The present invention relates to a reciprocating internal combustion engine having one or more poppet valves which may be disabled so as to allow the engine to be operated with fewer than the total number of cylinders.
Variable displacement engines have been the subject of much inventive activity during the past several decades. Typically, variable displacement systems have included such devices as hydraulically and electromagnetically driven poppet valves, and yet more complicated systems for allowing cylinder poppet valves to be disabled in deactivated cylinders. Cylinder deactivation, in general, is desirable because the fuel economy of an engine may be enhanced by operating with fewer than the total number of cylinders allowing the engine to operate closer to an unthrottled condition.
It is known to use a variable displacement system in which rocker arms are mounted in pairs for a single valve, with one rocker arm contacting a lobe on a camshaft and a second rocker arm contacting the tip of a poppet valve stem. The connection between the two rocker arms is usually made with a sliding pin, which must be allowed to pass from one rocker arm into the other in a very short period of time, with much precision, so as to assure that the rocker arms are linked together and that the valve is, therefore, operable when desired. In order for the connection between the two rocker arms to be made accurately, it is required that the arm which contacts the poppet valve be precisely positioned prior to the linking of the two arms. It is not an acceptable solution to merely increase the size of the aperture which receives the locking pin, because this solution will lead to noise and durability concerns.
It would be desirable to provide a system for reliably and durably locating a valve contacting rocker arm so as to allow precise and rapid lockup of adjacent arms in a variable displacement engine.
According to an aspect of the present invention, a cylinder valve operating system for a reciprocating internal combustion engine includes a poppet valve having a valve head and a valve stem and a camshaft having a number of cam lobes. A cam arm is driven by one of the cam lobes. A valve arm, which is selectively driven by the cam arm, opens the poppet valve by engaging the valve stem. A valve arm positioner adjustably maintains the valve arm in contact with the valve stem when the valve arm is not being driven by the cam arm. The valve arm positioner preferably comprises an adjustable abutment configured to contact a bearing surface of the valve arm. The valve arm may also incorporate a hydraulic valve lash adjuster.
In a preferred embodiment, the valve arm positioner contacts the valve arm at a location proximate the portion of the valve arm which engages the valve stem.
According to another aspect of the present invention, the valve arm incorporates a hydraulic lash adjuster and also a hydraulic damping element, with the latter being incorporated within the valve arm so that an adjustable contactor mounted above the valve arm will contact the damping element. In this manner, movement of the valve arm in a direction away from the valve stem will be limited, but with a hydraulic damping component to the limiting force.
According to yet another aspect of the present invention, an adjustable abutment includes a threadably adjustable contactor mounted over the valve arm. The adjustable contactor may be supported by a ladder frame which also supports a rocker shaft to which the cam arm and the valve arm are journaled.
According to yet another aspect of the present invention, the valve arm positioner includes a hydraulically damped adjustable abutment having a hydraulic damping element incorporated within an adjustable contactor mounted above the valve arm. In this case, a hydraulically loaded damper cap is slidably mounted to a lower end of an adjustable cylindrical stud having a central oil passage.
According to another aspect of the present invention, an adjustable valve arm contactor includes a hydraulically damped adjustable abutment having a hydraulically loaded plunger incorporated within the valve arm, and an adjustable contactor mounted above the valve arm, whereby the adjustable contactor will contact the plunger when the valve moves to a closed position.
It is an advantage of a system according to the present invention that the present valve arm may be precisely located for accurate and rapid engagement and disengagement with a cam arm driven by one of the lobes on a camshaft.
It is another advantage of a system according to the present invention that noise associated with the operation of the valve arm positioner is mitigated by the use of hydraulically damped elements within the system.
It is yet another advantage of a system according to the present invention that the system may be used advantageously with a hydraulic lash adjustor incorporated in the valve arm.
It is yet another advantage of a system according to the present invention that wear problems inherent with prior art systems will be eliminated.
Other advantages, as well as features of the present invention, will become apparent to the reader of this specification.
As shown in
In the embodiment of valve arm positioner 48 shown in
Moving to
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and fall within the scope of the invention. Accordingly the scope of legal protection afforded this invention can only be determined by studying the following claims.
The present application claims priority to U.S. provisional application entitled SET SCREW ADJUSTMENT DEVICE FOR HYDRAULIC VALVETRAIN TO SET ROCKERARM LOCATION having Ser. No. 60/992,382 and filed on Dec. 5, 2007.
Number | Date | Country | |
---|---|---|---|
60992382 | Dec 2007 | US |