1. Field of the Disclosure
The present disclosure relates generally to valves and, more particularly, to reseating valves.
2. Description of Related Art
Through repeated use, valves may leak thereby requiring grinding or lapping of valve seats and discs to form a tight seal between the valve seats and the discs. This process of reseating valves is typically a long, repetitive, and labor-intensive process. Consequently, there exists a need in the art to improve this process.
Some embodiments comprise an apparatus for reseating valves, where an eccentric, non-rotational motion is applied in a grinding or lapping process. Other embodiments comprise a micrometer or fine adjustment mechanism that permits repeatable setting of depth and application of pressure against a plate when the apparatus is removed and reinstalled. In yet other embodiments, levered arms provide an expedient mechanism for positioning a reseating apparatus. Other systems, devices, methods, features, and advantages will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Over its usable lifetime, a valve may require grinding or lapping in order to form a tight seal between a valve seat and its corresponding disc. Conventionally, reseating of valves is a long, repetitive, and labor-intensive manual process. This manual process sometimes results in uneven lapping and, depending on the number of valves that need reseating, can be a tedious task for the individual that is reseating the valves.
In an effort to address the drawbacks associated with manually reseating valves, the disclosed embodiments provide systems and methods for reseating valves. In some embodiments, an apparatus is provided for reseating valves, where an eccentric, non-rotational motion is applied in a grinding or lapping process. Although the embodiments are described as having non-rotational motion because a grinding or lapping surface (or plate) does not rotate with a spindle, those having skill in the art will appreciate that the plate does turn as a result of frictional forces at the interface. In other words, there is an angular advancement of the plate that, compared to the rotational speed of the spindle, appears non-rotational. Consequently, throughout this disclosure, it should be understood that non-rotational motion is defined to include this angular advancement of the plate.
This eccentric, non-rotational motion eliminates crowning that typically results from conventional grinding or lapping processes. In other words, the disclosed systems and processes produce a flatter or smoother sealing surface, which conventional rotational systems cannot achieve.
Also disclosed are systems and methods for installing a valve reseating apparatus, which comprises levered arms that automatically center the apparatus. For some embodiments, the levered arms also permit the reseating apparatus to be installed substantially concentric and perpendicular to the plane of the valve seat. This ability to center and maintain perpendicularity provides for more uniform application of pressure across the entire surface of the valve seat.
Additionally, some embodiments comprise a micrometer or fine adjustment mechanism that permits repeatable setting of depth and repeatable application of pressure against a plate when the apparatus is removed and reinstalled. By providing such a mechanism, a reseating apparatus can be removed from the valve and then re-installed with precision.
Having provided a general overview of several embodiments of systems and processes for reseating valves, reference is now made in detail to the description of the embodiments as illustrated in the drawings. While several embodiments are described in connection with these drawings, there is no intent to limit the disclosure to the embodiment or embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents.
The embodiment of
The embodiment of
The spindle 6 on the reseating apparatus couples to a drive motor 9 that has a speed adjuster 10. The drive motor 9 provides torque to the spindle 6, which, in turn, transfers the rotational force to the plate 3 located off center, thereby causing the eccentric, non-rotational motion of the plate 3, as described above. The speed adjuster 10 permits the user or operator to adjust the rotational speed of the drive motor 9, thereby controlling the speed of the plate's eccentric motion. For some embodiments, the speed adjuster 10 permits adjustment from near-zero (0) revolutions per minute (RPM) to approximately four hundred (400) RPM.
Having described various aspects of a valve reseating apparatus, a non-limiting example of its operation is provided with reference to a Safety Relief Valve (SRV) having a Stellite alloy seat to more clearly illustrate the various embodiments of the invention. For this particular example, the SRV is positioned vertically so that the plane of the valve seat is substantially parallel to the ground. An 800-grit abrasive compound 5 is applied to the plate 3, which is secured to the swivel 4. The reseating apparatus is installed onto the SRV such that the plate 3 rests on the valve seat, and the spindle 6 is locked into place by the lock knob 8. The jaws of the levered arms 1 are secured to the inner circumference of the valve by turning the adjustment wheel 7. At this point: (a) the spindle 6 of the apparatus is axially centered to the valve seat; (b) the apparatus is substantially perpendicular to the valve seat; and (c) the plate 3 is resting on the valve seat, ready for grinding or lapping. The drive motor 9 is then engaged to the spindle 6 to apply torque to the spindle 6. Thereafter, the speed is adjusted by the speed adjuster 10 to approximately seventy (70) RPM, and the plate 3 begins its eccentric, non-rotational motion. Pressure is applied to the plate 3 through the wave spring 12 by turning the micrometer dial 11. Depending on the degree to which the valve seat is to be lapped or ground, the abrasive can be changed from coarse to fine, and the micrometer dial 11 can be incrementally turned to change the pressure on the plate 3 in a controlled manner. As one will appreciate, the choice of abrasive compound 5 can depend on the amount of material to be removed, the type of material being removed, and the desired surface finish. Since these factors are known to those having skill in the art, further discussion of abrasive compound choice is omitted here.
Given this non-limiting example, one can readily see how the levered arms 1 provide a streamlined mechanism for centering and perpendicularly mounting the reseating apparatus while not obstructing the view into the valve during operation. Additionally, one can see from this non-limiting example that the eccentric, non-rotational motion of the plate 3 avoids crowning patterns that are problematic and typical of conventional reseating approaches. Furthermore, through the non-limiting example, one can appreciate that the grinding or lapping operation can be controlled with greater precision through the use of the micrometer dial 11, which controls the amount of pressure that is applied to the plate 3 through the wave spring 12. Separately, each of these features provides a marked improvement over the prior art. In various combinations, these features provide advantages that were previously difficult, if not impossible, through conventional lapping or grinding processes.
With these advantages in mind, attention is turned to
This eccentric, non-rotational motion eliminates a crowning pattern that typically results from conventional grinding or lapping processes. In other words, the disclosed systems and processes produce a flatter or smoother sealing surface, which conventional rotational systems cannot achieve.
One non-limiting example of an abrasion pattern that results from such an eccentric, non-rotational motion is shown with reference to
Specifically,
Any process descriptions or blocks in flow charts should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the preferred embodiment of the present disclosure in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure.
Although exemplary embodiments have been shown and described, it will be clear to those of ordinary skill in the art that a number of changes, modifications, or alterations to the disclosure as described may be made. All such changes, modifications, and alterations should therefore be seen as within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/808,765, filed on 2013 Apr. 5, by LeBoeuf, having the title “Valve Reseating,” which is incorporated by reference in its entirety as if expressly set forth herein.
Number | Date | Country | |
---|---|---|---|
61808765 | Apr 2013 | US |