This application claims priority to International Application PCT/EP/2004/004437, which was filed Apr. 27, 2004.
1. Field of the Invention
The invention relates to a valve rotating mechanism for exhaust valves, especially of marine diesel engines or the like, which mechanism is braced in a valve housing for the valve stem between an upper and a lower drive element, wherein it is linked to the lower drive element via a freewheel device, which allows rotation of the valve stem during closing movement thereof, and wherein it is braced relative to the upper drive element via a rotary cylinder, which brings about rotation of the valve stem through engagement with a fixed support cylinder.
2. Description of the Related Art
Such a valve rotating mechanism is described in German Patent 3113944. The known mechanism comprises two cylindrical portions, which are disposed concentrically relative to one another and between which two balls are guided in rotational movement in such a way that they respectively engage in a ball socket of the one cylindrical portion and in a ball track of the other cylindrical portion, the said track running at an inclination to the cylinder axis. A more uniform distribution of force between the two cylindrical portions is achieved by providing a plurality of ball sockets and ball tracks disposed at intervals around the circumference of the two cylindrical portions. Preferably the ball tracks have the form of a spiral with constant pitch.
In this known valve rotating device, a cylindrical portion is rotated by the fact that the ball guided in the ball socket travels in the ball track of the other cylindrical portion, one of the cylindrical portions being locked by the freewheel device. During closing of the valve stem, the cylindrical portion locked during opening is driven in the direction of rotation.
By means of the known mechanism, a relatively high speed of rotation of the valve stem can be attained during the closing operation; however, some wear of the ball tracks has to be expected, meaning that regular replacement of the corresponding cylindrical portions is inevitable.
In contrast, the object of the present invention is to provide a valve rotating mechanism of the type mentioned hereinabove that is particularly durable and can be subjected to high loads, while nevertheless responding with high acceleration.
This object is achieved according to the invention by the fact that the rotary cylinder and support cylinder are engaged with one another via a helical gearing, wherein the rotary cylinder is linked to the valve stem via the freewheel device, and the support cylinder is fastened to the valve housing.
The inventive valve rotating mechanism is suitable in principle for all slowly running marine engines, but in particular for two-cycle engines, in which the upper drive element is formed by a hydraulic cylinder for controlling the opening stroke of the valve and the lower drive element is formed by the piston of a pneumatic cylinder for controlling the closing movement of the valve.
In modern marine engines, the spring plates of earlier design, between which the valve rotating mechanism was braced, have been replaced by a hydraulic cylinder, which forms the upper end of the valve housing, and whose oil piston moves the valve stem in the direction in which it opens, so that it lifts from the valve seat, as well as by a pneumatic cylinder acting in the opposite direction, to move the valve stem by means of its pneumatic piston back in closing direction after compression. An air pressure of approximately 7 bar is sufficient for this purpose, whereas the oil pressure acting on the oil piston is as high as 170 bar.
In a further configuration of the invention, the support cylinder is provided with an internal helical gearing, which in axial direction corresponds at least to the length of the opening stroke of the valve plus the minimum engagement length of the two cylinders.
Correspondingly, the rotary cylinder is provided with an external gearing, which in axial direction corresponds at least to the minimum engagement length of the two cylinders.
Examples of suitable toothing data for the helical gearing are a tooth height of approximately 3 to 5 mm and a pitch of smaller than 45°.
By the fact that the support cylinder preferably has a gearing extending continuously over its entire length, whereas the rotary cylinder has an external gearing that extends downward only over approximately one third of its length from its upper end in installed position, lower manufacturing costs are achieved for the rotary cylinder; moreover, the remaining annular gap between the two cylinders can be exploited more effectively for oil lubrication.
Expediently, the support cylinder is fastened by shrink-fitting of its outer circumference in a corresponding seat of the hydraulic cylinder. In the region of its fastening, an annular lubricating groove can be advantageously provided on the outside of the support cylinder, thus supplying the gearing with lubricating oil via radial bores.
In contrast, the rotary cylinder is mounted with its inner circumference via an axial bearing inside a cylindrical hollow of the piston of the pneumatic cylinder, the shank of the valve stem being received by friction fit in a central through bore of a hub of the piston.
The rotary cylinder is therefore axially immovable with the piston, but is nevertheless mounted to rotate relative thereto in a direction of rotation permitted by the freewheel device.
For this purpose it is expedient for the shank of the valve stem to be wedged frictionally in the through bore by means of a clamping part and for the clamping part to be formed as a cone bushing, which is axially secured by a compression ring bolted to the hub of the piston. Suitable as the clamping part are conical ring segments, preferably of steel according to SAE 1010, that engage via an inner bead in a corresponding annular groove of the shank of the valve stem in the manner described in U.S. Pat. No. 3,938,484. The pressure exerted on the clamping part by means of the compression ring is such that the shank of the valve stem is released at a certain torque, in the manner of a slipping clutch; in other words, it can slip before other components of the valve rotating mechanism would be destroyed, such as those at the same end as the freewheel device.
Finally, it is provided according to the invention that there is fastened onto the hub of the piston of the pneumatic cylinder a ratchet wheel of the freewheel device, in whose circumferential toothing there engages a plurality of ratchet elements mounted at intervals around the circumference in depressions of the rotary cylinder, where they are respectively braced by spring loading. Expediently, an annular projection of the ratchet ring simultaneously functions as the axial bracing of the axial bearing, which preferably comprises a double-track ball bearing. By the fact that the ratchet wheel is disposed between compression ring and hub, the possibility exists of fastening the compression ring by passing bolts through bores of the ratchet wheel into the hub of the piston.
It is self-evident that the hydraulic cylinder and pneumatic cylinder are separated from one another by the piston of the pneumatic cylinder. Below its piston, the pneumatic cylinder contains the compressed-air cushion responsible for restoring the valve to closing direction; above the piston there is provided a space for collection of the hydraulic oil being discharged, which oil is simultaneously effective as lubricating oil. For this purpose, it is intended according to the invention that the rotary cylinder will be provided above the freewheel device with a plurality of radial bores disposed at intervals around its circumference and that annular gaps for the hydraulic oil being discharged through these will be provided between the two cylinders as well as between the support cylinder and the hollow of the piston. From there the hydraulic oil being discharged then travels via an annular gap bounded by the outer circumference of the pneumatic cylinder through further radial bores in the valve housing to the outside and back into the oilpan or an oil reservoir.
The inventive valve rotating mechanism is disposed between an upper and a lower drive element, wherein both drive elements, namely the hydraulic cylinder and the pneumatic cylinder act via their respective pistons on the shank of the valve stem. The axial movement thereof produces the rotation of the rotary cylinder, corresponding to the helical gearings of both cylinders. The opening stroke of the valve stem produces a rotary movement of the rotary cylinder in a direction of rotation permitted by the freewheel device in response to linear movement of the stem. The closing movement of the valve stem while the hydraulic cylinder is unpressurized causes rotation of the rotary cylinder in the opposite direction of rotation under the action of the compressed-air cushion, meaning that the ratchet elements of the freewheel device drive the ratchet wheel, via which the rotary movement is transmitted to the valve stem. This rotary movement of the valve stem is exploited to grind in the valve disk onto the valve seat on the housing side at the instant that the seat faces on both sides meet one another. The grinding movement ends with increasing pressure when the seat is reached, a short over-travel phase corresponding to the inertial torque of the valve stem being possible because the freewheel device permits slipping of the ratchet wheel.
The inventive valve rotating mechanism is suitable not only for installation in new engines; it is also suitable for retrofitting into the respective valve housing, by machining the hydraulic cylinder, especially by equipping it with the support cylinder, and by providing the pneumatic cylinder with a new piston, on which the other parts of the valve rotating device are mounted.
With the inventive valve rotating mechanism, it is now possible to prolong the useful life of the valve stem between two overhauls considerably, for example from 6,000 hours heretofore to approximately 18,000 hours for two-cycle engines. This is achieved by the high rotational energy attainable by means of the inventive valve rotating mechanism during grinding in of the valve disk onto the valve seat on the housing side, a well defined rotational energy acting at the instant that the seat position is reached. Thereby there is achieved desired polishing effect, by which deposits in the region of the valve seat faces are eliminated, in conjunction with the advantage that thereby heat transfer between the metallically bright valve seat faces is improved, advantageously resulting in a lower temperature in the region of the valve cone seat.
A practical example of the invention will be described hereinafter on the basis of the drawing, wherein
In a turned recess 12 of hydraulic cylinder 6 there is fastened a support cylinder 13 by shrink-fitting onto its outer circumferential face. On its inner circumferential face, support cylinder 13 has a helical gearing 14, with which there is engaged a rotary cylinder 15, which is provided on its outer circumferential face with an external gearing 16 corresponding to internal gearing 14 of support cylinder 13. Rotary cylinder 15, which is illustrated on a larger scale in
In the upper part of the cylindrical space of hydraulic cylinder 6 there is shown at the top dead center a hydraulic piston 21, to which hydraulic oil is admitted via an oil-hydraulic line 22. As is evident in
Hydraulic piston 21 embraces upper end 24 of valve stem 3 in the form of a bell, in order to move this downward in the opening direction of the valve stem at oil pressures of up to 170 bar. Acting in the opposite direction thereto is pneumatic piston 18, which is also joined firmly and sealingly to the valve stem, as will still be described hereinafter in connection with
Bracing of rotary cylinder 15 inside hollow 17 of pneumatic piston 18 is assumed by an axial bearing, which is composed of an axial ball bearing 35. Further axial bracing thereof is provided by a lower support ring 36, which fits into a corresponding groove on the inside of rotary cylinder 15, as well as by a collar 37 of a ratchet wheel 38 of a freewheel device. Ratchet wheel 38 is fastened by means of bolts 40 onto a hub 39 of pneumatic cylinder 18.
The enlarged sectional diagram according to
Between this conical expansion 47 of the receiving bore for shank 3 of valve stem 1 and the outer circumference of shank 3 there is wedged in a clamping part that is clearly visible in
When valve stem 1 is moved by feed of hydraulic oil via oil-hydraulic line 22 from the closed position shown in
Conversely, when the compressed-air cushion in cylindrical space 19 moves pneumatic piston 18 upward after the hydraulic cylinder has become depressurized, thus lifting valve stem 1 in the direction of the closed position, the helical gearing between the two cylinders brings about rotation of rotary cylinder 15 in the direction opposite the direction of rotation according to arrow P3. This has the result that the freewheel device locks, or in other words ratchet elements 41 being moved together with rotary cylinder 15 drive ratchet wheel 38, making it rotate in the direction of arrow P4 (
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/004437 | 4/27/2004 | WO | 00 | 11/29/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/116408 | 12/8/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3938484 | Mueller | Feb 1976 | A |
Number | Date | Country |
---|---|---|
2739403 | Mar 1979 | DE |
3113944 | Oct 1982 | DE |
3225725 | Jan 1984 | DE |
19500321 | Jun 1995 | DE |
29522196 UI | Sep 2000 | DE |
10315493 | Oct 2004 | DE |
102004020754 | Dec 2005 | DE |
16598 | Nov 1916 | GB |
Number | Date | Country | |
---|---|---|---|
20080190387 A1 | Aug 2008 | US |