The present disclosure pertains to valves and particularly to valve having safety features.
The disclosure reveals a valve having an over-travel spring that does not necessarily need an excessively additional force to further close the valve once its valve seal, seal structure, disk or plate comes into contact with a valve seat. The feature may be achieved by inserting an over-travel spring between a main plate or stop attached to a valve stem and a valve seal structure. The valve seal may come in contact with a valve seat when the valve is closed with movement of the valve stem. The valve stem may continue to travel after contact between the valve seal structure and the valve seat without additional force, other than that of compressing the over-travel spring, and thus cause a proof-of-closure sensor to indicate closure. Also, there may be a detector that indicates a position of the valve control stem. The stem may be moved in either direction for closing and opening the valve. The stem may be moved with an actuation from a solenoid, gear-motor actuator, a fluid power actuator, or other device.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
Commercial and industrial burner systems above a certain firing rate appear to be required by code and agency standards to employ a secondary safety check known as proof-of-closure (POC) interlock. This feature may typically be located on the automatic safety shut-off valves of the system. Proof-of-closure interlock functionality appears to require, by code, that a switch be employed which closes when the valve is closed and opens when the valve is open. The code may also require that the valve shut-off be set to a prescribed leakage of 1 cubic ft. per hour (CFH) before the switch closes.
The nature of this function may typically require some form of differential travel at the seat of the valve. Due to manufacturing tolerances, it is not necessarily possible to reliably close a switch and shut-off the valve to a prescribed leakage simultaneously. This seems to necessitate that the valve closure member incorporate a form of differential travel, referred to as over-travel, in order to overcome the tolerance issue. A sequence for valve closure may be that when the power is turned off, the valve may close first to a maximum leakage rate of, for instance, 1 CFH and then fully. Thus, the POC switch should be closed/opened between the states of 1 CFH leakage and fully closed.
To accomplish a feat, several primary techniques may be employed, that is, stem over-travel and seal over-travel. Stem over-travel may involve the valve stem (or a portion of it) continuing to close after leakage has been shut-off to 1 CFH or less. Seal over-travel may incorporate an auxiliary valve seal and a primary seal, and a valve seat. The auxiliary seal may contact the seat first to reduce the leakage to 1 CFH, but remain compliant enough that the rest of the valve mechanism may continue to travel until a primary seal engages and shuts off forward leakage entirely.
An issue with stem over-travel is that it may introduce mechanical complications on nearly all types of valves. The issue with seal over-travel is that it may introduce a mechanical complication and require an additional closing force. The additional closing force may generally be undesirable because it typically requires a larger actuator to overcome a larger force, which means a less compact and more inefficient valve design. A larger than necessary force between the seal and seat may ruin the valve seal and/or valve seat.
A challenge may be how one constructs an over-travel mechanism that does not require additional closing force to operate. Herein, an over-travel mechanism may be designed in such a way that it does not require additional force to be operated. This feature may be achieved primarily by inserting a secondary spring (over-travel spring); in this case, a compression spring is between the closing member and a plunger. This construction appears new because it may simultaneously achieve two desirable goals—it does not necessarily diminish the sealing force when the valve is in the closed state and it contributes to the opening force on the plunger as it moves through the over-travel stroke. This approach may allow for improved design efficiency as the actuator may be reduced in size, cost, and so on.
A compression spring (over-travel spring) may be inserted between the main valve closing member and the solenoid or plunger to provide a biasing force during the over-travel stroke of the valve. The compression spring should be designed to be weaker than the main closing spring. The main closing spring therefore may overcome the over-travel spring in the closed state and move the over-travel mechanism to its closed state hard stop. When the valve is opened, the main closing spring force may be counter-acted by a valve actuator, which can allow the over-travel spring to bias the mechanism to its open state hard stop. A difference in travel between these hard stops may be the valve's over-travel.
Since the over-travel spring may be inserted between a main valve closure member and the main valve plunger (and not necessarily the valve “frame” like come valve constructions), its equal and opposite forces can be exerted on the main valve plunger and the main valve closure member, and may be internal forces from the mechanism's point of view. This means that a sealing force is not necessarily diminished by a presence of the over-travel spring, but the opening force may be assisted.
A retaining ring 18 may be rigidly linked to valve stem 11 (i.e., not to the valve seal 15). Ring 18 contacts the valve seal 15 only during an opening stroke of the valve where it is the piece that lifts the valve seal assembly open. During closure, retaining ring 18 may fall out of contact with the valve seal 15 when valve seal item 16 and valve seat 17 come into contact. In this way, over-travel may be facilitated. Over-travel may be regarded as relative movement between valve stem 11 (and components rigidly linked to stem 11) and valve seal 15 (and components rigidly linked to valve seal 15).
Movement of valve stem 11 and main valve disk or plate 13 may move over-travel spring 14 and valve seal 15 in one direction or the other.
If valve seal 15 has its valve seal item 16 lifted up from valve seat 17, then a fluid may flow through that portion of valve 10 as indicated by arrows 32 and 33. An inlet pressure of a fluid to valve 10 may be measured at arrow 32. Proximate to valve stem 11 may be a sensor based proof of closure detector 24. Sensor 24 may be a linear variable differential transformer (LVDT) assembly. Sensor 24 may consist of another technology.
Valve seat 17 is shown in
In
One kind of a proof of closure switch 23 may have a lever 48 that touches the bottom end of tube 19. When valve seal item 16 of valve seal 15 is against valve seat 17 such that no fluid can flow from the volume of arrow 32 to a volume of arrow 33, then tube 19 may cause the lever 48 of proof of closure switch 23 to indicate that valve 10 is closed.
A position indicator 24 may have a structure that is in contact with the bottom end of tube 19. As stem 11 moves up, valve 10 may open and tube 19 may move up with the flange of tube 19, eventually with tube 19 stopping when the flange comes in contact with support 38. Tube return spring 21 may assure upward movement of tube 19 as stem 11 moves up during an opening of valve 10. Position indicator 24 may detect the position of tube 19 so as to indicate the opening of valve 10. Likewise, when stem 11 moves downward where a contact of valve seal 16 with valve seat 17 occurs resulting in a closure of valve 10, position indicator 24 may detect another position of tube 19 so as to indicate closure of valve 10.
A position indicator return spring 25 may have one end situated against a support 42 and the other end against a structure 43 of position indicator 24 so as to keep a structure 44 of indicator 24 against the closed end of tube 19, as structures 43 and 44 of indicator 24 may pivot at a point 45. Point 45 may have a sensor indicating a position of structures 43 and 44. Position indicator return spring 25 may be under compression between support 42 and structure 43. Structure 43 may be stopped at a support 46, which may be rigid with respect to the valve body, when the closed end of tube 19 moves up so much during a valve opening in that structure 44 no longer is in contact with the closed end of tube 19. Structure portion 43 may point to a “Closed” mark when the valve is closed and to an “Open” mark when the valve is open.
To recap, a valve mechanism may incorporate a valve body, a valve stem situated in the valve body and moveable in first and second directions of a longitude dimension of the valve stem, a valve seat within the valve body, a main plate attached to the valve stem with the valve stem perpendicular to the main plate, an over-travel spring having a first end attached to the main plate, a valve seal structure having a first surface attached to a second end of the over-travel spring with the valve stem perpendicular to the first surface of the valve seal structure, and a valve seat attached to a rigid support of the valve body, facing a second surface of the valve seal structure. Moving the valve stem in the first direction of the longitudinal dimension of the valve stem may result in movement of the main plate pushing the over-travel spring and in turn pushing the valve seal structure towards the valve seat to reduce or stop a possible flow of a fluid between the valve seal structure and the valve seat.
Moving the valve stem in the second longitudinal direction of the valve stem may result in a movement of the main plate pulling the over-travel spring and in turn pulling the valve seal structure away from the valve seat to begin or increase a possible flow of a fluid between the valve seal structure and the valve seat.
The valve mechanism may further incorporate one or more valve seals situated in the second surface of the valve seal structure for coming in contact with the valve seat to reduce or stop a flow of a fluid between the one or more valve seals and the valve seat. As may be seen in the embodiment of
A contact of a first seal of the one or more seals with the valve seat may reduce the flow of a fluid between the first seal and the valve seat to X cubic feet per hour (CFH). A contact of a second seal of the one or more seals with the valve seat may reduce the flow of a fluid between the first seal and the valve seat to Y CFH. X>Y.
When the valve stem is moved in the first direction of the longitudinal direction of the valve stem to result in movement of the main plate, that in turn may push the valve seal structure to the valve seat to reduce or stop a possible flow of a fluid between the valve seal structure and the valve seat. The valve stem may be further moved in the first direction of the longitudinal dimension of the valve stem to push the main plate against the over-travel spring that exerts more force on the valve seal structure that is in contact with the valve, resulting in compressing the over-travel spring and reducing an over-travel gap between the main plate and the valve seal structure.
The valve mechanism may further incorporate a proof of closure switch having a connection with the valve stem which results in operation of the proof of closure switch when the valve seal structure is in contact with the valve seat sufficiently to virtually stop a possible flow of a fluid between the valve seal structure and the valve seat.
The valve mechanism may further incorporate a position indicator having a sensor proximate to the valve stem to sufficiently indicate a relative position between the valve seal structure and the valve seat for revealing whether an amount of possible flow of a fluid is between the valve seal structure and the valve seat.
The valve mechanism may further incorporate a solenoid component attached to the valve stem to electrically change a position of the valve seal structure relative to the valve seat.
The valve mechanism may further incorporate a main spring having a first end attached to a rigid support of the valve body and a second end attached to the first surface of the main plate.
A valve assembly may incorporate a valve housing, a valve seat attached to the valve housing and having an opening for a possible flow of fluid through the valve seat, a valve seal having a position proximate to the valve seat to reduce or stop a possible flow of fluid through the valve seat, an over-travel spring having a first end attached to the valve seal, and a valve control rod attached to a second end of the over-travel spring. A first direction of movement of the valve control rod may result in moving the over-travel spring which moves the valve seal closer to or in contact with the valve seat. A second direction of movement of the valve control rod may result in moving the over-travel spring and the valve seal away from the valve seat.
An amount of the first direction of movement of the valve control rod that results in moving the over-travel spring and the valve seal in contact with the valve seat, may be increased to compress the over-travel spring and increase a pressure of the valve seal against the valve seat.
The valve assembly may further incorporate one or more items for indicating a position of the valve control rod selected from a group consisting of a proof of closure sensor and a position detector.
The valve assembly may further incorporate an actuator connected to the valve control rod. The actuator may be selected from a group consisting of a plunger, a gear motor actuator, and a fluid power actor.
The valve control rod may be a plunger.
The first direction of movement of the valve control rod may result in moving the over-travel spring and in turn the valve seal having a first increment seal in contact with the valve seat to reduce a leakage of a fluid through the opening of the valve seat to no more than X CFH. The first direction of additional movement of the valve control rod may result in moving the over-travel spring and in turn the valve seal having a second increment seal in contact with the valve seat to reduce a leakage of the fluid through the opening of the valve seat to less than X CFH. X may be a number.
An approach for controlling a flow of fluid, may incorporate presenting a fluid with a pressure to an input of a valve body, regulating a flow of the fluid from the input to an output of the valve body by adjusting positions of a valve seal and a valve seat relative to each other, and moving a valve stem relative to the valve body having an over-travel spring with a first end attached to the valve stem and a second end connected to the valve seal to adjust positions of the valve seal and the valve seat relative to each other to regulate the flow of the fluid from the input to the output of the valve body.
The valve stem may be a solenoid.
The flow of fluid from the input to the output of the valve body may be reduced or stopped by adjusting the positions of the valve seal and the valve seat such that the valve seal is moved to close an opening of the valve seat to reduce or stop flow of fluid through the opening of the valve seat.
The approach may further incorporate moving the valve stem an additional amount toward the valve body to compress the over-travel spring that increases a pressure of the valve seal against the valve seat.
The approach may further incorporate measuring an amount of closure by the valve seal according to a position of the valve stem relative to the valve seat with one or more items selected from a group incorporating a proof of closure sensor and a position detector.
U.S. Pat. No. 8,899,264, issued Dec. 2, 2014, is hereby incorporated by reference.
All publications and patents noted herein are incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
The present application is a continuation-in-part of U.S. patent application Ser. No. 14/107,842, filed Dec. 16, 2013, and entitled “Visual Indicator for a Safety Shut Off Valve”. U.S. patent application Ser. No. 14/107,842, filed Dec. 16, 2013, is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
156769 | Cameron | Nov 1874 | A |
424581 | Sickels | Apr 1890 | A |
1033204 | Skinner | Jul 1912 | A |
1147840 | Bowser | Jul 1915 | A |
1156977 | Cloos | Oct 1915 | A |
1165315 | Cameron | Dec 1915 | A |
1206532 | Gray | Nov 1916 | A |
1847385 | Dengler | Mar 1932 | A |
2196798 | Horstmann | Apr 1940 | A |
2403692 | Tibbetts | Jul 1946 | A |
2791238 | Bryant | May 1957 | A |
2975307 | Schroeder et al. | Mar 1961 | A |
3164364 | McColl | Jan 1965 | A |
3202170 | Holbrook | Aug 1965 | A |
3304406 | King | Feb 1967 | A |
3346008 | Scaramucci | Oct 1967 | A |
3381623 | Elliott | May 1968 | A |
3414010 | Sparrow | Dec 1968 | A |
3641373 | Elkuch | Feb 1972 | A |
3646969 | Stampfli | Mar 1972 | A |
3744754 | Demi | Jul 1973 | A |
3769531 | Elkuch | Oct 1973 | A |
3803424 | Smiley et al. | Apr 1974 | A |
3884266 | Kondo | May 1975 | A |
3947644 | Uchikawa | Mar 1976 | A |
3960364 | Hargrave | Jun 1976 | A |
3973576 | Dietiker | Aug 1976 | A |
3973976 | Boyd | Aug 1976 | A |
3993939 | Slavin et al. | Nov 1976 | A |
4114652 | Oberle | Sep 1978 | A |
4115036 | Paterson | Sep 1978 | A |
4140936 | Bullock | Feb 1979 | A |
4188013 | Battersby et al. | Feb 1980 | A |
4188972 | Van Der Zee | Feb 1980 | A |
4197737 | Pittman | Apr 1980 | A |
4242080 | Tabei | Dec 1980 | A |
4277832 | Wong | Jul 1981 | A |
4360955 | Block | Nov 1982 | A |
4402340 | Lockwood, Jr. | Sep 1983 | A |
4406131 | Weasel, Jr. | Sep 1983 | A |
4418886 | Holzer | Dec 1983 | A |
4442853 | Gort | Apr 1984 | A |
4450868 | Duval et al. | May 1984 | A |
4453169 | Martner | Jun 1984 | A |
4478076 | Bohrer | Oct 1984 | A |
4478077 | Bohrer et al. | Oct 1984 | A |
4481776 | Araki et al. | Nov 1984 | A |
4498850 | Perlov et al. | Feb 1985 | A |
4501144 | Higashi et al. | Feb 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4543974 | Dietiker et al. | Oct 1985 | A |
4576050 | Lambert | Mar 1986 | A |
4581624 | O'Connor | Apr 1986 | A |
4581707 | Millar | Apr 1986 | A |
4585209 | Aine et al. | Apr 1986 | A |
4619438 | Coffee | Oct 1986 | A |
4622699 | Spriggs | Nov 1986 | A |
4651564 | Johnson et al. | Mar 1987 | A |
4654546 | Kirjavainen | Mar 1987 | A |
4722360 | Odajima et al. | Feb 1988 | A |
4756508 | Giachino et al. | Jul 1988 | A |
4815699 | Mueller | Mar 1989 | A |
4821999 | Ohtaka | Apr 1989 | A |
4829826 | Valentin et al. | May 1989 | A |
4835717 | Michel et al. | May 1989 | A |
4836247 | Chuang | Jun 1989 | A |
4898200 | Odajima et al. | Feb 1990 | A |
4911616 | Laumann, Jr. | Mar 1990 | A |
4938742 | Smits | Jul 1990 | A |
4939405 | Okuyama et al. | Jul 1990 | A |
5022435 | Jaw-Shiunn | Jun 1991 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5070252 | Castenschiold et al. | Dec 1991 | A |
5078581 | Blum et al. | Jan 1992 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5082246 | Stanley et al. | Jan 1992 | A |
5085562 | Van Lintel | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5129794 | Beatty | Jul 1992 | A |
5146941 | Statler | Sep 1992 | A |
5148074 | Fujita et al. | Sep 1992 | A |
5171132 | Miyazaki et al. | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5180288 | Richter et al. | Jan 1993 | A |
5180623 | Ohnstein | Jan 1993 | A |
5186054 | Sekimura | Feb 1993 | A |
5190068 | Philbin | Mar 1993 | A |
5192197 | Culp | Mar 1993 | A |
5193993 | Dietiker | Mar 1993 | A |
5199456 | Love et al. | Apr 1993 | A |
5199462 | Baker | Apr 1993 | A |
5203688 | Dietiker | Apr 1993 | A |
5205323 | Baker | Apr 1993 | A |
5206557 | Bobbio | Apr 1993 | A |
5215112 | Davison | Jun 1993 | A |
5215115 | Dietiker | Jun 1993 | A |
5219278 | Van Lintel | Jun 1993 | A |
5223822 | Stommes | Jun 1993 | A |
5224843 | Van Lintel | Jul 1993 | A |
5244527 | Aoyagi | Sep 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5263514 | Reeves | Nov 1993 | A |
5294089 | LaMarca | Mar 1994 | A |
5322258 | Bosch et al. | Jun 1994 | A |
5323999 | Bonne | Jun 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5336062 | Richter | Aug 1994 | A |
5368571 | Horres, Jr. | Nov 1994 | A |
5441597 | Bonne et al. | Aug 1995 | A |
5449142 | Banick | Sep 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5460196 | Yonnet | Oct 1995 | A |
5477877 | Schulze et al. | Dec 1995 | A |
5499909 | Yamada et al. | Mar 1996 | A |
5513611 | Ricouard et al. | May 1996 | A |
5520533 | Vrolijk | May 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5529465 | Zengerle et al. | Jun 1996 | A |
5536963 | Polla | Jul 1996 | A |
5538220 | LaMarca | Jul 1996 | A |
5541465 | Higuchi et al. | Jul 1996 | A |
5552654 | Konno et al. | Sep 1996 | A |
5565832 | Haller et al. | Oct 1996 | A |
5571401 | Lewis et al. | Nov 1996 | A |
5580444 | Burrows | Dec 1996 | A |
5590235 | Rappenecker et al. | Dec 1996 | A |
5621164 | Woodbury et al. | Apr 1997 | A |
5642015 | Whitehead et al. | Jun 1997 | A |
5676342 | Otto et al. | Oct 1997 | A |
5683159 | Johnson | Nov 1997 | A |
5696662 | Bauhahn | Dec 1997 | A |
5725363 | Bustgens et al. | Mar 1998 | A |
5735503 | Hietkamp | Apr 1998 | A |
5741978 | Gudmundsson | Apr 1998 | A |
5748432 | Przywozny et al. | May 1998 | A |
5755259 | Schulze et al. | May 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5759015 | Van Lintel et al. | Jun 1998 | A |
5769043 | Nitkiewicz | Jun 1998 | A |
5774372 | Berwanger | Jun 1998 | A |
5792957 | Luder et al. | Aug 1998 | A |
5808205 | Romo | Sep 1998 | A |
5822170 | Cabuz et al. | Oct 1998 | A |
5827950 | Woodbury et al. | Oct 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5847523 | Rappenecker et al. | Dec 1998 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5887847 | Holborow | Mar 1999 | A |
5893389 | Cunningham | Apr 1999 | A |
5901939 | Cabuz et al. | May 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5918852 | Otto | Jul 1999 | A |
5933573 | Lukenich et al. | Aug 1999 | A |
5944257 | Dietiker et al. | Aug 1999 | A |
5954079 | Barth et al. | Sep 1999 | A |
5954089 | Seymour | Sep 1999 | A |
5957158 | Volz et al. | Sep 1999 | A |
5959448 | Baranski et al. | Sep 1999 | A |
5967124 | Cook et al. | Oct 1999 | A |
5971355 | Biegelsen et al. | Oct 1999 | A |
5986573 | Franklin et al. | Nov 1999 | A |
6003552 | Shank et al. | Dec 1999 | A |
6021652 | Walker | Feb 2000 | A |
6050281 | Adams et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6106245 | Cabuz | Aug 2000 | A |
6109889 | Zengerle et al. | Aug 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6122973 | Nomura et al. | Sep 2000 | A |
6151967 | McIntosh et al. | Nov 2000 | A |
6152168 | Ohmi et al. | Nov 2000 | A |
6155531 | Holborow et al. | Dec 2000 | A |
6167761 | Hanzawa et al. | Jan 2001 | B1 |
6176247 | Winchcomb et al. | Jan 2001 | B1 |
6179000 | Zdobinski et al. | Jan 2001 | B1 |
6179586 | Herb et al. | Jan 2001 | B1 |
6182941 | Scheurenbrand et al. | Feb 2001 | B1 |
6184607 | Cabuz et al. | Feb 2001 | B1 |
6189568 | Bergum et al. | Feb 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6240944 | Ohnstein et al. | Jun 2001 | B1 |
6242909 | Dorsey et al. | Jun 2001 | B1 |
6247919 | Welz, Jr. et al. | Jun 2001 | B1 |
6255609 | Samuelson et al. | Jul 2001 | B1 |
6263908 | Love et al. | Jul 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6297640 | Hayes | Oct 2001 | B1 |
6321781 | Kurth | Nov 2001 | B1 |
6360773 | Rhodes | Mar 2002 | B1 |
6373682 | Goodwin-Johansson | Apr 2002 | B1 |
6386234 | Sontag | May 2002 | B2 |
6390027 | Lyons et al. | May 2002 | B1 |
6397798 | Fiaccabrino | Jun 2002 | B1 |
6401753 | Neu | Jun 2002 | B2 |
6418793 | Pechoux et al. | Jul 2002 | B1 |
6445053 | Cho | Sep 2002 | B1 |
6450200 | Ollivier | Sep 2002 | B1 |
6460567 | Hansen, III et al. | Oct 2002 | B1 |
6463546 | Jeske et al. | Oct 2002 | B1 |
6496348 | McIntosh | Dec 2002 | B2 |
6496786 | Dieterle et al. | Dec 2002 | B1 |
6505838 | Cavaliere | Jan 2003 | B1 |
6508528 | Fujii et al. | Jan 2003 | B2 |
6520753 | Grosjean et al. | Feb 2003 | B1 |
6536287 | Beekhuizen et al. | Mar 2003 | B2 |
6550495 | Schulze | Apr 2003 | B1 |
6553979 | Albright | Apr 2003 | B2 |
6561791 | Vrolijk et al. | May 2003 | B1 |
6563233 | Hinks | May 2003 | B1 |
6564824 | Lowery et al. | May 2003 | B2 |
6571817 | Bohan, Jr. | Jun 2003 | B1 |
6572077 | Worner | Jun 2003 | B1 |
6579087 | Vrolijk | Jun 2003 | B1 |
6584852 | Suzuki et al. | Jul 2003 | B2 |
6590267 | Goodwin-Johansson et al. | Jul 2003 | B1 |
6606911 | Akiyama et al. | Aug 2003 | B2 |
6619388 | Dietz et al. | Sep 2003 | B2 |
6619612 | Freisinger et al. | Sep 2003 | B2 |
6623012 | Perry et al. | Sep 2003 | B1 |
6640642 | Onose et al. | Nov 2003 | B1 |
6644351 | LaMarca et al. | Nov 2003 | B2 |
6650211 | Pimouguet | Nov 2003 | B2 |
6651506 | Lee et al. | Nov 2003 | B2 |
6651636 | Albright | Nov 2003 | B1 |
6651954 | Porcher et al. | Nov 2003 | B1 |
6655409 | Steenburgh et al. | Dec 2003 | B1 |
6655652 | Meinhof | Dec 2003 | B2 |
6658928 | Pollack et al. | Dec 2003 | B1 |
6676580 | Tsai et al. | Jan 2004 | B2 |
6704186 | Ishikura | Mar 2004 | B2 |
6725167 | Grumstrup et al. | Apr 2004 | B2 |
6728600 | Contaldo et al. | Apr 2004 | B1 |
6729601 | Freisinger et al. | May 2004 | B2 |
6742541 | Pimouguet | Jun 2004 | B2 |
6768406 | Fiaccabrino | Jul 2004 | B1 |
6796326 | Bayer | Sep 2004 | B2 |
6813954 | Gokhfeld | Nov 2004 | B2 |
6814102 | Hess et al. | Nov 2004 | B2 |
6814339 | Berger et al. | Nov 2004 | B2 |
6819208 | Peghaire et al. | Nov 2004 | B1 |
6820650 | Solet et al. | Nov 2004 | B2 |
6825632 | Hahn et al. | Nov 2004 | B2 |
6826947 | Solet et al. | Dec 2004 | B2 |
6851298 | Miura et al. | Feb 2005 | B2 |
6874367 | Jakobsen | Apr 2005 | B2 |
6877380 | Lewis | Apr 2005 | B2 |
6877383 | Horie et al. | Apr 2005 | B2 |
6880548 | Schultz et al. | Apr 2005 | B2 |
6880567 | Klaver et al. | Apr 2005 | B2 |
6885184 | Gofman | Apr 2005 | B1 |
6888354 | Gofman | May 2005 | B1 |
6889705 | Newman et al. | May 2005 | B2 |
6892756 | Schulze | May 2005 | B2 |
6906484 | Berroth et al. | Jun 2005 | B1 |
6923069 | Stewart | Aug 2005 | B1 |
6956340 | Schondelmaier et al. | Oct 2005 | B2 |
6956343 | Berroth et al. | Oct 2005 | B2 |
6968851 | Ramirez et al. | Nov 2005 | B2 |
6981426 | Wang et al. | Jan 2006 | B2 |
6983759 | Maichel et al. | Jan 2006 | B2 |
6994308 | Wang et al. | Feb 2006 | B1 |
6997684 | Hahn et al. | Feb 2006 | B2 |
7000635 | Erbe et al. | Feb 2006 | B2 |
7004034 | Chen | Feb 2006 | B2 |
7039502 | Berwanger et al. | May 2006 | B2 |
7066203 | Baarda | Jun 2006 | B2 |
7082835 | Cook et al. | Aug 2006 | B2 |
7089959 | Cai | Aug 2006 | B2 |
7093611 | Murray et al. | Aug 2006 | B2 |
7107820 | Nunnally et al. | Sep 2006 | B2 |
7119504 | Dornhof | Oct 2006 | B2 |
7121525 | Gelez | Oct 2006 | B2 |
7174771 | Cooper | Feb 2007 | B2 |
7216547 | Stewart et al. | May 2007 | B1 |
7223094 | Goebel | May 2007 | B2 |
7225056 | Bolduan et al. | May 2007 | B2 |
7249610 | Moses | Jul 2007 | B2 |
7290502 | Kidd et al. | Nov 2007 | B2 |
7297640 | Xie et al. | Nov 2007 | B2 |
7302863 | Kielb et al. | Dec 2007 | B2 |
7319300 | Hahn | Jan 2008 | B2 |
7328719 | Madden | Feb 2008 | B2 |
7347221 | Berger et al. | Mar 2008 | B2 |
7360751 | Herrfurth | Apr 2008 | B2 |
7390172 | Winkler | Jun 2008 | B2 |
7402925 | Best et al. | Jul 2008 | B2 |
7405609 | Krotsch | Jul 2008 | B2 |
7422028 | Nugent et al. | Sep 2008 | B2 |
7451600 | Patel et al. | Nov 2008 | B2 |
7451644 | Karte | Nov 2008 | B2 |
7453696 | Tungl et al. | Nov 2008 | B2 |
7461828 | Kidprasert | Dec 2008 | B2 |
7493822 | Stewart et al. | Feb 2009 | B2 |
7503221 | Wade | Mar 2009 | B2 |
7520487 | Mattes | Apr 2009 | B2 |
7543604 | Benda | Jun 2009 | B2 |
7553151 | O'Mara et al. | Jun 2009 | B2 |
7556238 | Seberger | Jul 2009 | B2 |
7574896 | Cooper | Aug 2009 | B1 |
7586228 | Best | Sep 2009 | B2 |
7586276 | Dornhof | Sep 2009 | B2 |
7624755 | Benda et al. | Dec 2009 | B2 |
7644731 | Benda et al. | Jan 2010 | B2 |
7669461 | Kates | Mar 2010 | B2 |
7688011 | Berroth et al. | Mar 2010 | B2 |
7715168 | Gofman et al. | May 2010 | B2 |
7735509 | Galloway et al. | Jun 2010 | B2 |
7740024 | Brodeur et al. | Jun 2010 | B2 |
7759884 | Dufner et al. | Jul 2010 | B2 |
7811069 | Fleig | Oct 2010 | B2 |
7812488 | Cosco et al. | Oct 2010 | B2 |
7816813 | Yagudayev et al. | Oct 2010 | B2 |
7841541 | Ardelt et al. | Nov 2010 | B2 |
7869971 | Varga | Jan 2011 | B2 |
7880421 | Karwath | Feb 2011 | B2 |
7880427 | Foll et al. | Feb 2011 | B2 |
7890276 | Killion et al. | Feb 2011 | B2 |
7891972 | Blank et al. | Feb 2011 | B2 |
7898372 | Melchionne, Jr. | Mar 2011 | B2 |
7902776 | Karwath | Mar 2011 | B2 |
7905251 | Flanders | Mar 2011 | B2 |
7922481 | Geiger et al. | Apr 2011 | B2 |
7940189 | Brown | May 2011 | B2 |
8020585 | Shock et al. | Sep 2011 | B2 |
8066255 | Wang | Nov 2011 | B2 |
8109289 | Trnka et al. | Feb 2012 | B2 |
8201572 | Segal | Jun 2012 | B2 |
8205484 | Sasaki | Jun 2012 | B2 |
8225814 | Igarashi | Jul 2012 | B2 |
8240636 | Smith | Aug 2012 | B2 |
8271141 | Cummings et al. | Sep 2012 | B2 |
8307845 | Kouchi et al. | Nov 2012 | B2 |
8387441 | Falta et al. | Mar 2013 | B2 |
8424363 | Caron | Apr 2013 | B2 |
8639464 | Artiuch et al. | Jan 2014 | B2 |
8899264 | Young et al. | Dec 2014 | B2 |
20020157713 | Pimouguet | Oct 2002 | A1 |
20020175791 | LaMarca et al. | Nov 2002 | A1 |
20030011136 | Ramirez et al. | Jan 2003 | A1 |
20030117098 | Berroth et al. | Jun 2003 | A1 |
20030150499 | Solet et al. | Aug 2003 | A1 |
20030167851 | Parker | Sep 2003 | A1 |
20030201414 | Freisinger et al. | Oct 2003 | A1 |
20040035211 | Pinto et al. | Feb 2004 | A1 |
20040129909 | Wiese | Jul 2004 | A1 |
20040263103 | Weisser et al. | Dec 2004 | A1 |
20050058961 | Moses | Mar 2005 | A1 |
20050166979 | Berger et al. | Aug 2005 | A1 |
20050255418 | Goebel | Nov 2005 | A1 |
20050279956 | Berger et al. | Dec 2005 | A1 |
20060202572 | Tungl et al. | Sep 2006 | A1 |
20060226299 | Tulle et al. | Oct 2006 | A1 |
20060228237 | Winkler | Oct 2006 | A1 |
20060243334 | Brochhaus et al. | Nov 2006 | A1 |
20060260701 | Mattes | Nov 2006 | A1 |
20060272712 | Sontag | Dec 2006 | A1 |
20070024225 | Hahn et al. | Feb 2007 | A1 |
20070068511 | Bachinsky et al. | Mar 2007 | A1 |
20070089789 | Mudd et al. | Apr 2007 | A1 |
20070095144 | Oboodi et al. | May 2007 | A1 |
20070164243 | Volz | Jul 2007 | A1 |
20070189739 | Dufner et al. | Aug 2007 | A1 |
20070241705 | Karwath | Oct 2007 | A1 |
20070256478 | Guadagnoia et al. | Nov 2007 | A1 |
20070257628 | Gofman et al. | Nov 2007 | A1 |
20080035456 | Melchionn, Jr. | Feb 2008 | A1 |
20080099082 | Moenkhaus | May 2008 | A1 |
20080156077 | Flanders et al. | Jul 2008 | A1 |
20080157707 | Jeske et al. | Jul 2008 | A1 |
20080297084 | Berroth et al. | Dec 2008 | A1 |
20080315807 | Loffler et al. | Dec 2008 | A1 |
20080318098 | Matsunaga | Dec 2008 | A1 |
20080318172 | Geiger et al. | Dec 2008 | A1 |
20090068503 | Yamazaki et al. | Mar 2009 | A1 |
20090126798 | Mather | May 2009 | A1 |
20090146091 | Ams et al. | Jun 2009 | A1 |
20090148798 | Geiger et al. | Jun 2009 | A1 |
20090240445 | Umekage et al. | Sep 2009 | A1 |
20090280989 | Astra et al. | Nov 2009 | A1 |
20100018324 | Killian et al. | Jan 2010 | A1 |
20100043896 | Shock et al. | Feb 2010 | A1 |
20100064818 | Shubert | Mar 2010 | A1 |
20100074777 | Laufer et al. | Mar 2010 | A1 |
20100102259 | Forster | Apr 2010 | A1 |
20100180688 | Khemet et al. | Jul 2010 | A1 |
20100180882 | Oberhomburg et al. | Jul 2010 | A1 |
20100193045 | Xu | Aug 2010 | A1 |
20100254826 | Streng et al. | Oct 2010 | A1 |
20100269931 | Seebauer | Oct 2010 | A1 |
20100282988 | Kasprzyk et al. | Nov 2010 | A1 |
20100315027 | Wystup et al. | Dec 2010 | A1 |
20110025237 | Wystup et al. | Feb 2011 | A1 |
20110033808 | Geiger et al. | Feb 2011 | A1 |
20110039217 | Happe | Feb 2011 | A1 |
20110046903 | Franklin | Feb 2011 | A1 |
20110080072 | Strobel et al. | Apr 2011 | A1 |
20110137579 | Seebauer | Jun 2011 | A1 |
20110240157 | Jones et al. | Oct 2011 | A1 |
20110266473 | Santinanavat et al. | Nov 2011 | A1 |
20130152673 | Young et al. | Jun 2013 | A1 |
20130153036 | Young et al. | Jun 2013 | A1 |
20130153041 | Kucera | Jun 2013 | A1 |
20130153042 | Young et al. | Jun 2013 | A1 |
20130153062 | Young et al. | Jun 2013 | A1 |
20130153798 | Kucera et al. | Jun 2013 | A1 |
20130154841 | Kucera et al. | Jun 2013 | A1 |
20140080075 | Young et al. | Mar 2014 | A1 |
20140096850 | Filkovski et al. | Apr 2014 | A1 |
20150107675 | Kucera | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
3638604 | May 1988 | DE |
19617852 | Oct 1997 | DE |
19824521 | Dec 1999 | DE |
102005033611 | Oct 2006 | DE |
0275439 | Jul 1988 | EP |
0282758 | Sep 1988 | EP |
0356690 | May 1993 | EP |
0563787 | Oct 1993 | EP |
0617234 | Sep 1994 | EP |
0522479 | May 1996 | EP |
0744821 | Nov 1996 | EP |
0645562 | Dec 1996 | EP |
0678178 | Dec 1996 | EP |
0664422 | Apr 1997 | EP |
0665396 | Jan 1998 | EP |
0822376 | Feb 1998 | EP |
0817931 | Dec 1998 | EP |
0652501 | Mar 1999 | EP |
0907052 | Apr 1999 | EP |
0817934 | May 1999 | EP |
0896192 | Oct 1999 | EP |
0952357 | Oct 1999 | EP |
0757200 | Apr 2000 | EP |
1031792 | Aug 2000 | EP |
1069357 | Jan 2001 | EP |
0896191 | Feb 2001 | EP |
1084358 | Mar 2001 | EP |
0881435 | Sep 2001 | EP |
1186779 | Mar 2002 | EP |
0976957 | Apr 2002 | EP |
1157205 | Sep 2002 | EP |
1121511 | Apr 2003 | EP |
0992658 | May 2003 | EP |
1323966 | Jul 2003 | EP |
1078187 | Aug 2003 | EP |
1084357 | Aug 2003 | EP |
1382907 | Jan 2004 | EP |
1403885 | Mar 2004 | EP |
1413045 | Apr 2004 | EP |
1424708 | Jun 2004 | EP |
1176317 | Aug 2004 | EP |
1269054 | Aug 2004 | EP |
1484509 | Dec 2004 | EP |
1073192 | Jan 2005 | EP |
1191676 | Jan 2005 | EP |
1275039 | Jan 2005 | EP |
1499008 | Jan 2005 | EP |
1446607 | Mar 2005 | EP |
1510756 | Mar 2005 | EP |
1299665 | Apr 2005 | EP |
1324496 | Jun 2005 | EP |
1535388 | Jun 2005 | EP |
1584870 | Oct 2005 | EP |
1243857 | Dec 2005 | EP |
1282798 | Dec 2005 | EP |
0843287 | Feb 2006 | EP |
1346463 | Mar 2006 | EP |
1659462 | May 2006 | EP |
1703140 | Sep 2006 | EP |
1703146 | Sep 2006 | EP |
1183772 | Oct 2006 | EP |
1303718 | Oct 2006 | EP |
1314240 | Oct 2006 | EP |
1256763 | Nov 2006 | EP |
1727268 | Nov 2006 | EP |
1559936 | Dec 2006 | EP |
1748534 | Jan 2007 | EP |
1748545 | Jan 2007 | EP |
1327808 | Feb 2007 | EP |
1329659 | Feb 2007 | EP |
1291532 | Jun 2007 | EP |
1610046 | Jun 2007 | EP |
1592905 | Jul 2007 | EP |
1610045 | Jul 2007 | EP |
1727261 | Oct 2007 | EP |
1860328 | Nov 2007 | EP |
1882882 | Jan 2008 | EP |
1626321 | Feb 2008 | EP |
1848907 | Apr 2008 | EP |
1936778 | Jun 2008 | EP |
1536169 | Nov 2008 | EP |
1298679 | Dec 2008 | EP |
1714040 | Dec 2008 | EP |
2014979 | Jan 2009 | EP |
1669648 | Feb 2009 | EP |
2048439 | Apr 2009 | EP |
2107248 | Jul 2009 | EP |
2093545 | Aug 2009 | EP |
1715229 | Oct 2009 | EP |
2116857 | Nov 2009 | EP |
2119946 | Nov 2009 | EP |
1370787 | Mar 2010 | EP |
1413044 | Mar 2010 | EP |
2164164 | Mar 2010 | EP |
2177796 | Apr 2010 | EP |
2178201 | Apr 2010 | EP |
1970610 | May 2010 | EP |
2197101 | Jun 2010 | EP |
2068056 | Aug 2010 | EP |
2212984 | Aug 2010 | EP |
1712800 | Oct 2010 | EP |
2118493 | Oct 2010 | EP |
2242344 | Oct 2010 | EP |
1715582 | Nov 2010 | EP |
1675757 | Dec 2010 | EP |
2267883 | Dec 2010 | EP |
1703139 | Jan 2011 | EP |
2286976 | Feb 2011 | EP |
1596495 | Apr 2011 | EP |
2306622 | Apr 2011 | EP |
2010500 | Jun 2011 | EP |
2113696 | Jul 2011 | EP |
2099158 | Dec 1982 | GB |
2327750 | Feb 1999 | GB |
02-086258 | Mar 1990 | JP |
05-219760 | Aug 1993 | JP |
9061284 | Mar 1997 | JP |
9184600 | Jul 1997 | JP |
2004125809 | Apr 2004 | JP |
2004309159 | Nov 2004 | JP |
2008286478 | Nov 2008 | JP |
744877 | Jun 1980 | SU |
WO 8705375 | Sep 1987 | WO |
WO 9627095 | Sep 1996 | WO |
WO 9729538 | Aug 1997 | WO |
WO 9924758 | May 1999 | WO |
WO 9960292 | Nov 1999 | WO |
WO 9964769 | Dec 1999 | WO |
WO 9964770 | Dec 1999 | WO |
WO 0028215 | May 2000 | WO |
WO 0106179 | Jan 2001 | WO |
WO 0133078 | May 2001 | WO |
WO 0161226 | Aug 2001 | WO |
WO 0173297 | Oct 2001 | WO |
WO 0190617 | Nov 2001 | WO |
WO 0204852 | Jan 2002 | WO |
WO 02077502 | Oct 2002 | WO |
WO 02084156 | Oct 2002 | WO |
WO 02086365 | Oct 2002 | WO |
WO 02086918 | Oct 2002 | WO |
WO 02097840 | Dec 2002 | WO |
WO 2004059830 | Jul 2004 | WO |
WO 2004070245 | Aug 2004 | WO |
WO 2005042313 | Mar 2005 | WO |
WO 2005076455 | Aug 2005 | WO |
WO 2005076456 | Aug 2005 | WO |
WO 2005085652 | Sep 2005 | WO |
WO 2005094150 | Oct 2005 | WO |
WO 2006000366 | Jan 2006 | WO |
WO 2006000367 | Jan 2006 | WO |
WO 2006053816 | Mar 2006 | WO |
WO 2006039956 | Apr 2006 | WO |
WO 2006042635 | Apr 2006 | WO |
WO 2006077069 | Jul 2006 | WO |
WO 2006088367 | Aug 2006 | WO |
WO 2007012419 | Feb 2007 | WO |
WO 2007093312 | Aug 2007 | WO |
WO 2007140927 | Dec 2007 | WO |
WO 2008061575 | Mar 2008 | WO |
WO 2008039061 | Apr 2008 | WO |
WO 2008119404 | Oct 2008 | WO |
WO 2008141911 | Nov 2008 | WO |
WO 2008148401 | Dec 2008 | WO |
WO 2009000481 | Dec 2008 | WO |
WO 2009049694 | Apr 2009 | WO |
WO 2009065815 | May 2009 | WO |
WO 2009073510 | Jun 2009 | WO |
WO 2009089857 | Jul 2009 | WO |
WO 2009126020 | Oct 2009 | WO |
WO 2010018192 | Feb 2010 | WO |
WO 2010052137 | May 2010 | WO |
WO 2010056111 | May 2010 | WO |
WO 2010083877 | Jul 2010 | WO |
WO 2011010274 | Jan 2011 | WO |
WO 2011045776 | Apr 2011 | WO |
WO 2011047895 | Apr 2011 | WO |
WO 2011051002 | May 2011 | WO |
WO 2011069805 | Jun 2011 | WO |
WO 2011072888 | Jun 2011 | WO |
WO 2011092011 | Aug 2011 | WO |
WO 2011095928 | Aug 2011 | WO |
WO 20130177542 | Nov 2013 | WO |
Entry |
---|
CSA, “B149.3S1-07 Supplement No. 1 to CAN/CAS-B149.3-05 Code for the Field Approval of Fuel-Related Components on Appliances and Equipment,” 40 pages, Jan. 2007. |
European Search Report for EP Application Serial No. 14194824.0 dated May 21, 2015. |
“Flexible, Compact and with a High Performance—the New Valvario, G. Kromschroder AG Launches it's New, Improved Series of Gas Fittings,” Press Release, 2 pages, 2003. |
“Large-Scale Linearization Circuit for Electrostatic Motors” IBM Technical Disclosure Bulletin, U.S. IBM Corporation, Bulletin, U.S. IBM Corporation, vol. 37, No. 10, pp. 563-564, Oct. 1, 1994. |
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200),” 8 pages, prior to Dec. 15, 2011. |
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200) AH(E) V710(B),” 6 pages, prior to Dec. 15, 2011. |
ASCO Valve, Inc., “8290 Series Angle Body Piston Valves, Introducing the All New 8290 Assembly Configurator,” 12 pages, prior to Dec. 15, 2011. |
ASCO, “2-Way Normally Closed V710(B) Valve Body Pipe Sizes ¾″ to 3″ NPT, Series V710(B),” 4 pages, prior to Dec. 15, 2011. |
ASCO, “On/Off General Purpose & Watertight Hydramotor Actuator for Use with V710 Gas Valve Body, Series AH2E,” 2 pages, prior to Dec. 15, 2011. |
Athavale et al., “Coupled Electrostatics-Structures-Fluidic Simulations of a Bead Mesopump,” Proceedings of the International Mechanical Engineers Congress & Exhibition, pp. 1-7, Oct. 1999. |
Bertz et al., “Silicon Grooves With Sidewall Angles Down to 1° made by Dry Etching”, pp. 331-339, prior to Dec. 29, 2004. |
Bonne et al. “Actuation-Based Fuel Gas Microsensors”, IGT Symposium on “Natural Gas Quality, Energy Measurement, Metering and Utilization Practices”, 17 pages, Mar. 2001. |
Branebjerg, “A New Electrostatic Actuator Providing Improved Stroke Length and Force.” IEEE, pp. 6-11, Feb. 4-7, 1992. |
Bustgens et al., “Micropump Manufactured by Thermoplastic Molding” IEEE, pp. 18-21, 1994. |
Cabuz et al., “Factors Enhancing the Reliability of Touch-Mode Electrostatic Actuators,” Sensors and Actuators 79, pp. 245-250, 2000. |
Cabuz et al., “Mesoscopic Sampler Based on 3D Array of Electrostatically Activated Diaphragms,” Proceedings of the 10th Int. Conf. On Solid-State Sensors and Actuators, Transducers 1999. |
Cabuz et al., “The Dual Diaphragm Pump,” 4 pages prior to Dec. 29, 2004. |
Cabuz, “Dielectric Related Effects in Micromachined Electrostatic Actuators,” IEEE, 1999 Conference on Electrical Insulation and Dielectric Phenomena, pp. 327-332, 1999. |
Cabuz, “Electrical Phenomena at the Interface of Rolling-Contact, Electrostatic Actuators,” 16 pages, prior to Dec. 29, 2004. |
Cabuz, et al., “High Reliability Touch-Mode Electrostatic Actuators”, Technical Digest of the Solid State Sensor and Actuator Workshop, Hilton Head, S.C., , pp. 296-299, Jun. 8-11, 1998. |
Cabuz. “Tradeoffs in MEMS Materials,” SPIE, vol. 2881, pp. 160-170, prior to Dec. 29, 2004. |
Carlisle, “10 Tips on Valve-Proving Systems,” Karl Dungs Inc., 5 pages, Aug. 1, 2002, printed May 23, 2012. |
European Search Report for EP Application No. 12196394.6 dated May 23, 2013. |
European Search Report for EP Application No. 12196396.1 dated Jun. 11, 2013. |
European Search Report for EP Application No. 12196398.7 dated Jun. 11, 2013. |
Examination Report for EP Application No. 12196398.7, dated Apr. 11, 2014. |
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Servo Pressure Regulator, MBC- . . . -SE DN 65 DN 125,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Infinitely Variable Operating Mode, MBC- . . . -VEF DN65—DN100,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Control and Safety Combination Valve Servo Pressure Controller, DMV-SE 507/11—525/11,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Regulator and Safety Combination Infinitely Variable Floating Operation, DMV-VEF 507-525,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Gas/Air Ratio Control MB-VEF, DMV-VEF,” 15 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Shut-Off Valves Two-Stage Function, MB-ZRD(LE) 415-420 B01,” pp. 1-6, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Valve Infinitely Variable Air/Gas Ratio Control Mode, MBC-300-VEF, MBC-700-VEF, MBC-1200-VEF,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Servo Pressure Regulator and Safety Shut-Off Valves, MBC-300-SE, MBC-700-SE, MBC-1200-SE, MBC-300-N, MBC-700-N,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRN Zero Pressure Regulator,” 4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRS,” 6 pages prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRU Circulation Regulator,” 4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Switch for Gas, Air, Flue Gases and Combustion Products, GW 500 A4, GW 500 A4/2” 6 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Program,”4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Valve Testing System VPS 504 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Valve Testing System VPS 508 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011. |
Freund et al., “A Chemically Diverse Conducting Polymer-Based ‘Electronic Nose’”, Proceedings of the National Academy of Sciences of the United States of America, vol. 92, No. 7, pp. 2652-2656, Mar. 28, 1995. |
Haig, “On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics”, IEEE pp. 172-176, 1990. |
Honeywell Inc., “Hall Effect Sensing and Application,” 126 pages, prior to Dec. 15, 2011. |
Honeywell, “RM7800L1087; RM7840G1022,L1075,L1091; EC7840L1014 Relay Modules with Valve Proving,” Installation Instructions, 32 pages, 2009. |
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 8 pages, prior to Dec. 15, 2011. |
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 24 pages, prior to Dec. 15, 2011. |
Kromschroder, “Solenoid Valves for Gas VAS,” 28, pages, prior to Dec. 15, 2011. |
Kromschroder, “Solenoid Valves for Gas VAS,” 8 pages, prior to Dec. 15, 2011. |
Kromschroder, “Tightness Control TC,” 8 pages, 2011. |
Minami K et al., “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” IEEE Journal of Microelectromechanical Systems, vol. 2, No. 3, pp. 121-127, Sep. 1993. |
Ohnstein et al., “Micromachined Silicon Microvalve,” IEEE, pp. 95-98, 1990. |
Porex Technologies, brochure, 4 pages, prior to Dec. 29, 2004. |
Shikida et al., “Characteristics of an Electrostatically-Driven Gas Valve Under High Pressure Conditions,” IEEE , pp. 235-240, 1994. |
Shikida et al., “Electrostatically Driven Gas Valve With High Conductance,” IEEE Journal of Microelectromechanical Systems, vol. 3, No. 2, pp. 76-80, Jun. 1994. |
Shikida et al., “Fabrication of An S-Shaped Microactuator,” IEEE Journal of Microelectromechanical Systems, vol. 6, No. 1, pp. 18-24, Mar. 1997. |
Siemens Building Technologies, “Double Gas Valves VGD20 . . . , VGD40 . . . ,” 12 pages, Aug. 5, 2002. |
Siemens Building Technologies, Inc., “Siemens Technical Instructions Document No. 155-512P25VG . . . ,” 12 pages, Aug. 11, 2005. |
Siemens Building Technologies, Inc. “SKP . . . 15U . . . Gas Valve Actuator with Safety Shutoff Function,” Document No. 155-751 SKP15 . . . U. . . , 5 pages, Jul. 1, 2005. |
Siemens Building Technologies, Inc., “SKP25 . . . U . . . Air/Gas Ratio Controlling Gas Valve Actuator with Safety Shutoff Function,” Technical Instructions Document No. 155-754, SKP25 . . . U, 9 pages, Jul. 1, 2005. |
Siemens Building Technologies Inc., “SKP25 . . . U . . . Pressure Regulating Gas Valve Actuator with Safety Shut-Off Function,” Technical Instructions Document No. 155-752, SKP25 . . . U, 7 pages, Jul. 1, 2005. |
Srinivasan et al., “Self-Assembled Fluorocarbon Films for Enhanced Stiction Reduction”, IEEE Transducers, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, pp. 1399-1402, Jun. 16-19, 1997. |
Wagner et al., “Bistable Microvalve with Pneumatically Coupled Membranes,” IEEE, pp. 384-388, 1996. |
www.combustion911.com/products/valve-proving-controls-tc-410.html, “Kromschroeder Valve Proving Controls TC410,” 7 pages, prior to Dec. 15, 2011, printed May 23, 2012. |
Yang et al., “Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects”, J. Am. Chem. Soc., pp. 11864-11873 1998. |
Yang et al., “Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials”, J. Am. Chem. Soc., pp. 5321-5322, 1998. |
Number | Date | Country | |
---|---|---|---|
20160025228 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14107842 | Dec 2013 | US |
Child | 14808985 | US |