The present invention relates generally to thermal regulation of seats, and more particularly to providing heating, cooling, ventilation dehumidification or a combination thereof to an automotive seat.
For many years the transportation industry has been concerned with designing seats for automotive vehicles that provide added comfort to occupants in the seats. Various innovations in providing seating comfort are discussed in U.S. Pat. Nos. 6,064,037; 5,921,314; 5,403,065; 6,048,024 and 6,003,950, all of which are expressly incorporated herein by reference. In addition, other innovations in providing seating comfort are discussed in U.S. patent application Ser. No. 09/619,171, filed Jul. 19, 2000, titled “Ventilated Seat Having a Pad Assembly and a Distribution Device”; U.S. Publication No. 2002/0096931, filed Jan. 5, 2001, titled “Ventilated Seat”; U.S. Pat. No. 6,629,724, issued Oct. 7, 2003, titled “Portable Ventilated Seat”; U.S. patent application Ser. No. 10/434,890, filed May 9, 2003, titled “Automotive Vehicle Seat Insert”; U.S. patent application Ser. No. 10/463,052, filed Jun. 17, 2003, titled “Automotive Vehicle Seating Comfort System”; and U.S. patent application Ser. No. 10/681,555, filed Oct. 8, 2003, titled “Automotive Vehicle Seating Comfort System”, each of which are expressly incorporated herein by reference for all purposes.
In the interest of continuing such innovation, the present invention provides an improved system for a seat, which is preferably suitable for employment within or as part of an automotive vehicle seat and which assists in providing comfort control to an occupant in the seat.
In one aspect, the present invention provides a ventilated seat with a valve sheet having one or more valve assemblies. The valve sheet maybe on a frame of the seat. The valve assemblies open in response to a force such as a force applied by an individual occupying the seat. In another aspect, the present invention provides a method of thermally regulating a seat by occupying a seat with a valve sheet. By occupying the seat one or more valves assemblies open air moving though the open valve assemblies thermally regulates the seat.
a and 2b are enlarged views of the valve sheet of
a and 4b are enlarged views of the valve sheet of
a-c illustrates a third valve sheet according to the present invention, where the valve assemblies are shown in a closed position.
a-c illustrates the third valve sheet of
a and b illustrates a fourth valve sheet according to the present invention, where the valve assemblies are shown in a closed position.
a and 8b illustrate the fourth valve sheet of
a and 9b illustrate a fifth valve sheet according to the present invention, where the valve assemblies are shown in a closed position.
a and 10b illustrate the fifth valve sheet of
a and 11b illustrate the sixth valve sheet according to the present invention, where the valve assemblies are shown in a closed position.
a and 12b illustrate the sixth valve sheet of
The present invention includes a ventilated seat that is capable of providing thermal regulation, e.g., heating, cooling, ventilation, dehumidification or combinations thereof, of an occupant. More specifically, in one aspect, the ventilation seat is adapted to provide selective thermal regulation to at least one portion of the seat, seat back, arm rest, head rest or combinations thereof, for comfort of the occupant. The thermal regulation may be achieved through one or more selectively operable valves that open upon the application of force. Preferably, the force is the result of an occupant sitting in the seat, although other sources of force may also be utilized, such as electro-magnetically, hydraulic, pneumatic, mechanical or otherwise produced force. The selectively operable valves permit thermal regulation of less then the entire seat area and preferably only the area covered by the occupant. This selective use of thermal regulation provides improved operating efficiency by mostly providing thermal regulation only to the occupant.
The ventilated seat includes at least one force sensitive valve on a sheet and preferably a plurality of force sensitive valves on a sheet. The valve sheet may be in the form of a seating surface attached to a frame or other support structure. Preferably the valve sheet is combined with other components to form the ventilated seat, such as seat covers, cushions (e.g. foam seat cushion), inserts, fans, fluid conditioners, conduits, valves in the conduits, sensors and/or controls.
The one or more valves of the valve sheet are adapted to open upon an application of force and to substantially close when the force is removed. As such, air will pass through the valve sheet when an occupant is present. Furthermore, air is provided only to specified regions of the valve sheet where force is being applied. As such, it is possible to only heat, cool, ventilate or dehumidify areas of the ventilated seat where the occupant is.
The valve sheet may be comprised of a single layer or a plurality of layers. For example, referring to the embodiments shown
Suitable valve assemblies that may be used with the present invention include valves that are adapted to open and closed based upon the application and/or cessation of force. Suitable valve types that may be used with the present invention includes one or more butt valve, cut valves, finger valves, split valves, plunger valves, sliding valves, combinations thereof or otherwise. However, other suitable valves such as electric, pneumatic, hydraulic, or mechanical valves may also be used, particularly when used with occupancy sensors.
In view of the foregoing, the following embodiments are discussed as they are applied to seats and more particularly automotive seats and seat backs.
Referring to
The second layer includes a plurality valves seats 30, which preferably has a corresponding shape to that of the valve member such that the valve member and the valve seat are adapted to join and form a seal. Together they form a plurality of valve assemblies 32. The material of the second layer may comprise of any suitable material and preferably is air permeable between the valve seats and is optionally flexible. Advantageously, in order to facilitate in sealing between the valve member and valve seat, the second layer includes a sealing material 34 (e.g., sealing ring or otherwise) adapted to improve the seal between the valve member and valve seat. It should be appreciated that the sealing material facilitates the sealing of the first layer to the second layer.
The first embodiment may further include a third layer 36 comprising a spacer. Preferably the air permeability of the third layer is greater than that of the second layer so that air flow will remain substantially within the third layer. Furthermore, preferably the air permeability of the third layer is substantial such that little resistance is created. However, it should be appreciated that the third layer may actually comprise a chamber to permit air flow. Advantageously, the third layer includes an air impermeable layer 38.
Referring to
When an individual occupies the seat, as shown in
It should be appreciated that for all the embodiments shown, the function opening and closing of the valves are predicated on the application of force against the valve. As such, ventilation typically only occurs at portions of the seat where force is applied (e.g., where bodily contact is made). This advantage creates a more efficient comfort system. While shown as drawing air, blown air may also be utilized. Still further, it should be appreciated that more or less valve assemblies may be used than as what is shown.
Referring to
Advantageously, the lips of the valve assembly may include a distal end portion 110 comprising a material other than the material of the layer so as to improve sealing of the valve assembly. Preferably, the layer comprises a material that is flexible and resilient so that the layer can elastically deform but then return to an original position. Suitable materials include rubber though other materials are suitable. In operation, upon application of force, the lips separate to create an opening for air flow. Subsequently, when the force is removed the first layer returns to its original position (e.g., a sealing position) due to the resiliency of the first layer.
Referring to
The valve assemblies comprise a plurality of first chambers 206 formed in the layer, having one or more side walls 208 and on one surface of the layer. The side walls include one or more discontinuities (e.g., cuts, slits, pair of lips or the like) 210 extending along the side walls of the first chamber. Preferably, the valve assemblies include four discontinuities, although other configurations are available. The layer includes a plurality of second chambers 212 having an opening on the surface opposite the surface with the openings of the first chamber. Preferably, the first and second chambers are adjacent to the sidewalls, so that the discontinuities lead from one chamber to the other. It should be appreciated that, while cylindrical and cubical chambers are preferred for the first and second chambers respectively, other shapes and configurations of chambers are available. Optionally, the valve sheet includes an air permeable layer 214 (e.g., spacer) located near the surface with the second chambers.
In operation, upon compression the sidewalls of the chambers partially collapse, thereby creating one or more openings through the sidewalls at the discontinuities. The now open discontinuities permit air flow from one surface of the layer to the other.
Referring to
In operation, upon compression of the layer, the sidewalls of the protrusions at least partially collapse thereby creating one or more openings through the sidewalls in the area of the discontinuities. The now open discontinuities permit air flow from one surface of the layer to the other.
Referring to
In operation, upon application of force, the discontinuities separate to form openings through the valve sheet. This allows air to flow through the valve sheet and away from the occupant residing in the seat. Upon removal of the occupant, the insert returns to its original position and the discontinuity closes to create a seal in the valve sheet.
Referring to
In operation, in a relaxed position, the openings of the first and second layers do not align, thereby created a substantial seal. Upon the occupant sitting in the seat, the stretchable portion of the first and second layer stretches thereby allowing the non-stretchable portions of the first and second layers to move relative to one another. This movement causes the openings of the first and second layers to align thereby creating opening through the valve sheet, whereby air may be moved through the ventilated seat and valve layer to improve comfort of an occupant residing in the ventilated seat.
In another embodiment, both layers are made of a flexible but stretchable material. The operation is substantially the same as the previous embodiment in that when the occupant sits in the seat, the holes in the two layers align.
For ease of production, the valve assemblies of the valve layer are preferably evenly distributed across the entire surface of the ventilated seat. Other distribution patters are also contemplated, such as, selectively placed where the occupant is likely to contact the ventilated seat.
In another aspect, selective application of thermal regulation may be provided to a plurality of automotive seats, which includes the use of a valve sheet. For example, a single thermal regulation system may be provided in a vehicle, wherein the system includes a blower connected to the valve sheets of the seats. As such, air movement will be limited to seats having occupants therein (e.g., an applied force to the valves to cause the valves to open). In this configuration, a minimum amount of components may be used (e.g., blower, heaters, coolers, dehumidifiers or otherwise), which further reduces the power requirements of the automobile.
The valve sheet is preferably utilized in an automotive seat. However, it should be appreciated that the present invention may be used in other application other than an automotive seat member. For example, the regulation system may be used in transportation industries where comfort of the occupant is desired. Such industries include airline, locomotive, bus, trucking, subways, or other mass transportation systems. In such industries the present invention may be used by both the employees of the transportation system or the passengers thereof. In other application, the regulation system may be use in mass occupant facilities including, auditoriums, stadiums, theaters, hospitals, theme parks, or other facility in which seating is provided to patrons. Still further, the regulation system may be used in individual seats such as office chairs, lounge chairs, dining chairs or otherwise.
When a cushion is included, the valve sheet is typically located beneath a seat cover and above any cushion. The cushion may include one or more ducts that extend partially or completely through the cushion, or the cushions may be free of ducts that extend through the cushion. A preferred cushion is a molded plastic foam, which is preferably free of a molded or cut-out fluid distribution ducting network, but may be adapted with a trench or opening for passing apportion of an insert from one side of the cushion to the another side. The seat cushion and/or backrest cushion may in turn be supported by a seat frame.
Preferably, the cushion comprises one or more passageways formed therethrough for the flow of air, wherein each passageway extends between a first end and a second end and may include one or more openings formed through the surface of the cushion at the first and/or second end. In a preferred embodiment, the cushion include means for maintaining the shape of the passage way and supporting the insert. Suitable means includes air permeable material such as open cell foam. However, a most preferred material is also a resilient member adapted to provide suitable support for the insert. Alternatively, the passage may be formed so as to improve strength of the passageway. For example, the passage way may be formed with a skin member or other increased density configuration. Still further, the passage way may be coated with a reinforcing agent or air impermeable lining.
However, the cushion may include means for defining the passageways formed therethrough. Such means may include duct systems, tubing systems or the like that may be inserted into a portion of the cushion and is preferably substantially air impermeable or otherwise includes an air impermeable lining. It should be appreciated that such means may be conveniently used to fluidly connect a fan to the valve sheet, as discussed herein, such that air can be drawn or blown through the cushion with little to no leakage.
In a preferred embodiment, the cushion includes an open space at one of the first or second ends of the passageways and preferably at the end proximate to an individual. Advantageously, the open space is adapted to draw or distribute the air passing through the passageway along the spatial area defining the opening. As such, preferably, the valve sheet is located proximate to the open space for even distribution of the air across the insert.
In a most preferred embodiment, the cushion further includes an air impermeable layer or lining that acts to substantially restrict airflow to the passageway. Accordingly, the air impermeable layer may be located externally to the cushion or may line the interior portion defining the one or more passageways. Suitable air impermeable layers include rubber or plastic layers, though others are available. Furthermore, the air impermeable layer may comprise the material of the cushion itself, which may include skin formed over the surface of the component or otherwise.
When an insert is utilized, the valve sheet may be separate from the insert, attached to the insert or a component or layer of the insert. Suitable inserts include edge sealed (e.g. U.S. application Nos. 10/434,890; filed May 9, 2003 or 10/822,518, filed Apr. 4, 2004) or otherwise (e.g. U.S. application No. 10/463,052; filed Jun. 17, 2003). One or more different kinds of layers may be used to make up the insert. For example, the insert may include one or more spacers to provide an open space within the insert. One or more flow control layers may be included to provide selective flow of fluid between one or more layers of the insert, between the insert and the rest of the seat, or between the insert and the ambient. One or more fluid barriers may be included. Other optional layers include layers that include heaters, coolers, one or more additional spacers, one or more covering layers, and/or one or more layers that assist in the manufacture of the insert.
The spacer may be any structure, material or combination of materials and/or structures that permits fluid flow through the material while also providing a measure of support for a seat occupant. The spacers should not collapse under the weight of a seat occupant and maintain the fluid communication through the spacer. As one example, the spacer may include rubber, foam plastic or the like. In one aspect, the spacer may include a reticulated foam or springs.
One preferred spacer is formed of polymeric (e.g., polyester) strand material that is interwoven to provide opposing honeycomb structures (e.g., fabric panels), which are interconnected by several additional polymeric strand materials to provide open space between the structures while still providing cushion and support. Another preferred spacer is formed of a polymeric material in a helix held between two sheets of material.
The insert may further comprise one or more air impermeable lining for assisting in the directing the flow of air through the insert. For example, it is contemplated that the outer most layer located between the valves and the ventilation seat may include an air impermeable lining for directing air to the outer circumference of the insert. As such, it is contemplated that the insert may be configured with open side to allow air to flow through the circumference of the insert and through to the valves or passageway of the ventilation seat, or both.
The insert, ventilation device, trim cover or otherwise, of the present invention further contemplates the use of additional comfort control devices for optimizing the temperature of the ventilation seat. Accordingly, it is contemplated that the insert further include a heating device, cooling device or both.
For example, in one aspect, the insert of the present invention may further include a suitable heating device for increasing the temperature of the insert, ventilation device, trim member or any individual in contact thereof. One suitable heater comprises a plurality of wires adapted for heating upon application of a current. Another suitable heater comprises a thermoelectric device such as a positive temperature coefficient (PCT) device, which is also adapted to heat upon application of a current. Optionally, the heating device includes a thermostat for monitoring and/or regulating the temperature of the heater.
Multiple inserts may be used on a single seat or backrest cushion, where inserts may accomplish the same or different functions (e.g. one insert may only cool, while another insert may both heat and cool).
When a fan is utilized, the fan provides motive force to move air (whether conditioned, ambient, pushed, pulled and combinations thereof) through the valve sheet. The fan may be used to push air to the insert or pull air from the valve sheet and thus through the ventilation seat, insert, seat cover, combinations thereof or otherwise. The fan may be adapted to force air, draw air, or both, through the components of the ventilated seat. However, in a preferred embodiment, the fan is adapted to draw air through the component of the ventilated sea. Accordingly, the ventilated sea is adapted to draw the heat generated by an individual, more so an occupant, away from the individual so to improve comfort of the individual.
The fan may also be used to both push and pull air. For example, at least two sets of fan blades (e.g. with vanes that are opposite in direction) that share a common axis and form a binary fan that is able to both push and pull air. Multiple fans may also be used. The fan may also include an annular inlet, although fan that are free of annular inlets are also contemplated. Included in the definition of fan are impellers (including bidirectional impellers), blowers, or the like. The fan also refers to devices that provide motive force to move other fluids (e.g. liquids) through the insert. The fan may provide a steady fluid flow, a pulsating fluid flow, an oscillating fluid flow, or the like.
However, alternatively, or in conjunction therewith, the fan may pump or otherwise force air through the system so as to come in contact with an individual to achieve a similar comforting sensation. This is particularly advantageous in the pumping of heated, cooled or otherwise conditioned air. This may be used alone or in combination with any other heating or cooling device of the insert or other component of the comfort system. It should be appreciated, that in one aspect, that the conditioned air may be generated from a heating or cooling system of a vehicle (e.g. the HVAC system). Likewise, the fan may comprise the blower used to move heated or conditioned air generated by a vehicle.
The fluid conditioning device may be any device that heats or cools fluid. The device may be a combination of devices where one component provides heating and another component provides cooling. Preferably, one device or system provides both heating and cooling. The device may be an external device such as the HVAC&R system in the building or vehicle where the seat is located or an internal device meaning that the device is not connected (other than to a power supply) to the building or vehicle where the seat is located. In addition to providing temperature conditioning the fluid conditioning device may also dehumidify the fluid (e.g. air).
Preferably, the fluid conditioning device is a self contained or solid state device that both cools and heats air. The most preferred device is a peltier or thermoelectric device (TED). TEDs are commercially available devices that provide solid state heating and cooling by passing electricity through the device. TEDs include a waste side and an active side, which are relative designations depending whether warm or cool temperature conditioned air is desired. Any supplier of TEDs would be able to provide suitable devices for use in the present invention, with TEDs from Tellurex (Telluride, Colo.) being preferred. The TED may be combined with any useful heat dissipation device; e.g. heat sinks, heat exchangers, fans, heat pipes or the like.
In addition, one or more conduits may be used to provide fluid communication between components of the ventilated seat such as between a fan and an insert between an insert and a fluid condition device.
One or more valves may be used to redirect fluid flow through the system to make use of unused energy (i.e. the fluid is hotter than ambient) or energy capacity (i.e. the fluid is colder than ambient) in the fluid. For example, the valves may be used to vent fluid to ambient to dispose of un-needed energy stored in the fluid. The valves may also be used to redirect fluid to components of the system (e.g. the fluid conditioning device) to either warm or cool such components. In addition, a valve may be used to optionally recirculate fluid within system to create a closed or partially closed system.
A variety of sensors may be included in the system such as temperature sensors, humidity sensors, current sensors, occupant detection sensor, weight sensors or the like. Sensors may be placed throughout the system. For example, temperature sensors may be place within the spacer, between spacers, between the spacer and any additionally optional layer (e.g. reticulated foam or seat cover), near the fluid conditioning device, near the fan, and combinations thereof.
Advantageously, one or more controllers may be used to receive inputs from the sensors or a used control device, to issue instructions to the fan and fluid conditioning device, and/or to otherwise coordinate the operation of the system.
Accordingly, the ventilated sea may further include a control device for controlling the functions of the system. For example, the control device may be adapted to control the operation of the fan, any heating device, cooling device or a combination thereof. Accordingly, the control device may be in further communications with a temperature sensor. Furthermore, it is contemplated that the controller may be in communications with an occupant sensor to determine if one or more individuals is proximate or otherwise is occupying the ventilated seat.
For example, in one aspect of an automotive application, the fan may only be activated upon occupancy of a ventilated seat (e.g., seat, seatback or otherwise). In this configuration, an occupancy sensor may be used to determine whether an individual is located in the seat. If an individual does, the fan is activated to move air through the ventilated seat, which is, in part, the result of the pressure being applied to the valve assemblies of the valve sheet so as to create a flow path for the air.
Alternatively, the fan may be activated with the occupancy of any ventilated seat, wherein fluid is only moved through the ventilated seats which are occupied because of the necessity of occupant for opening of the valves. It should be appreciated in either one of the two examples that the fan device may run continuously so as to remove the necessity of an occupancy sensor.
Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components can be provided by a single integrated structure. Alternatively, a single integrated structure might be divided into separate plural components. In addition, while a feature of the present invention may have been described in the context of only three of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
It will be further appreciated that functions or structures of a plurality of components or steps may be combined into a single component or step, or the functions or structures of one-step or component may be split among plural steps or components. The present invention contemplates all of these combinations. Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components or steps can be provided by a single integrated structure or step. Alternatively, a single integrated structure or step might be divided into separate plural components or steps. In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes.
This application claims the benefit of U.S. Provisional Application No. 60/525,972, filed Dec. 1, 2003.
Number | Name | Date | Kind |
---|---|---|---|
374424 | Ober | Dec 1887 | A |
390154 | Beach | Sep 1888 | A |
1370832 | Mollberg | Mar 1921 | A |
1439681 | Alkire et al. | Dec 1922 | A |
1475912 | Williams | Nov 1923 | A |
1514329 | Metcalf | Nov 1924 | A |
1537460 | Campbell et al. | May 1925 | A |
1541213 | Harley | Jun 1925 | A |
1593066 | Gaston | Jul 1926 | A |
1664636 | Mayer | Apr 1928 | A |
1837515 | Bachrach | Dec 1931 | A |
1936960 | Bowman | Nov 1933 | A |
2022959 | Gordon | Dec 1935 | A |
2103553 | Reynolds | Dec 1937 | A |
2158801 | Petterson | May 1939 | A |
2336089 | Gould | Dec 1943 | A |
2493303 | McCullough | Jan 1950 | A |
2544506 | Kronhaus | Mar 1951 | A |
2703134 | Mossor | Mar 1955 | A |
2749906 | O'Connor | Jun 1956 | A |
2758532 | Awe | Aug 1956 | A |
2782834 | Vigo | Feb 1957 | A |
2791956 | Guest | May 1957 | A |
2826135 | Benzick | Mar 1958 | A |
2912832 | Clark | Nov 1959 | A |
2931286 | Fry, Sr. et al. | Apr 1960 | A |
2976700 | Jackson | Mar 1961 | A |
2978972 | Hake | Apr 1961 | A |
2992604 | Trotman et al. | Jul 1961 | A |
2992605 | Trotman et al. | Jul 1961 | A |
3030145 | Kottemann | Apr 1962 | A |
3101037 | Taylor | Aug 1963 | A |
3101660 | Taylor | Aug 1963 | A |
3127931 | Johnson | Apr 1964 | A |
3131967 | Spaulding | May 1964 | A |
3136577 | Richard | Jun 1964 | A |
3137523 | Karner | Jun 1964 | A |
3162489 | Trotman | Dec 1964 | A |
3209380 | Watsky | Oct 1965 | A |
3486177 | Marshack | Dec 1969 | A |
3506308 | Fenton | Apr 1970 | A |
3529310 | Olmo | Sep 1970 | A |
3550523 | Segal | Dec 1970 | A |
3552133 | Lukomsky | Jan 1971 | A |
3628829 | Hellig | Dec 1971 | A |
3638255 | Sterrett | Feb 1972 | A |
3653589 | McGrath | Apr 1972 | A |
3653590 | Elsea | Apr 1972 | A |
3681797 | Messner | Aug 1972 | A |
3684170 | Roof | Aug 1972 | A |
3732944 | Kendall | May 1973 | A |
3736022 | Radke | May 1973 | A |
3738702 | Jacobs | Jun 1973 | A |
3757366 | Sacher | Sep 1973 | A |
3770318 | Fenton | Nov 1973 | A |
3778851 | Howorth | Dec 1973 | A |
3948246 | Jenkins | Apr 1976 | A |
4002108 | Drori | Jan 1977 | A |
4043544 | Ismer | Aug 1977 | A |
4044221 | Kuhn | Aug 1977 | A |
4060276 | Lindsay | Nov 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4072344 | Li | Feb 1978 | A |
4141585 | Blackman | Feb 1979 | A |
4175297 | Robbins et al. | Nov 1979 | A |
4245149 | Fairlie | Jan 1981 | A |
4259896 | Hayashi et al. | Apr 1981 | A |
4268272 | Taura | May 1981 | A |
4335725 | Geldmacher | Jun 1982 | A |
4379352 | Hauslein et al. | Apr 1983 | A |
4391009 | Schild et al. | Jul 1983 | A |
4413857 | Hayashi | Nov 1983 | A |
4509792 | Wang | Apr 1985 | A |
4563387 | Takagi et al. | Jan 1986 | A |
4572430 | Takagi et al. | Feb 1986 | A |
4589656 | Baldwin | May 1986 | A |
4665707 | Hamilton | May 1987 | A |
4671567 | Frobose | Jun 1987 | A |
4685727 | Cremer et al. | Aug 1987 | A |
4712832 | Antolini et al. | Dec 1987 | A |
4729598 | Hess | Mar 1988 | A |
4777802 | Feher | Oct 1988 | A |
4847933 | Bedford | Jul 1989 | A |
4853992 | Yu | Aug 1989 | A |
4866800 | Bedford | Sep 1989 | A |
4905475 | Tuomi | Mar 1990 | A |
4923248 | Feher | May 1990 | A |
4946220 | Wyon et al. | Aug 1990 | A |
4964674 | Altmann et al. | Oct 1990 | A |
4981324 | Law | Jan 1991 | A |
4997230 | Spitalnick | Mar 1991 | A |
5002336 | Feher | Mar 1991 | A |
5004294 | Lin | Apr 1991 | A |
5016302 | Yu | May 1991 | A |
5076643 | Colasanti et al. | Dec 1991 | A |
5102189 | Saito et al. | Apr 1992 | A |
5106161 | Meiller | Apr 1992 | A |
5117638 | Feher | Jun 1992 | A |
5138851 | Mardikian | Aug 1992 | A |
5160517 | Hicks et al. | Nov 1992 | A |
5211697 | Kienlein et al. | May 1993 | A |
5226188 | Liou | Jul 1993 | A |
5292577 | Van Kerrebrouck et al. | Mar 1994 | A |
5335381 | Chang | Aug 1994 | A |
5354117 | Danielson et al. | Oct 1994 | A |
5356205 | Calvert et al. | Oct 1994 | A |
5370439 | Lowe et al. | Dec 1994 | A |
5372402 | Kuo | Dec 1994 | A |
5382075 | Shih | Jan 1995 | A |
5385382 | Single, II et al. | Jan 1995 | A |
5403065 | Callerio | Apr 1995 | A |
5408711 | McClelland | Apr 1995 | A |
5411318 | Law | May 1995 | A |
5416935 | Nieh | May 1995 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5467489 | Cchen | Nov 1995 | A |
5516189 | Ligeras | May 1996 | A |
5524439 | Gallup et al. | Jun 1996 | A |
5561875 | Graebe | Oct 1996 | A |
5590428 | Roter | Jan 1997 | A |
5597200 | Gregory et al. | Jan 1997 | A |
5613729 | Summer, Jr. | Mar 1997 | A |
5613730 | Buie et al. | Mar 1997 | A |
5626021 | Karunasiri et al. | May 1997 | A |
5626386 | Lush | May 1997 | A |
5626387 | Yeh | May 1997 | A |
5636145 | Gorman et al. | Jun 1997 | A |
5645314 | Liou | Jul 1997 | A |
5692952 | Chih-Hung | Dec 1997 | A |
5701621 | Landi et al. | Dec 1997 | A |
5715695 | Lord | Feb 1998 | A |
5787534 | Hargest et al. | Aug 1998 | A |
5833309 | Schmitz | Nov 1998 | A |
5833321 | Kim et al. | Nov 1998 | A |
5887304 | von der Heyde | Mar 1999 | A |
5897162 | Humes et al. | Apr 1999 | A |
5902014 | Dinkel et al. | May 1999 | A |
5918930 | Kawai et al. | Jul 1999 | A |
5921100 | Yoshinori et al. | Jul 1999 | A |
5921314 | Schuller et al. | Jul 1999 | A |
5921858 | Kawai et al. | Jul 1999 | A |
5924766 | Esaki et al. | Jul 1999 | A |
5924767 | Pietryga | Jul 1999 | A |
5927817 | Ekman et al. | Jul 1999 | A |
5934748 | Faust et al. | Aug 1999 | A |
6003950 | Larsson | Dec 1999 | A |
6019420 | Faust et al. | Feb 2000 | A |
6048024 | Wallman | Apr 2000 | A |
6049927 | Thomas et al. | Apr 2000 | A |
6059018 | Yoshinori et al. | May 2000 | A |
6059362 | Lin | May 2000 | A |
6062641 | Suzuki et al. | May 2000 | A |
6064037 | Weiss et al. | May 2000 | A |
6068332 | Faust et al. | May 2000 | A |
6079485 | Esaki et al. | Jun 2000 | A |
6085369 | Feher | Jul 2000 | A |
6105667 | Yoshinori et al. | Aug 2000 | A |
6109688 | Wurz et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6124577 | Fristedt | Sep 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6147332 | Holmberg et al. | Nov 2000 | A |
6164719 | Rauh | Dec 2000 | A |
6179706 | Yoshinori et al. | Jan 2001 | B1 |
6186592 | Orizaris et al. | Feb 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6224150 | Eksin et al. | May 2001 | B1 |
6237675 | Oehring et al. | May 2001 | B1 |
6254179 | Kortum et al. | Jul 2001 | B1 |
6263530 | Feher | Jul 2001 | B1 |
6273810 | Rhodes et al. | Aug 2001 | B1 |
6277023 | Schwarz | Aug 2001 | B1 |
6278090 | Fristedt et al. | Aug 2001 | B1 |
6291803 | Fourrey | Sep 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6321996 | Odebrecht et al. | Nov 2001 | B1 |
6415501 | Schlesselman et al. | Jul 2002 | B1 |
6425637 | Peterson | Jul 2002 | B1 |
6434328 | Rutherford | Aug 2002 | B2 |
6478369 | Aoki et al. | Nov 2002 | B1 |
6481801 | Schmale | Nov 2002 | B1 |
6483087 | Gardner et al. | Nov 2002 | B2 |
6491578 | Yoshinori et al. | Dec 2002 | B2 |
6497275 | Elliot | Dec 2002 | B1 |
6501055 | Rock et al. | Dec 2002 | B2 |
6505886 | Gielda et al. | Jan 2003 | B2 |
6511125 | Gendron | Jan 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6541737 | Eksin et al. | Apr 2003 | B1 |
RE38128 | Gallup et al. | Jun 2003 | E |
6578910 | Andersson et al. | Jun 2003 | B2 |
6592181 | Stiller et al. | Jul 2003 | B2 |
6598405 | Bell | Jul 2003 | B2 |
6604785 | Bargheer et al. | Aug 2003 | B2 |
6606866 | Bell | Aug 2003 | B2 |
6619736 | Stowe et al. | Sep 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6626386 | Stiner et al. | Sep 2003 | B1 |
6626455 | Webber et al. | Sep 2003 | B2 |
6626488 | Pfahler | Sep 2003 | B2 |
6629724 | Ekern et al. | Oct 2003 | B2 |
6629725 | Kunkel et al. | Oct 2003 | B1 |
6682140 | Minuth et al. | Jan 2004 | B2 |
6685553 | Aoki | Feb 2004 | B2 |
6687937 | Harker | Feb 2004 | B2 |
6719624 | Hayashi et al. | Apr 2004 | B2 |
6722148 | Aoki et al. | Apr 2004 | B2 |
6761399 | Bargheer et al. | Jul 2004 | B2 |
6767621 | Flick et al. | Jul 2004 | B2 |
6786541 | Haupt et al. | Sep 2004 | B2 |
6786545 | Bargheer et al. | Sep 2004 | B2 |
6793016 | Aoki et al. | Sep 2004 | B2 |
6808230 | Buss et al. | Oct 2004 | B2 |
6817675 | Buss et al. | Nov 2004 | B2 |
6826792 | Lin | Dec 2004 | B2 |
6828528 | Stöwe et al. | Dec 2004 | B2 |
6848742 | Aoki et al. | Feb 2005 | B1 |
6857697 | Brennan et al. | Feb 2005 | B2 |
6869139 | Brennan et al. | Mar 2005 | B2 |
6869140 | White et al. | Mar 2005 | B2 |
6871696 | Aoki et al. | Mar 2005 | B2 |
6886352 | Yoshinori et al. | May 2005 | B2 |
6892807 | Fristedt et al. | May 2005 | B2 |
6893086 | Bajic et al. | May 2005 | B2 |
6929322 | Aoki et al. | Aug 2005 | B2 |
6957545 | Aoki | Oct 2005 | B2 |
6976734 | Stoewe | Dec 2005 | B2 |
7040710 | White et al. | May 2006 | B2 |
7070232 | Minegishi et al. | Jul 2006 | B2 |
20010035669 | Andersson et al. | Nov 2001 | A1 |
20020003363 | Buss et al. | Jan 2002 | A1 |
20020017102 | Bell | Feb 2002 | A1 |
20020067058 | Pfahler | Jun 2002 | A1 |
20020092308 | Bell | Jul 2002 | A1 |
20020096915 | Haupt et al. | Jul 2002 | A1 |
20020096931 | White et al. | Jul 2002 | A1 |
20020105213 | Rauh et al. | Aug 2002 | A1 |
20020108381 | Bell | Aug 2002 | A1 |
20020139123 | Bell | Oct 2002 | A1 |
20020140258 | Ekern et al. | Oct 2002 | A1 |
20020148234 | Bell | Oct 2002 | A1 |
20020148235 | Bell | Oct 2002 | A1 |
20020148236 | Bell | Oct 2002 | A1 |
20020148345 | Hagiwari | Oct 2002 | A1 |
20020150478 | Aoki | Oct 2002 | A1 |
20030005706 | Bell | Jan 2003 | A1 |
20030024924 | Fristedt | Feb 2003 | A1 |
20030029173 | Bell et al. | Feb 2003 | A1 |
20030079770 | Bell | May 2003 | A1 |
20030084935 | Bell | May 2003 | A1 |
20030102699 | Aoki et al. | Jun 2003 | A1 |
20030150229 | Aoki et al. | Aug 2003 | A1 |
20040036326 | Bajic | Feb 2004 | A1 |
20040104607 | Takeshi et al. | Jun 2004 | A1 |
20040118555 | Fristedt | Jun 2004 | A1 |
20040139758 | Toshifumi et al. | Jul 2004 | A1 |
20040189061 | Hartwick et al. | Sep 2004 | A1 |
20040195870 | Bohlender et al. | Oct 2004 | A1 |
20040245811 | Bevan et al. | Dec 2004 | A1 |
20050072165 | Bell | Apr 2005 | A1 |
20050200179 | Bevan et al. | Sep 2005 | A1 |
20050257541 | Kadle et al. | Nov 2005 | A1 |
20050264086 | Lofy et al. | Dec 2005 | A1 |
20060048518 | Bell | Mar 2006 | A1 |
20060103183 | White et al. | May 2006 | A1 |
20060130490 | Petrovski | Jun 2006 | A1 |
20060197363 | Lofy et al. | Sep 2006 | A1 |
20060208540 | Lofy et al. | Sep 2006 | A1 |
20060214480 | Terech | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1266925 | Jul 1960 | CA |
2393970 | Jun 2001 | CA |
3513909 | Oct 1986 | DE |
37 05 756 | Oct 1988 | DE |
41 12 631 | Apr 1992 | DE |
19503291 | Aug 1996 | DE |
19654370 | Mar 1998 | DE |
197 36 951 | Mar 1999 | DE |
197 37 636 | Mar 1999 | DE |
19805174 | Jun 1999 | DE |
198 10 936 | Sep 1999 | DE |
199 20 451 | Dec 1999 | DE |
199 54 97 | Jan 2001 | DE |
100 01 314 | Jul 2001 | DE |
100 24 880 | Sep 2001 | DE |
10013492 | Sep 2001 | DE |
10030708 | Jan 2002 | DE |
10144839 | Mar 2003 | DE |
10241571 | Mar 2004 | DE |
10261902 | Aug 2004 | DE |
10316732 | Oct 2004 | DE |
10338525 | Mar 2005 | DE |
10346064 | Apr 2005 | DE |
0 128 534 | Dec 1984 | EP |
0 280 213 | Aug 1988 | EP |
0 517 615 | Dec 1992 | EP |
411375 | May 1994 | EP |
0809576 | May 1999 | EP |
0 936 105 | Aug 1999 | EP |
0 730 720 | Jul 2000 | EP |
1088696 | Sep 2000 | EP |
1050429 | Nov 2000 | EP |
1123834 | Feb 2001 | EP |
1266794 | Dec 2002 | EP |
1 075 984 | May 2003 | EP |
1323573 | Jul 2003 | EP |
1349746 | Aug 2005 | EP |
1266925 | Sep 1960 | FR |
2599683 | Jun 1986 | FR |
2630056 | Oct 1989 | FR |
2694527 | Feb 1994 | FR |
2845318 | Apr 2004 | FR |
1171509 | Jul 1989 | JP |
5277020 | Oct 1993 | JP |
8285423 | Nov 1996 | JP |
10044756 | Feb 1998 | JP |
2000125990 | Feb 2000 | JP |
2001071800 | Mar 2001 | JP |
2002125801 | May 2002 | JP |
2002225539 | Aug 2002 | JP |
2002234332 | Aug 2002 | JP |
2003042594 | Feb 2003 | JP |
2004224108 | Aug 2004 | JP |
2004283403 | Oct 2004 | JP |
202556 | Mar 1966 | SE |
0102983 | Mar 2003 | SE |
WO 9112150 | Aug 1991 | WO |
WO 9409684 | May 1994 | WO |
WO 9605475 | Feb 1996 | WO |
WO 9709908 | Mar 1997 | WO |
WO 9900268 | Jan 1999 | WO |
WO 0206914 | Jan 2002 | WO |
WO 0205341 | Jul 2002 | WO |
WO 03015583 | Feb 2003 | WO |
WO 03051666 | Jun 2003 | WO |
WO 03077710 | Sep 2003 | WO |
WO 03101777 | Dec 2003 | WO |
WO 03106215 | Dec 2003 | WO |
WO 2004082989 | Mar 2004 | WO |
WO 2004028857 | Apr 2004 | WO |
WO 2004078517 | Sep 2004 | WO |
WO 2004091966 | Oct 2004 | WO |
WO 2004091967 | Oct 2004 | WO |
WO 2004096601 | Nov 2004 | WO |
WO 2004096602 | Nov 2004 | WO |
WO2004114513 | Dec 2004 | WO |
WO 2004114513 | Dec 2004 | WO |
WO 2005021320 | Mar 2005 | WO |
WO 2005035305 | Apr 2005 | WO |
WO 2005042299 | May 2005 | WO |
WO 2005042301 | May 2005 | WO |
WO 2005047056 | May 2005 | WO |
WO 2005068253 | Jul 2005 | WO |
WO 2005110806 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050173950 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60525972 | Dec 2003 | US |