynamic control of the amount of plastic injected per injection cycle.
2. Background of the Invention
Injection molding of plastic parts is a common manufacturing practice. Various articles of commercial value such as plastic bottles, toothbrushes, and children's toys, are made using well-known injection molding techniques. Injection molding generally involves melting plastic then forcing the melt stream at high temperatures and pressures through one or more gates into a mold cavity. The melt cools in the shape of the mold cavity, which is opened to eject the finished part.
A valve gated injection molding apparatus is well known, as shown and described in U.S. Pat. No. 4,380,426 to Gellert, incorporated herein in its entirety by reference thereto. Usually a valve pin has a cylindrical or tapered front end and reciprocates between a retracted open position and a forward closed position in which the front end is seated in a gate. In some applications, the valve pin functions in the reverse direction and closes in the retracted position.
Valve-gated mechanisms are, however, typically designed to open and close the gates in a binary fashion, i.e., the gate is either opened or it is closed without allowing for a partially opened scenario in which the melt flow rate or amount is controlled through the gate. In some manufacturing processes, the ability to control the melt stream during the shot is highly desirable. For example in a multi-gated system in which a single mold cavity is fed melt through multiple gates, a common manifold serves all of the gates. However, a “knit line” is formed at the interface where melt flowing from one gate meets melt flowing from another gate. Even though all of the gates are commonly fed, the ability to control the flow rate through each gate individually allows the designer to control the location of the knit line for structural or aesthetic purposes.
Another instance in which control over the melt stream flow is desirable is when a number of parts are simultaneously molded. Each mold cavity is fed melt by an individual gate. However, the mold cavities are not necessarily all the same size, such as when components of an interlocking piece are simultaneously molded, as in the sections of a cellular telephone casing or the base and cover of a packaging system. The common melt stream is important so that the plastic characteristics are as uniform as possible between the mold cavities; however, as the mold cavities are not of a uniform size, one mold cavity customarily takes longer to fill than the other(s). However, if the larger mold cavity is filled more quickly, then both molded parts would be ready for ejection from its respective mold cavity at the same time.
Various methods exist in the art to provide this type of control over the melt stream. The gates could be individually re-tooled for every new product, but this is expensive and time-consuming. U.S. Pat. No. 5,556,582 to Kazmer et al., incorporated herein in its entirety by reference thereto, describes a system wherein multiple adjustable valve pins are located each in its respective gate within a manifold, wherein each gate is fluidly connected to a common mold cavity. Each valve pin can be dynamically adjusted by a computer according to pressure data read at or near the injection point into the mold. Each valve pin has a tapered head and each melt channel has a complementary geometry, such that the melt stream is slowed to an eventual full stop.
Another system is described in U.S. Patent Application Publication No. 2002/0121713 to Moss et al., incorporated herein in its entirety by reference thereto. In this publication, a valve pin is located in the manifold, with a tapered valve pin head disposed at the inlet point to a hot runner nozzle. The melt channel at the inlet point has a corresponding geometry to the tapered pin head, such that when the pin head is pushed into the inlet, the melt stream slows to an eventual stop.
Yet another system is described in WIPO PCT publication WO 01/21377 to Kazmer et al., incorporated herein in its entirety by reference thereto. In this publication, the manifold includes “shooting pot” technology. A portion of the melt stream is diverted from the manifold melt channel into a separate compartment or “well”. Disposed within this well is an actuated ram, which can be positioned to seal the opening of the well. A nozzle is located downstream of the well. The flow of melt through a mold gate orifice is controlled by an actuated valve pin. When the melt stream is introduced into the manifold melt channel, the valve pin is seated within the mold gate orifice to prevent flow into a mold cavity. The ram is located in a retracted position so that a volume of melt from the melt stream may be diverted into the well and contained therein. To start the shot, a gating mechanism located upstream from the well closes the melt channel, thereby preventing the introduction of new melt into the well. The valve pin is unseated from the mold gate orifice, and the ram is moved forward at a first velocity to force melt into the mold cavity. A system of pressure sensors measures the pressure in the system and compares that pressure reading to a target pressure profile. If greater pressure is required, the ram velocity is increased. Alternatively, if lesser pressure is required, the ram velocity is slowed. When the ram reaches its lowermost position, the mold cavity is full, and the mold gate orifice is closed. Through this manipulation of the ram velocity, the flow rate of the melt stream can be controlled. This control over the melt stream requires completely closing off one portion of the melt channel in order to manipulate the melt stream in another portion thereof.
However, none of these systems provides the ability to control the melt stream such that the flow rate and amount are controlled separately from the traditional gating shut-off functions without causing a secondary interruption of the melt stream. A simplified mechanism to achieve a finer gradation of control over the flow of melt can improve the efficiency of the system, saving the manufacturer time and money.
The present invention is an injection molding apparatus including an injection molding manifold having a plurality of melt channels that are in communication with a plurality of hot runner nozzles. Each hot runner nozzle has a melt channel and communicates with a mold cavity or a portion of a mold cavity via a mold gate. A movable valve pin is used in cooperation with each nozzle to either permit or prevent the transfer of a molten material from the nozzle melt channel into the mold cavity. The valve pins further function to regulate the amount of molten material entering each mold cavity. An additional flow control pin is used to independently regulate the amount of molten material injected into each mold cavity when the valve pin is in the open position. The flow control pin is located in the melt channel of either the nozzle or the manifold. Injection molding processing sensors such as thermocouples and pressure sensors are placed along the manifold melt channels, the nozzle melt channels and/or in the mold cavity to provide temperature, viscosity and/or pressure information to a mold controller linked to the actuation mechanisms of the valve pins and the flow control pins. The position of the flow control pin is adjusted before or during the injection molding process based on processing data gathered by the processing sensors.
In one embodiment, of the present invention, each mold cavity is fluidly connected to only one hot runner nozzle wherein each mold cavity has substantially the same size and shape. In another embodiment, each mold cavity is fluidly connected to one hot runner nozzle wherein each mold cavity is not of the same size and shape. In yet another embodiment, several nozzles are fluidly connected to the same mold cavity via separate mold gates. In each of these embodiments, there is a need to control independently the amount of melt fed through each nozzle and through each mold gate to produce better molded parts in terms of weight and/or knit lines.
Accordingly, disclosed herein is an injection molding system wherein multiple levels of control can be attained over the melt stream. In an embodiment, a valve-gated nozzle is fed melt from a manifold. The gating mechanism includes an actuated valve pin, where the mold gate orifice is open when the valve pin is in a first position to allow melt to flow there through. The mold gate orifice is closed when the valve pin is in a second position to prevent melt from flowing there through. In addition, a flow control pin is disposed coaxially with the valve pin within the melt channel of the nozzle. The flow control pin has a head with a complementary geometry with that of the melt channel. The flow control pin is raised and lowered by an actuation mechanism to constrict or release the flow of the melt stream. The movement of the flow control pin could be pre-programmed or could be dynamically triggered using pressure and temperature sensors at or near the nozzle. The valve pin and the flow control pin are independently actuated.
In another embodiment of the present invention, a valve-gated nozzle is fed melt from a manifold. The mold gate orifice includes an actuated valve pin, where the mold gate orifice is open when the valve pin is in a first position to allow melt to flow there through. The mold gate orifice is closed when the valve pin is in a second position to prevent melt from flowing there through. A flow control pin is located in the manifold melt channel, offset from the melt channel of the nozzle. The flow control pin has a head with a complementary geometry with that of the manifold melt channel. The flow control pin is raised and lowered by an actuation mechanism to constrict or release the flow of the melt stream. The movement of the flow control pin could be pre-programmed or could be dynamically triggered using pressure and temperature sensors at or near the nozzle. The valve pin and the flow control pin are independently actuated.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
Specific embodiments of the present invention are now described with reference to the figures, where like reference numbers indicate identical or functionally similar elements.
Referring now to
A manifold melt channel 106 is disposed within manifold 102 and conveys melt to a plurality of nozzle channels, such as for example nozzle melt channel 107, which further conveys the melt through a gate 108 into mold cavity 109. In this embodiment, there are several mold cavities, such as for example mold cavity 109, of equal or almost equal size and shape in communication with several nozzles (not shown), such as nozzle 104. Each cavity has a single mold gate 108. The present invention allows multiple cavities of equal size to be filled in the same cycle or time period by “balancing” the melt flow through manifold 102, as will be explained in further detail below.
As gate 108 is a valve gate, the front portion of a valve pin 110 is disposed within nozzle melt channel 107. Valve pin 110 extends through a portion of manifold melt channel 106 to a valve pin actuation mechanism 112, which is disposed longitudinally above manifold 102. Gate 108 allows the flow of melt into mold cavity 109. In a first position, valve pin 110 is retracted from gate 108 by operation of valve pin actuation mechanism 112 to allow melt to flow through gate 108 into mold cavity 109. In a second position, shown in
Valve pin actuation mechanism 112 includes a piston 113 driven by any of the various actuation driving mechanisms known in the art, including but not limited to pneumatic, hydraulic, or cam and lever devices. A pneumatic driving system operates by linking an external air source to the piston driving mechanism with valves controlled by a timing circuit which applies and releases the pressure in a repetitive timed sequence in conjunction with the application of pressure to the melt from the molding system. A hydraulic driving system operates in the same manner as the pneumatic system, only hydraulic fluid is substituted for air.
In an alternate embodiment, a bladder piston, as shown and described in the co-pending U.S. Appl. No. 60/363,891 filed on Mar. 14, 2002 by the same assignee which is incorporated herein in its entirety by reference thereto, may be used. A bladder piston is an expandable and elongated bag which shortens in length when filled with a pressurized fluid like air, water, or oil. One end of the bladder is affixed to a valve pin such that, as the bladder is pressurized, it contracts in length and the valve pin is unseated from the mold gate orifice, which allows the melt to flow into the mold cavity. Similarly, depressurizing the bladder causes the bladder to increase in length, which seats the valve pin in the mold gate orifice and stops the flow of the melt into the mold cavity.
Valve pin actuation mechanism 112 can be controlled in a variety of ways. Preferably, one or more pressure transducers 125 are linked to servo valve 123. Servo valve 123 is linked to the driving mechanism (not shown). When the pressure inside the system, as measured by pressure transducers 125, reaches a first level, servo valve 123 switches so that fluid or air from the driving mechanism can flow to valve pin actuation mechanism 112, causing piston 113 to move valve pin 110 within gate 108. When pressure in the system is measured by pressure transducers 125 to be a second level, servo valve 123 switches so that fluid or air from the driving mechanism is shut off, causing piston 113 to retract valve pin 110 from gate 108.
Alternatively, valve pin actuation mechanism 112 may be controlled by mechanisms other than servo valve 123. For example, in one embodiment, valve pin actuation mechanism 112 may be controlled by a computer that follows a pre-determined cycle. The computer signals circuitry connected to the driving mechanism according to the cycle, and the circuitry then triggers the driving mechanism, and piston 113 is driven up or down. Accordingly, rather than controlling valve pin 110 by servo valve 123 movement based on pressure readings, the computer controlled arrangement is based on the timing of each cycle.
Disposed within nozzle melt channel 107 is a flow control pin 114. As with valve pin 110, flow control pin 114 extends through a portion of manifold melt channel 106 to a flow control pin actuation mechanism 117. Flow control pin actuation mechanism 117 is located between manifold 102 and valve pin actuation mechanism 112, although the relative position of actuation mechanisms 112, 117 could easily be reversed. Flow control pin 114 is in one embodiment a sleeve which coaxially surrounds valve pin 110, as shown in
Flow control pin 114 enables control of the amount of melt passing through nozzle 104 independent of the functioning of valve pin 110. To achieve this purpose, flow control pin 114 includes a flow control surface 116, a head disposed at the terminal end of flow control pin 114 within nozzle 104. In the embodiment of
In a first position, shown in
Flow control pin actuation mechanism 117, like valve pin actuation mechanism 112, is a piston 118 driven by any of the actuation driving mechanisms known in the art, such as pneumatic, hydraulic, cam and lever devices, or bladder pistons. Flow control actuation mechanism 117 is controlled as described above with respect to valve pin actuation mechanism 112. Flow control actuation mechanism 117 can be controlled in a variety of ways. Preferably, one or more pressure transducers 124 are linked to servo valve 122. Servo valve 122 is linked to the driving mechanism (not shown). When the pressure inside the system, as measured by pressure transducers 124, reaches a first level, servo valve 122 switches so that fluid or air from the driving mechanism can flow to flow control actuation mechanism 117, causing piston 118 to move flow control pin 110 towards flow control surface 120. When pressure in the system is measured by pressure transducers 124 to be a second level, servo valve 122 switches so that fluid or air from the driving mechanism is shut off, causing piston 118 to retract flow control pin 114 away from flow control surface 120.
Alternatively, flow control actuation mechanism 117 may be controlled by mechanisms other than servo valve 122. For example, in one embodiment, flow control actuation mechanism 117 may be controlled by a computer that follows a pre-determined cycle. The computer signals circuitry connected to the driving mechanism according to the cycle, and the circuitry then triggers the driving mechanism, and piston 118 is driven up or down. Accordingly, rather than controlling flow control pin 114 by servo valve 122 movement based on pressure readings, the computer controlled arrangement is based on the timing of each cycle.
In addition to pressure information controlling flow control pin 114, in another embodiment of the present invention temperature information may also be used to control flow control pin 114 and therefore adjust the position of flow control pin 114. Further, in addition to thermocouple 128, injection molding system 100 may include additional temperature sensors (not shown) to help control of melt flow.
The geometry of nozzle melt channel 107 is shown in
Referring now to
A manifold melt channel 506 is disposed within manifold 502 and conveys melt to a nozzle melt channel 507, which further conveys the melt through gate 508 into mold cavity 509.
The shaft of a valve pin 510 extends through a portion of manifold melt channel 506 to a valve pin actuation mechanism (not shown), which is disposed longitudinally above manifold 502. Gate 508 controls the flow of melt into mold cavity 509. In a first position, valve pin 510 is unseated from gate 508 by operation of the valve pin actuation mechanism to allow melt to flow through gate 508 into mold cavity 509. In a second position, shown in
The actuation of valve pin 510 and the functioning, variations, and control of the valve pin actuation mechanism may be any of the systems as described above with respect to the first embodiment, for example utilizing a transducer 524 and a servo valve 523.
Disposed within manifold melt channel 506 is a flow control pin 514. The shaft of flow control pin 514 extends through a portion of manifold melt channel 506 to a flow control pin actuation mechanism 517. Flow control actuation mechanism 517 is located between manifold 102 and the valve pin actuation mechanism (not shown), although their relative positions could easily be reversed.
Flow control pin 514 enables control of the flow of melt passing through nozzle 504 independent of the functioning of valve pin 510. To achieve this purpose, flow control pin 514 includes a flow control surface 516, a head disposed at the terminal end of flow control pin 514 within manifold 502. Flow control surface 516 has a larger diameter than that of the shaft of flow control pin 514, and the distal end of flow control surface 516 has a tapered geometry. Manifold melt channel 507 has a complementary geometry at a flow control surface 520.
In a first position, shown in
As shown in
As described above with respect to the first embodiment, flow control pin actuation mechanism 517, is a piston 518 driven by any of the actuation driving mechanisms known in the art, such as pneumatic, hydraulic, cam and lever devices, or bladder pistons. Flow control actuation mechanism 517 is controlled as described above with respect to the first embodiment.
System 900 functions similarly as described above with respect to the first and second embodiments, for example utilizing a transducer 924, a servo valve 922, and a thermocouple 928, except that valve pin actuation mechanism 912 is controlled by a method other than a servo valve. As previously mentioned, valve pin actuation mechanism 912 may be controlled by a computer that follows a pre-determined cycle. The computer would signal circuitry connected to the driving mechanism according to the cycle, and the circuitry would trigger the driving mechanism, and piston 913 would be driven up or down. Alternatively, valve pin actuation mechanism 912 may be controlled by an operator who manually triggers the driving mechanism.
While in
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of provisional application 60/446,997, filed Feb. 13, 2003, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3374502 | Lazzara | Mar 1968 | A |
3390433 | Barnett et al. | Jul 1968 | A |
3417433 | Teraoka | Dec 1968 | A |
3807914 | Paulson et al. | Apr 1974 | A |
3819313 | Josephsen et al. | Jun 1974 | A |
3861841 | Hanning | Jan 1975 | A |
4279582 | Osuna-Diaz | Jul 1981 | A |
4380426 | Wiles | Apr 1983 | A |
4420452 | van Dalen et al. | Dec 1983 | A |
4657496 | Ozeki et al. | Apr 1987 | A |
4717324 | Schad et al. | Jan 1988 | A |
4723898 | Tsutsumi | Feb 1988 | A |
4863369 | Schad et al. | Sep 1989 | A |
5028226 | De'ath et al. | Jul 1991 | A |
5043129 | Sorensen | Aug 1991 | A |
5112212 | Akselrud et al. | May 1992 | A |
5141696 | Osuna-Diaz | Aug 1992 | A |
5143733 | Von Buren et al. | Sep 1992 | A |
5149547 | Gill | Sep 1992 | A |
5192555 | Arnott | Mar 1993 | A |
5200207 | Akselrud et al. | Apr 1993 | A |
5200527 | Griffiths et al. | Apr 1993 | A |
5223275 | Gellert | Jun 1993 | A |
5238378 | Gellert | Aug 1993 | A |
5260012 | Arnott | Nov 1993 | A |
5299928 | Gellert | Apr 1994 | A |
5389315 | Yabushita | Feb 1995 | A |
5454995 | Rusconi et al. | Oct 1995 | A |
5478520 | Kasai et al. | Dec 1995 | A |
5556582 | Kazmer | Sep 1996 | A |
5582851 | Hofstetter et al. | Dec 1996 | A |
5605707 | Ibar | Feb 1997 | A |
5650178 | Bemis et al. | Jul 1997 | A |
5762855 | Betters et al. | Jun 1998 | A |
5766654 | Groleau | Jun 1998 | A |
5773038 | Hettinga | Jun 1998 | A |
5814358 | Bock | Sep 1998 | A |
5849236 | Tatham | Dec 1998 | A |
5891381 | Bemis et al. | Apr 1999 | A |
5894023 | Schramm et al. | Apr 1999 | A |
5919492 | Tarr et al. | Jul 1999 | A |
5935614 | Blank et al. | Aug 1999 | A |
6045740 | Gorlich | Apr 2000 | A |
6062840 | Lee et al. | May 2000 | A |
6090318 | Bader | Jul 2000 | A |
6099767 | Tarr et al. | Aug 2000 | A |
6228309 | Jones et al. | May 2001 | B1 |
6245278 | Lausenhammer et al. | Jun 2001 | B1 |
6254377 | Kazmer et al. | Jul 2001 | B1 |
6261075 | Lee et al. | Jul 2001 | B1 |
6287107 | Kazmer et al. | Sep 2001 | B1 |
6294122 | Moss et al. | Sep 2001 | B1 |
6309208 | Kazmer et al. | Oct 2001 | B1 |
6343921 | Kazmer et al. | Feb 2002 | B1 |
6343922 | Kazmer et al. | Feb 2002 | B1 |
6361300 | Kazmer et al. | Mar 2002 | B1 |
6464909 | Kazmer et al. | Oct 2002 | B1 |
6558603 | Wobbe et al. | May 2003 | B2 |
6679697 | Bouti | Jan 2004 | B2 |
6683283 | Schmidt | Jan 2004 | B2 |
6699422 | Stemke | Mar 2004 | B1 |
6903750 | Sidwell | Jun 2005 | B2 |
20020121713 | Moss et al. | Sep 2002 | A1 |
20030170340 | Sicilia et al. | Sep 2003 | A1 |
20030224086 | Olaru | Dec 2003 | A1 |
20040071817 | Fischer et al. | Apr 2004 | A1 |
20040109916 | Babin | Jun 2004 | A1 |
20050079242 | Schmidt | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
2527427 | Dec 2002 | CN |
198 02 048 | Jul 1999 | DE |
0 393 389 | Oct 1990 | EP |
0 624 449 | Nov 1994 | EP |
0 901 896 | Mar 1999 | EP |
0 967 063 | Dec 1999 | EP |
1 013 395 | Jun 2000 | EP |
1 426 160 | Jun 2004 | EP |
1 447 200 | Aug 2004 | EP |
58-142833 | Aug 1983 | JP |
60-212321 | Oct 1985 | JP |
63-166511 | Jul 1988 | JP |
4-348923 | Dec 1992 | JP |
5-104580 | Apr 1993 | JP |
6-8285 | Jan 1994 | JP |
6-166072 | Jun 1994 | JP |
7-40400 | Feb 1995 | JP |
7-266379 | Oct 1995 | JP |
9-1600 | Jan 1997 | JP |
9-39033 | Feb 1997 | JP |
9-141688 | Jun 1997 | JP |
11-5232 | Jan 1999 | JP |
WO 9856564 | Dec 1998 | WO |
WO 9954109 | Oct 1999 | WO |
WO 0035655 | Jun 2000 | WO |
WO 0121377 | Mar 2001 | WO |
WO 0136174 | May 2001 | WO |
WO 0160580 | Aug 2001 | WO |
WO 0236324 | May 2002 | WO |
WO 03057448 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040161490 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60446997 | Feb 2003 | US |