1. Field of the Invention
The present invention relates to the field of removal of brass valves from water mains.
2. Prior Art
Directly tapped valves were and still are a method of drilling into a pressurized pipe to construct a branch line. The apparatus used for this installation was known as a direct tap tapping machine or tapping machine. The machine was connected directly onto the pipe to be tapped and then drilled and threaded. Without removing the machine, the boring bar of the machine was drawn back and the drill/thread die was removed and a corporation valve was connected in its place. The corporation valve was then directly screwed into the threaded opening in the pipe. Over the years, this method of tapping has been reduced and has been replaced by the use of a saddle to encompass the exterior of the pipe and create a seal against the pipe. The corporation valve is then screwed into the saddle. The newer drilling machines now connect to the corporation valves and drill through the valve and eliminate the need for drilling and die threading the pipe first.
Nowadays, various city municipalities and water management agencies are requiring the removal of older directly tapped corporation valves from the water mainline. To accomplish this, the water main must be shut down and partially drained and not under pressure to manually remove the corporation valve from the piping and a “full circle” repair clamp placed over the opening in the pipe to assure a leak proof seal. The water main must then be pressured back up and bacterially re-tested to assure the quality of the water.
Other methods of immediate solutions have been to encapsulate the corporation valve by leaving it screwed into the pipe and with the use of a modified, full circle repair clamp that has been modified with an exterior tubular capsule that fits over the valve. This method isolates the valve inside a protruding sealed apparatus.
The present invention provides for the removal of directly tapped corporation valves/valves from a pipe or water main without shutting down, pressuring down and draining the pipe or water main. In accordance with the invention, a pre-manufactured full circle “Tee” saddle with inner female threading on the inside portion of the “Tee” is placed over the corporation valve/valve to be removed (
A male threaded Quick Lock adapter 30 is then threaded into the female threaded portion 26 of the tee saddle member, as shown on
The inlet side of the tool bearing the female Quick Lock adapter with manual cam locking devices to lock the tool is placed over the male Quick Lock adapter and locked into position (
The end 40 of the tool is then removed and the shaft portion 38 of the tool is slid through the end 40 and the EZ Out (easy out) tip 36 is screwed onto the shaft portion 38. Then the end 40 is replaced to extend the easy out tip 36 through the body of the tool to insert the easy out tip portion of the shaft 38 into the outlet side of the corporation valve/valve 26 to be removed (
The Tee handle 42 connected to the rear of the shaft is then manually turned in a counter clockwise direction to jam the easy out tip 36 into the outlet of the corporation valve/valve being removed and unscrew the corporation valve/valve from the pipe. This is shown on
When the corporation valve/valve 28 has become freed from the pipe 24, the shaft 38 is retracted back towards the operator, bringing the corporation valve/valve 28 beyond the sealing mechanism of the inline valve portion 44 of the tool. The inline valve portion 44 of the tool is turned to the closed position to assure a complete isolation from pressurized fluids now escaping from the corporation valve/valve removal (
The removable back portion 46 of the tool receiving chamber which contains and houses the bushing, seals and the back plate 40 is removed from the tool (
A tapered plug 48 or expandable plugging source is then placed on the tip of the shaft 38 (
When the plugging apparatus is securely in place, the pressure inside the tool can be released and the tool can be removed (
When the tool has been successfully removed, a male threaded plug 50 of proportional size to the female thread of the “Tee” opening of the saddle can be threaded in and tightened (
In the embodiment disclosed, the easy out tip 36 screws onto the shaft 38. Since the shaft is turned in one direction to unscrew the valve 28 and turned the other direction to screw in the plug 48, there is a possibility that the easy out tip 36 will inadvertently come off. This does not in practice happen, though the easy out tip 36 may be locked to the shaft, such as by pinning, for example.
Thus the tool may be characterized as having an aft or receiving chamber 100 (
Typically the valve 28 to be removed and the region around the valve to be removed are cleaned well to assure a good seal by the saddle should the plug 48 initially or ultimately leak. In the case of a pressurized water line, one might also disinfect the region with alcohol or some other disinfectant. Further if desired or required, the volume between the valve 44 and the saddle could be provided with a controlled leak or flow rate out of the chamber to assure that there is a flow out of the pipe 24 rather than some possible circulation back into the pipe 24 to further assure no contamination of the water in the pipe.
As described herein, the phrase easy out (EZ out) is used to generally refer to tool bits used for removal of broken bolts. Such tool bits have a tapered threaded region having threads of an opposite sense (left hand versus right hand) from those of the broken bolt or other threaded member sought to be removed. The threaded region is normally a coarse, somewhat dull threaded region intended to fit into a hole in the member to be removed and when screwed into the hole in the member to be removed, will wedge or jam in the hole, and because threading the easy out into the hole in the member to be removed, will hopefully unscrew the member to be removed because of the opposite sense of the threads on the tool bit. Obviously the size, proportions, sharpness and other parameters of the tool bit may be varied depending on the specific application of the tool bit. Also in some applications such as in the present invention, such parameters may be selected so the tool bit hangs onto (jams or cuts into) the valve being removed until forcibly removed so that the valve does not inadvertently become dislodged and fall off in the forward chamber or ball valve of the tool.
Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. While certain preferred embodiments of the present invention have been disclosed and described herein for purposes of illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the full breadth of the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/690,071 filed Jun. 19, 2012.
Number | Name | Date | Kind |
---|---|---|---|
5472011 | St. Marie | Dec 1995 | A |
5893686 | Weiler | Apr 1999 | A |
5934304 | Peterson et al. | Aug 1999 | A |
6253436 | Barjesteh et al. | Jul 2001 | B1 |
7357605 | Weiler | Apr 2008 | B2 |
20040000218 | Bergamo | Jan 2004 | A1 |
20060188349 | Weiler | Aug 2006 | A1 |
20070297867 | Weiler | Dec 2007 | A1 |
20090183603 | Kozak et al. | Jul 2009 | A1 |
20090218532 | Farrelly | Sep 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
61690071 | Jun 2012 | US |