The present invention generally relates to valve seats and more particularly relates to vehicle seats used.
DE 42 21 988 A1 discloses a closure device including a valve housing press-fitted into the accommodating bore of a valve carrier. In this arrangement, the valve housing performs the function of a calking punch so that it must be manufactured in an accordingly solid manner and extremely precisely with regard to its surface contour in order to transmit the high press-in force that acts on the valve carrier, on the one hand, and to ensure the desired seal-tightness after the calking operation in the accommodating bore has been terminated, on the other hand.
Therefore, an object of the present invention is to improve upon a closure device of the type referred to hereinabove to the end of avoiding the mentioned disadvantages, with a view to permitting the attachment of a closure member of a simplest possible design in the accommodating bore in a housing by means of a comparatively simple and yet safe, fluid-tight calking operation.
a-2d show details with respect to the process of calking the closure member into an accommodating bore by means of a suitable calking punch.
Subsequently, the individual steps of the calking method are described by way of
a shows in this respect a bowl-shaped closure member 3 inserted into the stepped accommodating bore 2, whose sleeve portion including an inlet opening 10 in the bowl bottom receives an O-ring 13 at a step, said O-ring being arranged between a bore step of the housing 11 and the shoulder of the closure member 3. Collar 4, which is remote herefrom and bent off in an outward direction at right angles relative to the bore axis, is initially supported with its edge above the conically inclined reaction surface 12 on the wall portion of housing 11 that will be deformed in the subsequent calking process in the direction of the calking cone 1. Consequently, it is easy to center the closure member 3 already after inserting it into the accommodating bore 2 in conformity with the demands of automation. Above the accommodating bore 2 there is already the calking punch 9 conveyed by the tool automaton, said punch—due to its geometry—centering itself automatically in relation to the accommodating bore 2.
Corresponding to said embodiment, the calking punch 9 when fed by the tool automaton initially has an axial offset of e.g. 0.25 mm in relation to the bore axis. According to
c shows already in this respect the centric alignment of the calking punch 9 at the third housing step 7. A floating or radial displaceability of the calking punch 9 in an appropriate tool feeding arrangement is consequently a precondition. Initially, the plastic deformation of the housing material in the direction of the free space 15 disposed between the cone portion 14 and the vertical wall portion of housing 11 commences only to a slight degree due to the calking force applied to the edge of the third housing step 7 by way of the cone portion 14, until the punch step 16 adjacent to the cone portion 14 moves to abut on the end surface of the end stop 8. Subsequently, under the continuous effect of the press-in force, the punch step 16 corresponding to its depth gauge enters vertically into the end surface of the end stop 8, with the housing volume displaced by the end surface in the direction of the calking punch 1 being at least twice as large as the receiving volume of the free space 15. It is achieved hereby that material volume of the housing 11 will not only displace into the free space 15 in the form of a housing projection onto the cone portion 14 but is additionally compressed in the direction of the collar 4 of the closure member 3. Consequently, a substantially radial compressive strain is produced in the deformation zone of the housing 11 during the vertical advance movement of the calking punch 9. Before the punch step 16 has reached its maximum immersion depth in the housing 11, the punch end surface 17 presses on the collar 4 of the closure member 3 plunging into the accommodating bore 2, with the collar 4 pressing into the inclined reaction surface 12 of the first housing step 5. This is advantageous because the eloxal coating of the light-metal housing 11 is cracked so that a clean sealing edge is achieved at the collar 4 despite spangles of the eloxal coating being produced. When the closure member 3 is immersed into the accommodating bore 2, the press-in force on the O-ring 13 will increase additionally, what enhances the sealing effect of the O-ring 13.
d shows the final position of the calking punch 9, in which the stop surface 18 that is adjacent to the punch step 16 is supported on the end stop 8 of the accommodating bore 2 so that further lowering of the closure member 3 into the accommodating bore 2 is prevented. As soon as the calking punch 9 is withdrawn from the accommodating bore 2, the material of the housing 11 compressed by the calking action is able to quasi spring back because the radially acting force component of the calking punch 9 is removed. The result is that a radially inwards directed reaction force acts upon the collar 4 of the closure member 3 and assists in sealing the closure member 3 in the area of the calked joint.
Further, it becomes apparent from
Without reference to the calking operation described hereinabove, under technical aspects, the closure member 3 can be attached in a pressure-fluid tight manner in the housing 11 in the fraction of a second in one single operation in a manufacturing sequence that is in conformity with the demands of automation.
List of Reference Numerals:
Number | Date | Country | Kind |
---|---|---|---|
100 51 948 | Oct 2000 | DE | national |
101 02 593 | Jan 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP01/11666 | 10/9/2001 | WO | 00 | 4/17/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0235125 | 5/2/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5333836 | Fukuyo et al. | Aug 1994 | A |
6084493 | Siegel | Jul 2000 | A |
6637724 | Mayer | Oct 2003 | B1 |
6644623 | Voss et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
4221988 | Jan 1994 | DE |
4306220 | Sep 1994 | DE |
19922334 | Sep 2000 | DE |
19948425 | Nov 2000 | DE |
19936711 | Jan 2001 | DE |
19951665 | May 2001 | DE |
Number | Date | Country | |
---|---|---|---|
20040021537 A1 | Feb 2004 | US |