Valve made from two materials and writing utensil with retractable tip incorporating same

Information

  • Patent Grant
  • 8246265
  • Patent Number
    8,246,265
  • Date Filed
    Tuesday, December 14, 2010
    14 years ago
  • Date Issued
    Tuesday, August 21, 2012
    12 years ago
Abstract
A valve includes a first valve portion made from a first material, the first valve portion including a body, a door, and an inner hinge pivotably connecting the body to the door, the body including a first opening at a first end and a second opening at a second end opposite the first end, and a circumferential recess disposed in the second end, wherein the inner hinge pivotably connects the door to the body at the first end and a second valve portion made from a second material, the second valve portion including an inner seal disposed in the circumferential recess, the inner seal including a circumferential ridge extending inwardly, the second valve portion further including a door seal disposed on the first end of the body.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to a writing utensil with a writing tip that may be retracted into the body, and more particularly to a valve that stores the writing tip when the tip is retracted into the body.


BACKGROUND OF THE INVENTION

Various known writing utensils have a fibrous writing tip, or nib, and a reservoir filled with liquid ink in communication with the nib. In general, these writing utensils, e.g., markers and pens, include a separate cap that releasably attaches to the body of the writing utensil to cover and seal the nib in a substantially air-tight manner. In this way, the liquid ink disposed in the nib and the reservoir does not evaporate, and the writing utensil does not dry out. While the cap is successful in keeping a tight seal over the nib and keeping the writing utensil functional, the writing utensil will inevitably dry out and be ruined if the cap is lost.


To address this issue, the so-called “cap-less” maker has been devised. In certain cap-less markers, the nib is retractable from an extended writing position, in which the user can write with the marker, to a retracted or withdrawn position, in which the nib is stored in a valve. The valve generally includes a valve door which substantially seals the nib inside the valve when the marker is in the retracted position. The valve door opens up to allow the nib to extend out of the body of the marker into the writing position so the user can write with the marker.


U.S. Pat. No. 5,048,990 to Hashimoto describes a cap-less marker that has been successfully commercialized. In the commercialized version of this marker, the nib is a large fiber-type tip, and the valve is made entirely from a thermoplastic elastomer, also known as TPE. While a TPE valve can generally provide a good seal between the valve body and the valve door, many TPE's have poor vapor barrier properties. Thus, solvent vapor from the ink is likely to permeate through the walls of the valve so as to dry out the nib/tip. Further, all-TPE valves may exhibit poor structural integrity over time. For example, the commercialized Hashimoto valve is subject to loading applied by a spring and a string when the writing tip/nib is in the retracted (or sealed) position. Over time, the TPE material begins to creep and the valve deforms. This deformation can inhibit the valve's ability to maintain an air-tight seal between the valve body and the valve door.


In the case of a marker including a (relatively) large, fibrous nib, a valve made from TPE generally works adequately. In such markers, the large nib retains a large volume of ink and has a relatively large wick portion in fluid communication with an ink reservoir. The wick portion includes many capillary channels, which allows a large volume of ink to travel from the reservoir to the writing tip. Thus, the nib can generally replenish any ink within the nib/tip that evaporates so that the nib does not dry out, and the writing utensil is not ruined. However, consumers are demanding permanent markers with an ultra-fine tip, instead of a large fiber-type tip, for everyday writing. Such a marker has a much smaller nib/tip made from an extruded plastic, includes very small capillary channels, and has a smaller wick portion in fluid communication with an ink reservoir.


An all-TPE valve is generally not satisfactory for an ultra-fine tip due to ink vapor permeating through the valve walls. An ultra-fine tip has very small capillary channels where very little ink is present. Because only a small amount of ink permeation or evaporation will clog the tip, this construction is vulnerable to ‘hard starting,’ and susceptible to complete dry-out. Hard start means the marker struggles to write initially with little or no ink being deposited on the paper. Consequently, dry-out is of greater concern for such ultra-fine markers (relative to markers including a large, fibrous nib/tip).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a retractable marker with the tip in a retracted position.



FIG. 2 is a side view of the retractable maker of FIG. 1 with the tip in a writing position.



FIG. 3 is a cross-sectional view of the retractable maker of FIG. 1, taken along line 3-3 in FIG. 1, with the marker in the retracted position.



FIG. 4 is a cross-sectional view of the writing end of the retractable marker of FIG. 1, taken along line 4-4 in FIG. 2, with the marker in the writing position.



FIG. 5 is a perspective view of a valve in accordance with the present disclosure.



FIG. 6 is a right side view of the valve of FIG. 5.



FIG. 7 is a top view of the valve of FIG. 5.



FIG. 8 is a bottom view of the valve of FIG. 5.



FIG. 9 is a front side view of the valve of FIG. 5.



FIG. 10 is a cross-sectional view taken along the line 10-10 of FIG. 8.



FIG. 11 is a cross-sectional view taken along the line 11-11 of FIG. 6.



FIG. 12 is a cross-sectional view taken along the line 12-12 of FIG. 10.





While the devices and methods described herein are susceptible to various modifications and alternative constructions, certain illustrative embodiments have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed. On the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

Referring now to FIGS. 1 and 2 of the drawings, a marker 20 with a writing end 22 and an actuation end 24 is shown. The marker 20 includes a body 26 and an actuator 28. As shown, the body 26 includes a front holder 30 and a rear holder 32 that can be secured or snap fit together at a joint 34. In other embodiments, the front holder 30 and the rear holder 32 can be threadably engaged at the joint 34. The front holder 30 includes an opening 36 at the writing end 22 through which a writing tip 38 can extend and retract between a retracted position as shown in FIG. 1 and a writing position as shown in FIG. 2. The actuator 28 is disposed through a rear opening 40 in the actuation end 24 of the rear holder 32, and the user can depress and release the actuator 28 to alternate the marker 20 between the writing position and the retracted position. The rear holder 32 may also advantageously include a clip 42 for securing the marker 20 to an article such as a shirt pocket, a notebook, or the like.


Referring now to FIGS. 3 and 4, across sectional view of the marker 20 is shown. FIG. 3 depicts the retracted position, while FIG. 4 depicts the writing position. Disposed within the body 26 are a valve 44, a nib subassembly 46, a spring 48, a collar 50, a string 52, a reservoir holder 54, and a reservoir 56. The valve 44 includes a flange 58, and the front holder 30 includes an internal shoulder 60. The flange 58 bears against the internal shoulder 60 and the valve 44 may be press fit or adhesively fixed to the front holder 30 to couple the valve 44 to the front holder 30. The valve 44 includes a valve body 62 and a door 64 that is shiftable from a closed position shown in FIG. 3 to an open position shown in FIG. 4.


The nib subassembly 46 includes a nib 66, a metal nib adapter 68, and a nib tube 70 surrounding the nib 66. The nib 66 extends from the writing tip 38 back through a hole 74 in the reservoir holder 54 such that it is disposed within the reservoir 56 to permit transport of ink stored in the reservoir 56 to the writing tip 38. The reservoir 56 in this example is a conventional capillary reservoir. A free ink reservoir with a capillary buffer to store the excess ink could also be used. The nib 66 can be an extruded plastic tube with a single channel extending the length of the nib 66. The cross section of the channel can be in the shape of a snow flake. Such nibs can be obtained from a variety of sources including Teibow, Ltd. (Japan) and AuBEX Corp. (Japan). Suitable nibs may include Teibow model numbers PN-C, PN1-D, PH-C, PH1-D, PH5-D, PH5, PN1-D, PH2-D, PO, and PH. They can be made from a homopolymer or a copolymer, and more specifically, a polyacetal homopolymer or a polyacetal copolymer. A nib porosity of greater than about 15% has been found to be effective. A nib porosity of greater than about 25% is preferred. Additional suitable extruded nibs manufactured by the AuBEX Corp. may include DH/DB, F type, FX type, HA type, IL type, IX type, JA type, JC/JD type, JH type, JQ type, MA type, MC./MD type, MO type, NZ, PA-X series, PA type, PB type, PD A type, PD type, PF/SK type, PL/PU type, PS type, PW type, PY type, SA type, k VA type, VE type, and VS type. Alternatively, the valve could be used in combination with fibrous nibs comprising nylon, acrylic, or polyester fibers.


The metal nib adapter 68 is disposed on the nib 66 near the writing tip 38. The nib tube 70 is connected to the metal nib adapter 68. The nib tube 70 surrounds the nib 66 and extends from the nib adapter 68 near the writing tip 38 to inside the hole 74 in the reservoir holder 54. The nib tube 70 can be made of metal and provides strength to the nib 66 such that it does not buckle when a user applies pressure on the writing tip 38. The nib tube 70 further seals the ink within the nib 66 between the reservoir 56 and the nib adapter 68.


The collar 50 is disposed on the reservoir holder 54, and the spring 48 is disposed about the nib tube 70 between the collar 50 and the valve 44 such that the spring 48 biases the collar 50 away from the valve 44. The string 52 is at ached to the collar 50 on both its first end 76 and its second end 78. The string 52 can be attached to the collar 50 in any known way, and in this example, the collar 50 includes a first slot 80 and a second slot 82, and the string 52 includes a first knot 84 on the first end 76, and a second knot 86 on the second end 78 wherein the knots 84, 86 each have a diameter that is larger than the width of the slots 80, 82. Thus, when each end 76, 78 of the string 52 is placed in the slots 80, 82, the knots 84, 86 maintain the string in the slots 80, 82. From the first end 76, the string 52 extends toward and through a first string guide 88 on the valve 44, around the door 64 and through a string holder 90 in the door 64, back through a second string guide 92 on the valve 44, and through the second slot 82 on the collar 50 (string guides and string holder are not shown in FIGS. 3 and 4, but are seen best in FIGS. 5 and 8). Under the biasing force of the spring 48, which pushes the collar 50 toward the actuation end 24, the string 52 tightly holds the door 64 against the valve body 62 to create a substantially air tight seal.


The reservoir holder 54 is a concentric tubular member extending back about the circumference of the reservoir 56 toward the actuation end 24 that has an open rear end 94 through which, during manufacture of the marker 20, the reservoir 56 is inserted. A plug 96 is disposed in the open rear end 94 of the reservoir holder 54 to seal the reservoir 56 within the reservoir holder 54. A spring 98 can be disposed between the plug 96 and the reservoir 56 to bias the reservoir 56 to the forward end of the reservoir holder 54 to ensure the greatest amount of contact between the nib 66 and the reservoir 56.


The plug 96 includes a shaft 100 extending toward the actuation end 24, and a plunger 102 is disposed on the shaft 100. A spring 104 is disposed between the plunger 102 and the actuator 28. The plug 96, plunger 102, spring 104, and actuator 28, when coupled as shown in FIG. 3, provide a well-known knock-type writing utensil actuation system. As is known, by repeatably pressing the actuator 28, the actuating system alternatingly places the nib 66 in the retracted position and the writing position shown in FIGS. 3 and 4. While a ‘knock-type’ actuator is shown herein, other types of actuator systems can be employed. For example, a side button actuation system as shown in U.S. Patent Publication No. 2006-0216103 A1, the disclosure of which is incorporated by reference, can also be used. In this example, the actuator 28 of this disclosure has been replaced with a side actuator extending through a slot in the side wall of the body of the writing utensil. In another example, a twist-type actuator can be used. In this well-known example, the user twists the rear holder 32 relative to the front holder 30 to actuate the nib 66. See, e.g., U.S. Pat. No. 4,221,490, the disclosure of which is herein incorporated by reference.


In the writing position shown in FIG. 4, a user has activated the actuation system to push the reservoir holder 54 toward the writing end 22 of the marker 20. The reservoir holder 54 pushes the collar 50 forward such that the string 52 is no longer under tension and goes slack. The slackness in the string 52 allows the door 64 on the valve 44 to open. In one embodiment, the nib 66 pushes the door 64 open and extends through the opening 36 in the front holder 30. In another more preferred embodiment, the door 64 is biased to the open position, and therefore when the tension on the string 52 goes slack, the door 64 automatically opens such that the nib 66 does not need to push the door 64 to open, or even touch the door 64 at all.


In a third embodiment, the string 52 itself pushes the door 64 open when the marker 20 is actuated, and the nib 66 does not touch the door 64. In one non-limiting example, a fluorocarbon monofilament string with a diameter of between about 0.20 mm and about 0.35 mm, about 0.22 mm and about 0.32 mm or about 0.25 mm, e.g., 0.27 mm, has sufficient rigidity to push the valve door 64 open. Other combinations of material and diameter can be used in any of the foregoing embodiments. In a further embodiment, the string 52 can be replaced with a cam mechanism to open and close the valve door 64.


While a single embodiment of marker 20 is generally shown herein, the marker 20 can generally be constructed in any of the constructions shown in Hashimoto, U.S. Pat. No. 5,048,990, the description of which is incorporated by reference. In other words, the valve 44, as detailed below, can be incorporated into any of the marker embodiments shown in the '990 patent with only minor modifications as would be seen by one of skill in the art. Accordingly, the valve 44 can be used in combination with larger fibrous nibs in addition to the extruded plastic nib 66 exemplified herein. Additionally, the valve can be used in combination with otherwise conventional ball point pens.


Referring now to FIGS. 5-12, the valve 44 is shown in detail. The valve 44 includes a front end 106, a rear end 108, and an inner surface 110 extending from the front end 106 to the rear end 108. As mentioned above, the valve 44 includes the door 64 pivotably connected to the valve body 62 at a hinge 112 at the front end 106. The valve body 62 includes an opening 114, wherein the door 64 is shiftable from an opened position show in FIG. 5 (corresponding to the writing position of the marker 20) where the door 64 is pivoted away from the opening 114, to a closed position in which the door 64 bears against the valve body 62 (corresponding to the retracted position of the marker 20) to close the opening 114 so as to provide a substantially air-tight seal. The valve 44 further includes the outwardly extending flange 58, which is used to mount the valve 44 within the forward holder 30, as discussed earlier. The valve body 62 includes string reliefs 116, 118, the flange 58 includes the string guides 88, 92, and the door 64 includes the string holder 90. The string 52 is disposed within the string holder 90, the string reliefs 116, 118, and the string guides 88, 92, when the string 52 is holding the door 64 against the valve body 62 (i.e., when the marker 20 is in the retracted position).


As can best be seen in FIGS. 5 and 7, the string reliefs 116, 118 are planar and are formed at an angle relative to a central axis A of the valve 44. The angled string reliefs allow the thickness of the alls of the valve body 62 to be substantially maintained, and therefore minimize solvent vapor permeability. Further, the thickness of the valve body 62 protects against deformation of the valve body 62 into an oval shape (e.g., when subject to loading by the spring 48 and the string 52). The string reliefs 116, 118 also allow the force of the string 52 to more efficiently close the valve door 64. The hinge 112 should be thick enough such that the valve door 64 can repeatably close against the valve body 62. Likewise, the hinge 112 should not be so thick that it is too stiff to open and close, thereby causing the writing tip 38 to contact the valve door 64. In one non-limiting example, it has been found that the hinge 112 can have a radius (see reference numeral 150, FIG. 6) of about 0.15 mm to about 0.30 mm, about 0.20 mm to about 0.28 mm, or about 0.25 mm and a thickness of about 0.10 mm to about 0.30 mm, 0.15 mm to about 0.25 mm, or about 0.20 mm. These dimensions form a design that requires minimal force to open the valve door 64 (and the string 52 itself can push the valve door 64 open as previously described) while still providing a repeatable closure. Finally, the string guides 88, 92 are formed of a large size such that they are effective at preventing the string 52 front gathering and buckling during actuation and retraction of the marker 20. Because the string 52 does not buckle as quickly, it pushes against the door 64 early in the actuation cycle, and therefore opens the door 64 prior to the nib 66 contacting the door 64. In the disclosed example, the string guides 88, 92 are each approximately 1/12 of the total circumference of the flange 58, or about 30° of the circular radius of the flange 58.


As best seen in FIGS. 10 and 11, the valve 44 includes an inner seal 122 disposed at the rear end 108 of the valve body 62. The inner seal 122 includes a circumferential ridge 124 extending inwardly about the inner surface 110 of the valve 44. The inner seal 122 bears against the nib tube 70 to seal the rear end 108 of the valve body 62. Accordingly, a sealed internal chamber 126 is formed within the door 64, the inner seal 122, and the inner surface 110 of the valve 44.


The valve 44 is made from a first material 128, generally shown as white in FIGS. 5-12, and a second material 130, shown as stippled in FIGS. 5-12. The first material 128 forms a first portion 129 of the valve 44, and the second material 130 forms a second portion 131 of the valve 44. The first portion 129 includes the body 62, a circumferential seat 132 in the front end 106 of the valve body 62, a circumferential recess 134 in the rear end 108 of the valve body 62, and may further include a channel 136 connecting the circumferential seat 132 to the circumferential recess 134. The channel 136 can be seen best in FIGS. 10-12 as a linear recess in the first portion 129. A gate 138 is disposed in the rear end 108 and is essentially a hole in the side of the first portion 129 connecting the circumferential recess 134 to an outer surface 140 of the valve body 62. The first portion 129 includes the flange 58 and a slender inner hinge 142 that connects the valve body 62 to the door 64. As shown, each of these components is made from the first material 128.


The second portion 131 of the valve 44 includes the inner seal 122 and the circumferential ridge 124 disposed in the circumferential recess 134 of the first portion 129. The second portion 131 further generally includes a plug 144 disposed in the gate 138, a door seal 146 disposed within the circumferential seat 132, and a runner 148 disposed within the channel 136 and connecting the door seal 146 and the inner seal 122. Finally, the second portion 131 may further include the string holder 90 of the door 64 and a pair of outer hinges 150 connecting the string holder 90 to the door seal 146 and disposed on either side of the inner hinge 142. As exemplified herein, all of the components of the second portion 131 are made of the second material 130. As explained in further detail below, however, the material construction of these components may be varied in accordance with the teachings of the present disclosure.


The valve 44 can be manufactured in a two-step injection molding process, also known as two-shot molding. In a first step, the first material 128 can be injection-molded to form the components of the first portion 129 of the valve 44. The first material 128 can be injected such that it forms the flange 58 first, then the valve body 62, then flows through the inner hinge 142 and forms the door 64. This sequence of the flow of the first material 128 during injection is but one example, and other sequences could also be used. In a second step, the second material 130 can be injection molded onto the first material 128 to form the second portion 131 of the valve 44. The second material 130 can enter through the gate 138, flow into the circumferential recess 134, and form the inner seal 122. The second material 130 can then flow through the channel 136 of the first portion 129 to form the runner 148, and then into the circumferential seat 132 to form the door seal 146. The second material 130 can then flow over the inner hinge 142 of the first material 128 to form the outer hinges 150 and onto the door 64 to form the string holder 90. Again, this sequence of the flow of the second material 130 during injection is but one example, and other sequences could be used. The combination of two materials allows advantageous properties of each material to be used in the valve 44 and, more specifically, in the valve body 62 and door 64.


It has been found that the first material 128 can be a relatively hard thermoplastic material such as polypropylene (PP), and the second material 130 can be a thermoplastic elastomer (TPE). Because both PP and TPE can take many chemical formulations, the two ultimately selected materials should be chemically compatible such that they are able to be molded into a single part on a single molding press. The first material 128 should provide moldability, vapor barrier properties, and low cost. The second material 130 should have compatibility with the first material 128 to ensure a good bond between the two during the molding process, high lubricity to minimize dynamic friction, and a durometer in the range of about 60 A-100 A, preferably 70 A-90 A, or more preferably about 80 A to provide structural stability while being soft enough to provide effective seals. Both materials should have melt flow rates and other properties to allow molding through a living hinge. Other thermoplastic materials may also be used for the first material 129, including polyethylene, HDPE, Nylon, PVC, etc., provided that they satisfy the necessary moldability, vapor barrier properties, and cost considerations. A variety of TPE's can be used for the second material 131, provided that they satisfy the necessary molding and sealing characteristics. Useful PP's may include Model No. P4C6Z-022 and Model No. P4C6B-024B, both made by Huntsman International (Woodlands, Tex.), Model No. HM35Z2 made by Arco Chemical Company (Newtown Square, Pa.), and Marlex HLN-350 made by Phillips Sumika Polypropylene Company (Woodlands, Tex.). Useful TPE's may include Santoprene 101-73, Santoprene 101-80, Santoprene 101-87, Santoprene 8201-70, Santoprene 8201-80, Santoprene 8201-90, and Santoprene 8211-75, made by Advanced Elastomer Systems, L.P. (Akron, Ohio), Dynaflex G2780-0001, Dynaflex G7980-1001-00, Model No. LC290-105, Model No. LC293-116, and Model No. LC248-045, made by GLS Corp. (McHenry, Ill.), KU2-865 and KU2-8770, made by Bayer Material Science (Pittsburgh, Pa.), Estagrip ST70A and ST80A, made by Noveon, Inc. (Cleveland, Ohio), and Monprene MP-2890M, Monprene MP-2870, Monprene MP-2228, Monprene MP-1885-J, and Monprene MP-2780, made by Teknor Apex Company (Pawtucket, R.I.).


In other embodiments not shown, the hinge 112 can be made from a single material (either the first material 128 or the second material 130), or the outer hinge 150 could be PP (or another suitable first material 128), while the inner hinge 142 could be TPE (or another suitable second material 130). Also, the runner 148 can be placed at different locations on the inner surface 110 of the valve 44, or could be placed on the outer surface 140 of the valve 44, or even multiple runners 148 could be used. If no runner 148 is used, then the inner seal 122 would be separated from the door seal 146, and two injection gates would be required. Further, the valve 44 could be made by injecting the second material 130 at multiple locations. In this case, the channel 136 and the runner 148 may not be necessary, and a second gate similar to the gate 138 would be disposed on the front end 106 on the valve body 62. The string holder 90 could be made of PP, and the door seal 146 could be disposed on the door 64 instead of the valve body 62. As an alternative to the two-shot injection molding process, the valve 44 could be constructed of separate pieces and then assembled. For example, the inner seal 122 could adhere to or otherwise couple to the circumferential recess 134 and the door seal 146 can be similarly coupled to the circumferential seat 132.


Furthermore, the embodiment disclosed herein depicts the valve 44 in use with a marker 20. Those of skill in the art will see that the disclosed valve 44 can be used in other writing utensils, such as ball point pens. Further, the disclosed valve 44 may prove useful in correction fluid dispensers, paint applicators, and other products completely outside of the writing implement field.


Numerous additional modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. This description is to be construed as illustrative only, and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and method may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which come within the scope of the appended claims is reserved.

Claims
  • 1. A valve, comprising: a first valve portion made from a first material, the first valve portion including a body, a door, and an inner hinge pivotably connecting the body to the door, the body including a first opening at a first end and a second opening at a second end opposite the first end, wherein the inner hinge pivotably connects the door to the body at the first end; anda second valve portion made from a second material, the second valve portion including a door seal disposed circumferentially around the first opening and an outer hinge disposed about the inner hinge,wherein the door bears against the door seal to cover the opening and to form a substantially air-tight seal between the door and the door seal when the door is in a closed position.
  • 2. The valve of claim 1, the second valve portion further comprising a string holder disposed on the door, the string holder being connected to the door seal by the outer hinge.
  • 3. The valve of claim 1, wherein the first material is a thermoplastic material.
  • 4. The valve of claim 3, wherein the thermoplastic material is selected from polypropylene, polyethylene, high density polyethylene, nylon, polyvinyl chloride and mixtures thereof.
  • 5. The valve claim 3, wherein the second material is a thermoplastic elastomer.
  • 6. A valve comprising: a first valve portion made from a first material, the first valve portion including a body, a door, and an inner hinge pivotably connecting the body to the door, the body including a first opening at a first end and a second opening at a second end opposite the first end, wherein the inner hinge pivotably connects the door to the body at the first end; anda second valve portion made from a second material, the second valve portion including a door seal disposed circumferentially around the first opening,wherein the door bears against the door seal to cover the opening and to form a substantially air-tight seal between the door and the door seal when the door is in a closed position, andwherein the first valve portion further comprises a channel disposed in an inner surface of the body and extending from the first end to the second end, and the second valve portion further comprises a runner disposed in the channel and extending from the door seal to an inner seal.
  • 7. The valve of claim 6, the first valve portion including a gate extending from the runner to an outer surface of the body.
  • 8. The valve of claim 7, the second valve portion including a plug disposed in the gate.
  • 9. The valve of claim 7, further comprising a second gate disposed on the first end of the body.
  • 10. The valve of claim 1, further comprising a circumferential seat disposed in the first opening.
  • 11. The valve of claim, wherein the door seal is disposed within the circumferential seat.
  • 12. The valve of claim 1, wherein the valve is formed in a two-shot injection molding process, the first valve portion being formed in a single first shot, and the second valve portion being formed in a single second shot.
  • 13. The valve of claim 1, wherein the second material has a durometer in the range of between approximately 60 A and approximately 100 A.
  • 14. The valve of claim 1, wherein the second material has a durometer in the range of between approximately 70 A and approximately 90 A.
  • 15. The valve of claim 1, wherein the door seal is disposed on the door.
  • 16. A retractable marker, comprising: a barrel with an opening;a valve disposed in the barrel and comprising a first valve portion made from a first material and a second valve portion made from a second material, the first valve portion including a body, a door, and an inner hinge pivotably connecting the body to the door, the body including a first opening at a first end and a second opening at a second end opposite the first end, wherein the inner hinge pivotably connects the door to the body at the first end, the second valve portion including a door seal disposed circumferentially around the first opening;an ink reservoir disposed in the barrel; anda nib subassembly with a writing tip in fluid communication with the reservoir;wherein the nib subassembly is slidable between a retracted position in which the writing tip is inside the valve such that the door bears on the door seal to form a substantially air-tight seal between the door and the door seal and a writing position where the writing tip is extended out of the opening of the barrel and the door is pivoted away from the door seal.
  • 17. The marker of claim 16, the first valve portion further comprising a channel disposed in an inner surface of the body and extending from the first end to the second end, the second valve portion further comprising a runner disposed in the channel and extending from the second end to the first end.
  • 18. The marker of claim 16, wherein the first material is a thermoplastic and the second material is a thermoplastic elastomer.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation of U.S. patent application Ser. No. 11/654,959 (now U.S. Pat. No. 7,850,382), filed Jan. 18, 2007, the entire respective disclosure of which is incorporated by reference in its entirety.

US Referenced Citations (229)
Number Name Date Kind
1810249 Koehler Jun 1931 A
1940548 Jensen Dec 1933 A
2291859 Andrews Aug 1942 A
2392840 Groft Jan 1946 A
2401711 Smith Jun 1946 A
2603186 Fischer Jul 1952 A
2626049 Tursky Jan 1953 A
2874679 Zepelovitch Feb 1959 A
2908286 Hallstrom Oct 1959 A
2949887 Martin et al. Aug 1960 A
2957452 Brannon Oct 1960 A
3035299 Gordon et al. May 1962 A
3124106 Kosta Mar 1964 A
3169511 Spatz Feb 1965 A
3480370 Koeln Nov 1969 A
3525573 Fend Aug 1970 A
3583820 Koeln Jun 1971 A
3594091 Bleuer Jul 1971 A
3617138 Fukui et al. Nov 1971 A
3637316 Bross et al. Jan 1972 A
3733139 Neidhardt et al. May 1973 A
3895632 Plowiecki et al. Jul 1975 A
3944371 Schenk Mar 1976 A
3945734 Woodbridge Mar 1976 A
3955893 Pulaski May 1976 A
4115015 Torii et al. Sep 1978 A
4161374 Koeln et al. Jul 1979 A
4177814 Knepshield et al. Dec 1979 A
4218154 Erfer Aug 1980 A
4269525 Melikian May 1981 A
4318340 Shenoha et al. Mar 1982 A
4469462 Hashimoto et al. Sep 1984 A
4479732 Shimizu et al. Oct 1984 A
4540300 Midorikawa et al. Sep 1985 A
4560297 Leem et al. Dec 1985 A
4575271 Hashimoto et al. Mar 1986 A
4580918 Baker et al. Apr 1986 A
4618280 Kageyama et al. Oct 1986 A
4629348 Hashimoto et al. Dec 1986 A
4711592 Gregory Dec 1987 A
4738724 Wittwer et al. Apr 1988 A
4738817 Wittwer et al. Apr 1988 A
4768529 Mahruki et al. Sep 1988 A
4812299 Wason Mar 1989 A
4859103 Wittek et al. Aug 1989 A
4863796 Wason Sep 1989 A
4879058 Wason Nov 1989 A
4879323 Wason Nov 1989 A
4896983 Im et al. Jan 1990 A
4902657 Wason Feb 1990 A
4902729 Wason Feb 1990 A
4911570 Rhoades Mar 1990 A
4933387 Wason Jun 1990 A
4937078 Mezei et al. Jun 1990 A
4954468 Wason Sep 1990 A
4968728 Wason Nov 1990 A
4969764 Gregory Nov 1990 A
4974980 Gueret et al. Dec 1990 A
5022773 Waldinger et al. Jun 1991 A
5026189 Keil et al. Jun 1991 A
5090955 Simon Feb 1992 A
5092701 Lai et al. Mar 1992 A
5257647 Wilhite Nov 1993 A
5336006 Badr et al. Aug 1994 A
5342136 Fukami et al. Aug 1994 A
5358864 van den Broeck et al. Oct 1994 A
5372580 Simon et al. Dec 1994 A
5420615 Witz et al. May 1995 A
5426456 Kuelzer et al. Jun 1995 A
5439626 Bennett et al. Aug 1995 A
5454655 Chiswell Oct 1995 A
5517218 Lehna et al. May 1996 A
5547301 Kageyama et al. Aug 1996 A
5547468 Simon et al. Aug 1996 A
5553956 Mitsuya et al. Sep 1996 A
5604036 Price et al. Feb 1997 A
5605402 Uggetti et al. Feb 1997 A
5607437 Simon et al. Mar 1997 A
5610046 van Ooyen et al. Mar 1997 A
5643660 Price et al. Jul 1997 A
5651627 Dowzall et al. Jul 1997 A
5653725 Simon et al. Aug 1997 A
5672021 Abber et al. Sep 1997 A
5676481 Nicoll et al. Oct 1997 A
5813787 Dowzall et al. Sep 1998 A
5823697 Talbot et al. Oct 1998 A
5829904 Matsumoto et al. Nov 1998 A
5849559 Van Der Wouw et al. Dec 1998 A
5865553 Flye Sainte Marie et al. Feb 1999 A
5871296 Furukawa et al. Feb 1999 A
5891398 Lewis et al. Apr 1999 A
5899618 Kobayashi et al. May 1999 A
5906446 McCulloch et al. May 1999 A
5927882 Kageyama et al. Jul 1999 A
5927883 Lebauer Jul 1999 A
5929051 Ni et al. Jul 1999 A
5931846 Simon et al. Aug 1999 A
5961703 Fraas et al. Oct 1999 A
5967688 Hu et al. Oct 1999 A
6027271 Barosso et al. Feb 2000 A
6066356 Van Der Wouw et al. May 2000 A
6089776 Kaufmann et al. Jul 2000 A
6095707 Kaufmann et al. Aug 2000 A
6099924 Nakamaki et al. Aug 2000 A
6120751 Unger Sep 2000 A
6135660 Stevens et al. Oct 2000 A
6155733 Holbrook et al. Dec 2000 A
6158913 Dumler et al. Dec 2000 A
6170318 Lewis Jan 2001 B1
6213661 Coon Apr 2001 B1
6231257 Stevens et al. May 2001 B1
6244744 Calvin Jun 2001 B1
6244774 Barosso et al. Jun 2001 B1
6261019 Furukawa et al. Jul 2001 B1
6306598 Charych et al. Oct 2001 B1
6350369 Lewis et al. Feb 2002 B1
6409408 Koyama et al. Jun 2002 B2
6416242 Kaufmann et al. Jul 2002 B1
6417121 Newkirk et al. Jul 2002 B1
6417122 Newkirk et al. Jul 2002 B1
6420285 Newkirk et al. Jul 2002 B1
6433012 Tuse et al. Aug 2002 B1
6468759 Charych Oct 2002 B1
6482517 Anderson Nov 2002 B1
6561713 Sukhna et al. May 2003 B2
6565763 Asakawa et al. May 2003 B1
6605344 Ohba et al. Aug 2003 B1
6607325 Hori et al. Aug 2003 B2
6631333 Lewis et al. Oct 2003 B1
6638621 Anderson Oct 2003 B2
6644880 Duez et al. Nov 2003 B2
6648539 Dai et al. Nov 2003 B2
6656319 Boyd et al. Dec 2003 B1
6723394 Sirringhaus et al. Apr 2004 B1
6752557 Hsieh et al. Jun 2004 B1
6927256 Stevens et al. Aug 2005 B2
6964534 Brand et al. Nov 2005 B2
6967102 Anderson et al. Nov 2005 B1
6974697 Comer et al. Dec 2005 B2
6977244 Tormo et al. Dec 2005 B2
6979456 Parikh et al. Dec 2005 B1
6979558 Harris, Jr. et al. Dec 2005 B2
6979559 Harris, Jr. et al. Dec 2005 B2
6981812 Hsieh et al. Jan 2006 B1
6989007 Shadduck Jan 2006 B2
6989195 Anderson Jan 2006 B2
6991514 Meloni et al. Jan 2006 B1
7004945 Boyd et al. Feb 2006 B2
7008633 Yang et al. Mar 2006 B2
7018838 Murphy et al. Mar 2006 B2
7022683 Ni et al. Apr 2006 B1
7037015 Witz et al. May 2006 B1
7037657 Le et al. May 2006 B2
7048963 Braithwaite et al. May 2006 B2
7059796 Lewis, Jr. et al. Jun 2006 B2
7060754 Stevens et al. Jun 2006 B2
7101102 Sawa et al. Sep 2006 B2
7329062 Brand et al. Feb 2008 B2
7350996 Bielecki et al. Apr 2008 B2
20020010510 Silvestrini Jan 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020081139 Legg Jun 2002 A1
20020081232 Lewis et al. Jun 2002 A1
20020131807 Ami et al. Sep 2002 A1
20020142477 Lewis et al. Oct 2002 A1
20020172544 Dai Nov 2002 A1
20020192007 Lee Dec 2002 A1
20030068191 Hori Apr 2003 A1
20030108377 Duez et al. Jun 2003 A1
20030108743 Anderson Jun 2003 A1
20030195300 Stevens et al. Oct 2003 A1
20030211130 Sanders et al. Nov 2003 A1
20030215281 Sexton et al. Nov 2003 A1
20030222048 Asakawa et al. Dec 2003 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040050816 Asakawa et al. Mar 2004 A1
20040062879 Bowman et al. Apr 2004 A1
20040201117 Anderson Oct 2004 A1
20040265035 Brand et al. Dec 2004 A1
20050004578 Lambrecht et al. Jan 2005 A1
20050019112 Erickson et al. Jan 2005 A1
20050043470 Stevens et al. Feb 2005 A1
20050047844 Lammers et al. Mar 2005 A1
20050074268 Beil Apr 2005 A1
20050084320 Carroll Apr 2005 A1
20050084321 Carroll Apr 2005 A1
20050089656 Shiina Apr 2005 A1
20050115690 Bohlig Jun 2005 A1
20050191112 Yoon Sep 2005 A1
20050196580 Provost et al. Sep 2005 A1
20050196583 Provost et al. Sep 2005 A1
20050208259 Provost et al. Sep 2005 A1
20050217092 Barker et al. Oct 2005 A1
20050221271 Murphy et al. Oct 2005 A1
20050246023 Yeung Nov 2005 A1
20050250181 Schroder Glad et al. Nov 2005 A1
20050256253 Parker et al. Nov 2005 A1
20050265774 Albisetti Dec 2005 A1
20050271451 Brand et al. Dec 2005 A1
20060002755 Sawa Jan 2006 A1
20060002852 Saltzman et al. Jan 2006 A1
20060002971 Saltzman et al. Jan 2006 A1
20060004193 Muller et al. Jan 2006 A1
20060004314 McCarthy et al. Jan 2006 A1
20060019339 Lauth et al. Jan 2006 A1
20060036269 Schachar et al. Feb 2006 A1
20060051274 Wright et al. Mar 2006 A1
20060051451 Hutchinson et al. Mar 2006 A1
20060051735 Fuhr et al. Mar 2006 A1
20060058383 Huang et al. Mar 2006 A1
20060062780 Zocher et al. Mar 2006 A1
20060063882 Velev et al. Mar 2006 A1
20060065992 Hutchinson et al. Mar 2006 A1
20060069230 Papisov Mar 2006 A1
20060073159 Vonderheide et al. Apr 2006 A1
20060073294 Hutchinson et al. Apr 2006 A1
20060073298 Hutchinson et al. Apr 2006 A1
20060073333 Anderson Apr 2006 A1
20060084034 Hochman Apr 2006 A1
20060088897 Lim et al. Apr 2006 A1
20060095066 Chang et al. May 2006 A1
20060099244 Guilford May 2006 A1
20060106408 Schachar et al. May 2006 A1
20060106409 Schachar et al. May 2006 A1
20060110439 Tobia et al. May 2006 A1
20060115462 Subbotin et al. Jun 2006 A1
20060116712 Sepetka et al. Jun 2006 A1
20060116713 Sepetka et al. Jun 2006 A1
20060121608 Comer et al. Jun 2006 A1
Foreign Referenced Citations (55)
Number Date Country
34 38 074 Apr 1986 DE
0 150 557 Aug 1985 EP
0 267 557 May 1988 EP
0 316 007 May 1989 EP
0 354 823 Feb 1990 EP
0 400 272 Dec 1990 EP
0 469 465 Feb 1992 EP
0 545 917 Jun 1993 EP
0 586 792 Mar 1994 EP
0 667 818 Aug 1995 EP
0 703 096 Mar 1996 EP
0 711 673 May 1996 EP
0 822 098 Feb 1998 EP
0 899 128 Mar 1999 EP
1 050 417 Nov 2000 EP
1 600 078 Nov 2005 EP
243110 Nov 1925 GB
937632 Sep 1963 GB
58-009788 Jan 1983 JP
60-119588 Jun 1985 JP
1-280596 Nov 1989 JP
1-281999 Nov 1989 JP
2-108086 Apr 1990 JP
2-283499 Nov 1990 JP
4-043345 Feb 1992 JP
4-316899 Nov 1992 JP
6-035232 Feb 1994 JP
6-216585 Aug 1994 JP
7-242094 Sep 1995 JP
7-290883 Nov 1995 JP
7-329486 Dec 1995 JP
8-072470 Mar 1996 JP
8-108676 Apr 1996 JP
8-216585 Aug 1996 JP
8-258480 Oct 1996 JP
8-282174 Oct 1996 JP
8-282175 Oct 1996 JP
9-131994 May 1997 JP
10-100579 Apr 1998 JP
2003-128971 May 2003 JP
WO-9312175 Jun 1993 WO
WO-9317879 Sep 1993 WO
WO-9411204 May 1994 WO
WO-9411205 May 1994 WO
WO-9425293 Nov 1994 WO
WO-9507191 Mar 1995 WO
WO-9639054 Dec 1996 WO
WO-9806450 Feb 1998 WO
WO-9911471 Mar 1999 WO
WO-0128696 Apr 2001 WO
WO-0164453 Sep 2001 WO
WO-0206437 Jan 2002 WO
WO-0213173 Feb 2002 WO
WO-02064379 Aug 2002 WO
WO-2005009755 Feb 2005 WO
Related Publications (1)
Number Date Country
20110084225 A1 Apr 2011 US
Continuations (1)
Number Date Country
Parent 11654959 Jan 2007 US
Child 12968265 US