The present invention is generally related to methods, devices, and systems for controlling surgical fluid flows, particularly during treatment of an eye. More particularly, the present invention generally relates to methods, devices and systems associated with a valve system of a removable cassette for controlling surgical fluid flows.
The optical elements of the eye include both a cornea (at the front of the eye) and a lens within the eye. The lens and cornea work together to focus light onto the retina at the back of the eye. The lens also changes in shape, adjusting the focus of the eye to vary between viewing near objects and far objects. The lens is found just behind the pupil, and within a capsular bag. This capsular bag is a thin, relatively delicate structure which separates the eye into anterior and posterior chambers.
With age, clouding of the lens or cataracts are fairly common. Cataracts may form in the hard central nucleus of the lens, in the softer peripheral cortical portion of the lens, or at the back of the lens near the capsular bag.
Cataracts can be treated by the replacement of the cloudy lens with an artificial lens. Phacoemulsification systems often use ultrasound energy to fragment the lens and aspirate the lens material from within the capsular bag. This may allow the capsular bag to be used for positioning of the artificial lens, and maintains the separation between the anterior portion of the eye and the vitreous humour in the posterior chamber of the eye.
During cataract surgery and other therapies of the eye, accurate control over the volume of fluid within the eye is highly beneficial. For example, while ultrasound energy breaks up the lens and allows it to be drawn into a treatment probe with an aspiration flow, a corresponding irrigation flow may be introduced into the eye so that the total volume of fluid in the eye does not change excessively. If the total volume of fluid in the eye is allowed to get too low at any time during the procedure, the eye may collapse and cause significant tissue damage. Similarly, excessive pressure within the eye may strain and injure tissues of the eye.
While a variety of specific fluid transport mechanisms have been used in phacoemulsification and other treatment systems for the eyes, aspiration flow systems can generally be classified in two categories: 1) volumetric-based aspiration flow systems using positive displacement pumps; and 2) vacuum-based aspiration systems using a vacuum source, typically applied to the aspiration flow through an air-liquid interface. These two categories of aspiration flow systems each have unique characteristics that render one more suitable for some procedures than the other, and vice versa.
Among positive displacement aspiration systems, peristaltic pumps (which use rotating rollers that press against a flexible tubing to induce flow) are commonly employed. Such pumps provide accurate control over the flow volume. The pressure of the flow, however, is less accurately controlled and the variations in vacuum may result in the feel or traction of the handpiece varying during a procedure. Peristaltic and other displacement pump systems may also be somewhat slow.
Vacuum-based aspiration systems provide accurate control over the fluid pressure within the eye, particularly when combined with gravity-fed irrigation systems. While vacuum-based systems can result in excessive fluid flows in some circumstances, they provide advantages, for example, when removing a relatively large quantity of the viscous vitreous humour from the posterior chamber of the eye. However, Venturi pumps and other vacuum-based aspiration flow systems are subject to pressure surges during occlusion of the treatment probe, and such pressure surges may decrease the surgeon's control over the eye treatment procedure.
Different tissues may be aspirated from the anterior chamber of the eye with the two different types of aspiration flow. For example, vacuum-induced aspiration flow may quickly aspirate tissues at a significant distance from a delicate structure of the eye (such as the capsular bag), while tissues that are closer to the capsular bag are aspirated more methodically using displacement-induced or positive-displacement flows.
Conventionally, fluid aspiration systems include a console and a fluidic cassette mounted on the console. The fluidic cassette is typically changed for each patient and cooperates with the console to provide fluid aspiration. Generally, a single type of cassette is used by a particular console, regardless of whether the procedure will require positive displacement aspiration, vacuum-based aspiration, or both. Examples of cassettes currently used in the marketplace may be found in U.S. Pat. No. 8,070,712, U.S. Published Application 2008011431, and U.S. Published Application 20080114291, the contents of each are herewith incorporated by reference in their entirety as if set forth herein. U.S. application Ser. Nos. 14/686,582 and 13/776,988, which are hereby incorporated by reference in their entirety as if set forth herein, provide examples of cassettes.
A fluidic cassette may include means for controlling fluid flow through the cassette. In various embodiments, a fluidic cassette may include a gasket or flexible membrane located within the cassette that is configured to direct fluid flow in a predetermined flow path through the cassette. The gasket may be surrounded by front and back plates that form the body of the cassette, and the gasket may include one or more valves or a sensor that are accessible through the back plate. The surgical cassette may further include one or more tube retainers configured and dimensioned to guide a portion of either an irrigation or aspiration tube into a desired shape. The desired shape may be capable of being used with a peristaltic pump to pump fluid through the pathways formed by the gasket.
A gasket of a fluidic cassette may have a body, wherein the body is deformable and has a front surface and a back surface. The front surface may have one or more raised contours that create one or more channels that are configured and dimensioned to control fluid flow through one or more corresponding channels of a surgical cassette. The back surface may have one or more elevated portions that correspond to the one or more channels of the front surface and act as a valve. The gasket may also have a deformable membrane having an annular surface capable of coupling with a transducer of a surgical console. The console may include one or more solenoid devices that engage with the back surface of the gasket through the back plate of the cassette, thereby operating or controlling the valve of the gasket to control fluid flow in the flow pathway.
In light of the above, it would be advantageous to provide improved devices, systems, and methods for eye surgery, and more particularly for the control of fluid flow through a fluidic cassette during eye surgery.
The present invention provides a surgical cassette manifold, having a front housing, a rear housing, and a gasket, wherein the front housing comprises one or more molded fluid channels and one or more seal channels, herein the gasket is coupled with the rear housing and at least a portion of the gasket is located between the front housing and the rear housing, and wherein the gasket has one or more seal lips configured and dimensioned to couple with the one or more seal channels to form one or more fluid flow channels through the cassette. The gasket comprises one or more valves controllable through the rear housing, the valves configured to extend into the one or more fluid flow channels to reduce or block fluid flow through the flow channels.
The present invention provides a surgical cassette manifold configured to be coupled to a surgical console, the cassette manifold having a front housing, a rear housing, and a flexible gasket, wherein the gasket comprises one or more flexible flow restriction valves that reduce or block fluid flow through flow channels in the cassette, the flow restriction valves positioned along either a first flow path of irrigation fluid flowing through the cassette to a surgical handpiece or a second flow path of aspirated fluid from the surgical handpiece flowing through the cassette, or both. The flow restriction valves are actuated to reduce or block fluid flow through the first or second flow paths via one or more actuation plungers located on the surgical console. In various embodiments, the plungers may be actuated by a solenoid or other similar means to apply pressure to the flexible valves to deform the flexible valves into the flow paths.
The present invention provides a surgical cassette manifold configured to be coupled to a surgical console, the cassette manifold including a flexible gasket comprising one or more valves that reduce or block fluid flow through the surgical cassette, wherein the one or move valves are positioned adjacent a first flow path of fluid flowing into a surgical handpiece from the cassette and a second flow path of fluid flowing through the cassette that has been aspirated from the surgical handpiece. The one or more valves are actuated by an actuation plunger of the surgical console, which may be electronically controlled by a controller of the console. In various embodiments, the plungers may be actuated by a solenoid or other similar means to apply pressure to the flexible valves to deform the flexible valves into the flow paths.
In illustrative embodiments, one or more flexible valves of a surgical cassette and one or more actuation plungers of a surgical console include a positioning feature configured to assist with positioning the one or more actuation plungers to apply uniform and symmetric pressure to the one or more valves. The positioning feature includes at least two features: (i) a locking recess on a back surface of the one or more valves, the locking recess formed between two spaced-apart teeth or protrusions that extend axially away from (and are generally perpendicular to) the valve surface; and (ii) a blade tooth that extends axially away from an end surface of the plunger and is configured to be received with the locking recess to engage the valve. The positioning feature ensures the plunger is properly aligned with the flexible valve as the valve is deformed inward under pressure from the plunger.
In illustrative embodiments, a positioning feature of the surgical cassette and a surgical console may include i) a locking recess on a back surface of the one or more valves, the locking recess formed between two spaced-apart teeth or protrusions that extend axially away from (and are generally perpendicular to) the valve surface; and (ii) a blade tooth that extends axially away from an end surface of the plunger and is configured to be received with the locking recess to engage the valve. The locking recess formed by the teeth and blade tooth may be configured to be of complimentary shapes and sizes so that the blade tooth abuts against the surface of the teeth when the blade tooth is received with the locking recess. In various embodiments, a surface of the teeth may be concave in nature and a surface of the blade tooth may be convex in nature. In alternative embodiments, the positioning feature may further include an end cap on the blade tooth, the end cap include angled surfaces that correspond with tapered surfaces that further define the locking recess of the valve.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The present invention is best understood with reference to the following detailed description of the invention and the drawings in which:
FIGS. 10B1 and 10B2 are perspective views of a solenoid valve actuation member of the valve actuation mechanism of
Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
Referring to
When a distal end of the probe tip of handpiece 12 is inserted into an eye E, for example, for removal of a lens of a patient with cataracts, an electrical conductor and/or pneumatic line (not shown) may supply energy from console 14 to an ultrasound transmitter of the handpiece, a cutter mechanism, or the like. Alternatively, the handpiece 12 may be configured as an irrigation/aspiration (I/A) or vitrectomy handpiece. Also, the ultrasonic transmitter may be replaced by other means for emulsifying a lens, such as a high energy laser beam. The ultrasound energy from handpiece 12 helps to fragment the tissue of the lens, which can then be drawn into a port of the tip by aspiration flow. So as to balance the volume of material removed by the aspiration flow, an irrigation flow through handpiece 12 (or a separate probe structure) may also be provided, with both the aspiration and irrigations flows being controlled by console 14.
So as to avoid cross-contamination between patients and/or to avoid incurring excessive expenditures for each procedure, cassette 100 and its conduit 18 may be disposable. Alternatively, the conduit or tubing may be disposable, with the cassette body and/or other structures of the cassette being sterilizable. Regardless, the disposable components of the cassette are typically configured for use with a single patient, and may not be suitable for sterilization. The cassette will interface with reusable (and often quite expensive) components of console 14, which may include one or more peristaltic pump rollers, a Venturi or other vacuum source, a controller 40, and the like.
Controller 40 may include an embedded microcontroller and/or many of the components common to a personal computer, such as a processor, data bus, a memory, input and/or output devices (including a touch screen user interface 42), and the like. Controller 40 will often include both hardware and software, with the software typically comprising machine readable code or programming instructions for implementing one, some, or all of the methods described herein. The code may be embodied by a tangible media such as a memory, a magnetic recording media, an optical recording media, or the like. Controller 40 may have (or be coupled to) a recording media reader, or the code may be transmitted to controller 40 by a network connection such as an internet, an intranet, an Ethernet, a wireless network, or the like. Along with programming code, controller 40 may include stored data for implementing the methods described herein, and may generate and/or store data that records parameters corresponding to the treatment of one or more patients. Many components of console 14 may be found in or modified from known commercial phacoemulsification systems from Abbott Medical Optics Inc. of Santa Ana, Calif.; Alcon Manufacturing, Ltd. of Ft. Worth, Tex.; Bausch and Lomb of Rochester, N.Y.; and other suppliers.
In illustrative embodiments, a surgical cassette manifold 101 is configured to be coupled and removed from the console 14 after use during a surgical procedure.
As shown in
In illustrative embodiments, the surgical cassette 100 may include at least one peristaltic pump tube 106.
In illustrative embodiments, the surgical cassette 100 may optionally include a second peristaltic pump tube 108, as illustrated in
During assembly, rear housing 104 is mated with front housing 102, first tube 106 is configured to conform with first pump ramp 122, and second tube 108 is configured to conform with second pump ramp 124. First pump ramp 122 is configured and dimensioned for mating with a first peristaltic pump (not shown) located within the console 14. Second tube 108 is configured to conform with second pump ramp 124. Second pump ramp 124 is configured and dimensioned for mating with a second peristaltic pump (not shown) located within the console 14. Reservoir 120 of front housing 102 and reservoir 119 of rear housing 102 are configured to be generally aligned to create a void 117 within cassette manifold 101 defined by reservoir 120 and reservoir 119, as illustrated for example in
In illustrative embodiments, reservoir 120 may have a sump 121. Sump 121 is a portion of reservoir 120 that extends below a bottom 120c of reservoir 120 that promotes fluid to flow from the reservoir 120 to sump 121 and to the lower tube connection 136. Sump 121 may (1) reduce turbulence of the tank; and (2) ensure a drain inlet port 133a of the lower tube connection 136 is always below the level of fluid inside the void 117, therefore fluid is consistently pumped out of the cassette 100 and not air (which may cause the drain bag 16 to balloon).
In illustrative embodiments, tubing retainer clips 138 (shown in
In illustrative embodiments, gasket 110 may be over-molded with back housing 104 such that gasket 110 is secured to back housing 104, and gasket 110 is further configured to be sandwiched between front housing 102 and back housing 104 when the cassette 100 is assembled together. As shown in
Gasket 110 may be formed separately from rear housing 104 and then co-molded or over-molded onto rear housing 104. Gasket 110 includes a front surface 140 and a back surface 141 such that the front surface 140 is adjacent the front housing 102 and the back surface 141 is adjacent the rear housing 104 when the front housing 102 is coupled to the rear housing 104. The front surface 140 of gasket 110 includes the seal lip 126 which extends away or protrudes in a substantially perpendicular direction from a plane of gasket 110 and rear housing 104, as illustrated in
In an embodiment, gasket 110 may be molded, co-mold, or two-shot molded onto or with rear housing 104. Molding gasket 110 onto rear housing 104 in such a manner reduces or eliminates a leak path which is possible with molded fluid channels when using two different materials. In an embodiment, a method of eliminating leaking of molded fluid channels by combining two different materials for creating a proper seal is envisioned resulting in an easier manufacturing method by creating a self-aligning gasket 110. In an alternative embodiment, when assembling rear housing 104 to front housing 102, mating of seal lip 126 and seal channel 125 can be achieved using a plurality of alignment pins 127 on rear housing 104 that mate with counterpart pin holes 129 on front housing 102, as illustrated in
In illustrative embodiments, when gasket 110 is properly placed between front housing 102 and rear housing 104, and front and rear housings 102 and 104 are coupled together, molded fluid channels 118 of front housing 102 and portions of the gasket 110 between the seal lips 126 form at least one sealed flow channel or pathway 150 through the cassette 100. Referring to
In various embodiments, sealed flow channel 150 may include an irrigation flow channel 150a and an aspiration flow channel 150b. Irrigation flow channel 150a is configured as a pathway with an inlet tubing port (not shown) from a balance salt solution (BSS) irrigation bottle (not shown) metered by one or more irrigation valves to one or more of the following: (1) an irrigation tubing outlet port (not shown) connected to an external surgical handpiece 12 flowing fluid to the eye, which may be metered or controlled by irrigation valve 132; or (2) a venting line (not shown) providing BSS irrigation fluid into the aspiration flow channel 150b. In various embodiments, irrigation flow channel 150a may be positioned within cassette 100 to transport fluid that is driven into the cassette 100 from a gravity-driven irrigation bottle, through the cassette 100, and to the external handpiece 12 to provide irrigation fluid to the surgical field. In illustrative embodiments, fluid may be transported into the cassette 100 via an irrigation tube 111, as illustrated in
Aspiration flow channel 150b is configured as a pathway for fluid to flow from the external handpiece 12 to the drainage port 114 after the fluid or other particles have been aspirated from a patient's eye E. In illustrative embodiments, during aspiration of a patient's eye E, fluid flows through the aspiration flow channel 150b in various manners. For instance, fluid may flow into the first pump tube 106 via a pump tube inlet 137a. Upper tube connections 134 of rear housing 104 may comprise pump tube inlet 137a and pump tube outlet 137b to transport fluid from pump tube inlet 137a, through the first pump tube 106, and then through the pump tube outlet 137b as the first peristatic pump operates. In illustrative embodiments, aspiration flow channel 150b extends from pump tube outlet 137b to transport fluid through the cassette manifold 101. Aspiration flow channel 150 extends from pump tube outlet 137b to reservoir 120 along a first pathway 160, as illustrated in
The aspiration flow channel 150b may further include a venting port for venting fluid inflow from a BSS irrigation bottle or the irrigation flow channel 150a, which may be metered into the aspiration flow channel 150b by the aspiration vent valve 130. Aspiration vent valve 130 is configured to permit introduction of irrigation fluid into the aspiration flow channel 150b, which may be metered by vent valve 130, to, for example, reduce vacuum level in the aspiration flow channel 150b. Such reduction of vacuum level may be necessary following obstruction or occlusion of the tip of handpiece 12 by, for example, particles being aspirated from the eye E.
In illustrative embodiments, to monitor and control the flow of fluid through the sealed flow channel 150, the cassette 100 may include a pressure/vacuum sensor diaphragm 128, a aspiration vent valve 130, and/or an irrigation valve 132, as illustrated in
In illustrative embodiments, vacuum/pressure sensor diaphragm 128 may be a sealed flexible annular membrane with a central magnetic coupling disk 212. The vacuum/pressure sensor diaphragm 128 may be positioned to be in fluid connection with the aspiration flow channel 150b. The central magnetic coupling disk 212 deforms: (1) proportionally outwards under fluid pressure conditions in the aspiration flow channel 150b, compressing a magnetically-coupled force displacement transducer 208 of console 14 (as illustrated in
Referring to
In an illustrative embodiment, as illustrated in
The interaction between the console 14 and cassette 100 will now be described. In illustrative embodiments, a fluidics module 200 according to an embodiment of the present invention comprises an assembly of components mounted to the console 14 for interfacing with the surgical cassette 100, as illustrated in
In illustrative embodiments, fluidics module 200 may have a force displacement transducer 208. Force displacement transducer 208 may be electrically or otherwise connected with the controller 40. Force displacement transducer 208 may operate by means of a magnetic coupling (via, for example, a magnet 214) with the central magnetic coupling disk 212 of the vacuum/pressure sensor diaphragm 128. Specifically, a vacuum occurrence of fluid inside the aspiration flow channel 150b formed by manifold fluid flow channels 118 will cause deformation inwards of the vacuum/pressure sensor diaphragm 128 (and the magnetic coupling disk 212) in the surgical cassette 100, and the magnetic force from the coupling disk 212 upon the magnet 214 of the force displacement transducer 208 will axially extend force displacement transducer 208 outward away from the fluidics module 200, resulting in a change of an electrical output signal to the controller 40 in proportion to a vacuum level. Conversely, positive fluid pressure in the aspiration flow channel 150a formed by manifold fluid flow channels 118 results in an outward extension of vacuum/pressure sensor diaphragm 128 and compression of the force displacement transducer 208 inward toward the fluidics module 200.
In an embodiment, fluidics module 200 may have an irrigation valve plunger 230 and an aspiration vent valve plunger 232. Irrigation valve plunger 230 axially extends away from the fluidics module 200 and is controlled (e.g. by a solenoid (not shown) in the console 14) to move in a direction towards or away from the fluidics module 200 when controlled by the controller 40. The irrigation valve plunger 230 is configured to compress the irrigation valve 132 of surgical cassette 100, resulting in a decrease or shutoff of irrigation flow in the irrigation flow channel 150a to external irrigation tubing line to the handpiece 12. Irrigation valve plunger 230 may also operate by a spring-loaded retraction of the plunger to allow varying levels of irrigation flow. Similarly, vent valve plunger 232 may be controlled by controller 40 and have an axial extension of the plunger 232 that compresses aspiration vent valve 130 of surgical cassette 100, resulting in a decrease or shutoff of irrigation venting flow to the aspiration flow channel 150b. Aspiration vent valve plunger 232 may also operate by a spring-loaded retraction of the plunger to allow irrigation pressure fluid flow to vent in aspiration flow channel 150b if the pressure/vacuum level requires reduction.
The irrigation valve plunger 230 and aspiration vent plunger 232 are configured with an end surface 234 and 236, respectively, that are configured to deform the irrigation valve 132 and aspiration vent valve 130, respectively, to block flow of fluid through the flow channel 150 positioned next to the irrigation valve 132 and aspiration vent valve 130. Specifically, for example, when the irrigation valve plunger 230 and the aspiration vent plunger 232 are engaged into the flow channel 150, the end surfaces 234 and 236 may be configured to contact or seal with the back surface 146 of the front housing 102, reducing or completely stopping the flow of fluid through the flow channel 150. In illustrative embodiments, the end surface 234 and 236 may abut against the valve control surfaces 115 (having the irrigation valve 132 and aspiration vent valve 130 sealing with the valve control surfaces 115) to reduce or eliminate flow of fluid.
In illustrative embodiments, the end surfaces 234 and 236 and the valves 132 and 130 are generally configured to be similar in size and shape, in order for the end surfaces 234 and 236 to deform the valves 132 and 130. As the end surfaces 234 and 236 engage with the valves 132 and 130, it is desirable to avoid any potential for asymmetrical loading or otherwise deforming the valves in such a way that would compromise the sealing. Further, by ensuring an evenly distributed load distribution, the overall force required upon the plunger (e.g. by the solenoid) may be reduced to a minimal level required to engage the valves.
In illustrative embodiments, the irrigation valve plunger 230 and irrigation valve 132 are configured with a positioning feature 250 to avoid asymmetrical loading upon the valve 132,—as illustrated in
In illustrative embodiments, and as illustrated in FIG. 10B2, blade tooth 246 may include a first contact surface 248 and a second contact surface 249. Similarly, as illustrated in
First contact surface 248, second contact surface 249, first receiving surface 254, and second receiving surface 255 may be configured in a variety of shapes or sizes. For instance, first contact surface 248 may exist is a single plane P1, and second contact surface 249 may exist in a single plane P2, where plane P1 is parallel to plane P2, as illustrated in FIG. 10B2. First and second receiving surface 254 and 255 may mirror first and second contact surfaces 248 and 249 and each exist in a single plane. Alternatively, first contact surface 248 may be convex or concave in nature, and second contact surface 249 may be oppositely convex or concave in nature. First and second receiving surfaces 254 and 255 may again mirror the first and second contact surfaces 248 and 249 to abut against the convex or concave first and second contact surfaces 248 and 249, as illustrated in
In illustrative embodiments, first receiving surface 254 may include a first angled portion 270 and a second angled portion 272, where the first angled portion 270 extends from a bottom circumference surface of the teeth 242 to generally a center axis C of the teeth 242, and the second angled portion 272 extends from a top circumference surface of the teeth 242 to generally the center axis C, as illustrated in
In illustrative embodiments, blade tooth 246 may further include an end cap 256 that is configured to further guide blade toot into locking recess 252. In an exemplary embodiment, as illustrated in FIG. 10B2, end cap 256 may include tapered sides 258. Tapered sides 258 may engage with and abut against corresponding tapered surfaces 262 that extend between the back surface 240 of the irrigation valve and first and second receiving surfaces 254 and 255.
In illustrative embodiments, the aspiration vent valve plunger 232 and aspiration vent valve 130 are configured with a positioning feature 220 respectively, to avoid asymmetrical loading upon the valve 130, as illustrated for example in
In illustrative embodiments, blade tooth 226 may include a first contact surface 228 and a second contact surface 229. Similarly, spaced-apart teeth 224 may include first and second receiving surfaces 238 and 239. As blade tooth 226 is received within locking recess 222, first contact surface 228 may engage with or abut against first receiving surface 238, and second contact surface 229 may engage with or abut against second receiving surface 239.
First contact surface 228, second contact surface 229, first receiving surface 238, and second receiving surface 239 may be configured in a variety of shapes or sizes. For instance, first contact surface 228 may exist is a single plane P1, and second contact surface 229 may exist in a single plane P2, where plane P1 is parallel to plane P2. First and second receiving surface 238 and 239 may mirror first and second contact surfaces 228 and 229 and each exist in a single plane. Alternatively, first contact surface 228 may be convex or concave in nature, and second contact surface 229 may be oppositely convex or concave in nature. First and second receiving surfaces 238 and 239 may again mirror the first and second contact surfaces 228 and 229 to abut against the convex or concave first and second contact surfaces 228 and 229. Other shapes or forms of first contact surface 228, second contact surface 229, first receiving surface 238, and second receiving surface 239 are envisioned herein. First and second receiving surfaces 238 and 239 may be spaced apart distance D1, as illustrated in
In illustrative embodiments, first receiving surface 238 may include a first angled portion 284 and a second angled portion 286, where the first angled portion 284 extends from a bottom circumference surface of the teeth 224 to generally a center axis C of the teeth 224, and the second angled portion 286 extends from a top circumference surface of the teeth 224 to generally the center axis C. As illustrated in
In illustrative embodiments, blade tooth 226 may further include an end cap 274 that is configured to further guide blade tooth into locking recess 222. In an exemplary embodiment, as illustrated in FIG. 10B1, end cap 274 may include tapered sides 276. Tapered sides 276 may engage with and abut against corresponding tapered surfaces 264 that extend between the back surface 218 of the vent valve 130 and first and second receiving surfaces 238 and 239.
In illustrative embodiments, blade tooth 226 may be fixedly coupled to a rectangular base 260 that is retained within the console 14, as illustrated in FIG. 10B1. The base 260 may be configured to be received within a similarly-shaped aperture (not shown) of console 14 to prevent or reduce unintended rotation of blade tooth 226, thereby preventing or reducing misalignment with the locking recess 222.
In an embodiment, surgical cassette manifold 101 may be made substantially of a plastic material except for gasket 110. The plastic material may be acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyethylene, viton, or other rigid plastic or plastic material. In addition, the material may be such that it is transparent enabling a user to visualize various features of surgical cassette manifold 101. For example, all components may be transparent, including reservoir 120. In an embodiment, one or more lights emitted from console 14 may be shone through surgical cassette manifold 101 to provide a backlight and allow a user to visualize the fluid flow as it flows from handpiece 12 through sealed fluid flow channel 150 into reservoir 120 and out to the drain bag 16. In an embodiment, the backlight may also be used as a surgical cassette manifold type detector.
All references cited herein are hereby incorporated by reference in their entirety including any references cited therein.
Although the present invention has been described in terms of specific embodiments, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the claims.
This application claims priority to and is a continuation-in-part application of U.S. application Ser. No. 14/686,582 filed on Apr. 14, 2015, which claims priority to and is a continuation-in-part of U.S. application Ser. No. 13/776,988 filed on Feb. 26, 2013, which claims priority to U.S. provisional application No. 61/612,307 filed on Mar. 17, 2012, the contents of each are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1848024 | Owen | Mar 1932 | A |
2123781 | Huber | Jul 1938 | A |
2211167 | Safford | Aug 1940 | A |
2514882 | Leiman | Jul 1950 | A |
2869571 | Price | Jan 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
3019815 | Lenardon | Feb 1962 | A |
3076904 | Claus et al. | Feb 1963 | A |
3116697 | Theodore | Jan 1964 | A |
3203186 | Sheppard | Aug 1965 | A |
3366100 | Sapp | Jan 1968 | A |
3439680 | Thomas, Jr. | Apr 1969 | A |
3515169 | Dobrikin | Jun 1970 | A |
3526219 | Lewis | Sep 1970 | A |
3781142 | Zweig | Dec 1973 | A |
3850265 | Blower | Nov 1974 | A |
3857387 | Shock | Dec 1974 | A |
3913895 | De Bruyne | Oct 1975 | A |
4017828 | Watanabe et al. | Apr 1977 | A |
4037491 | Newbold | Jul 1977 | A |
4121584 | Turner | Oct 1978 | A |
4189286 | Murry et al. | Feb 1980 | A |
4193004 | Lobdell et al. | Mar 1980 | A |
4247784 | Henry | Jan 1981 | A |
4276023 | Phillips et al. | Jun 1981 | A |
4286464 | Tauber et al. | Sep 1981 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4537561 | Xanthopoulos | Aug 1985 | A |
4564342 | Weber et al. | Jan 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4662829 | Nehring | May 1987 | A |
4665621 | Ackerman et al. | May 1987 | A |
4706687 | Rogers et al. | Nov 1987 | A |
4713051 | Steppe et al. | Dec 1987 | A |
4757814 | Wang et al. | Jul 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4758238 | Sundblom | Jul 1988 | A |
4772263 | Dorman et al. | Sep 1988 | A |
4773897 | Scheller et al. | Sep 1988 | A |
4818186 | Pastrone et al. | Apr 1989 | A |
4819317 | Bauer et al. | Apr 1989 | A |
4837857 | Scheller et al. | Jun 1989 | A |
4920336 | Meijer | Apr 1990 | A |
4921477 | Davis | May 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4933843 | Scheller et al. | Jun 1990 | A |
4941518 | Williams et al. | Jul 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4961424 | Kubota et al. | Oct 1990 | A |
4965417 | Massie | Oct 1990 | A |
4983901 | Lehmer | Jan 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5006110 | Garrison et al. | Apr 1991 | A |
5020535 | Parker et al. | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5032939 | Mihara et al. | Jul 1991 | A |
5039973 | Carballo | Aug 1991 | A |
5091656 | Gahn | Feb 1992 | A |
5108367 | Epstein et al. | Apr 1992 | A |
5110270 | Morrick | May 1992 | A |
5125891 | Hossain | Jun 1992 | A |
5160317 | Costin | Nov 1992 | A |
5195960 | Hossain | Mar 1993 | A |
5195961 | Takahashi et al. | Mar 1993 | A |
5195971 | Sirhan | Mar 1993 | A |
5230614 | Zanger et al. | Jul 1993 | A |
5242404 | Conley et al. | Sep 1993 | A |
5249121 | Baum et al. | Sep 1993 | A |
5267956 | Beuchat | Dec 1993 | A |
5268624 | Zanger | Dec 1993 | A |
5271379 | Phan et al. | Dec 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5282787 | Wortrich | Feb 1994 | A |
5323543 | Steen et al. | Jun 1994 | A |
5342293 | Zanger | Aug 1994 | A |
5344292 | Rabenau | Sep 1994 | A |
5350357 | Kamen et al. | Sep 1994 | A |
5351676 | Putman | Oct 1994 | A |
5378126 | Abrahamson | Jan 1995 | A |
5388569 | Kepley | Feb 1995 | A |
5429601 | Conley et al. | Jul 1995 | A |
5445506 | Afflerbaugh et al. | Aug 1995 | A |
5454783 | Grieshaber et al. | Oct 1995 | A |
5464391 | Devale | Nov 1995 | A |
5470211 | Knott et al. | Nov 1995 | A |
5470312 | Zanger et al. | Nov 1995 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5520652 | Peterson | May 1996 | A |
5533976 | Zaleski et al. | Jul 1996 | A |
5549461 | Newland | Aug 1996 | A |
5554894 | Sepielli | Sep 1996 | A |
5561575 | Eways | Oct 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5580347 | Reimels | Dec 1996 | A |
5591127 | Barwick et al. | Jan 1997 | A |
5653887 | Wahl et al. | Aug 1997 | A |
5657000 | Ellingboe | Aug 1997 | A |
5676530 | Nazarifar | Oct 1997 | A |
5676649 | Boukhny et al. | Oct 1997 | A |
5676650 | Grieshaber et al. | Oct 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5697898 | Devine | Dec 1997 | A |
5697910 | Cole et al. | Dec 1997 | A |
5700240 | Barwick, Jr. et al. | Dec 1997 | A |
5724264 | Rosenberg et al. | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5733256 | Costin | Mar 1998 | A |
5733263 | Wheatman | Mar 1998 | A |
5745647 | Krause | Apr 1998 | A |
5746713 | Hood et al. | May 1998 | A |
5747824 | Jung et al. | May 1998 | A |
5777602 | Schaller et al. | Jul 1998 | A |
5805998 | Kodama | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5810765 | Oda | Sep 1998 | A |
5810766 | Barnitz et al. | Sep 1998 | A |
5830176 | Mackool | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5859642 | Jones | Jan 1999 | A |
5871492 | Sorensen | Feb 1999 | A |
5879298 | Drobnitzky et al. | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5899674 | Jung et al. | May 1999 | A |
5928257 | Kablik et al. | Jul 1999 | A |
5938655 | Bisch et al. | Aug 1999 | A |
5983749 | Holtorf | Nov 1999 | A |
6002484 | Rozema et al. | Dec 1999 | A |
6024428 | Uchikata | Feb 2000 | A |
6028387 | Boukhny | Feb 2000 | A |
6062829 | Ognier | May 2000 | A |
6065389 | Riedlinger | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6086598 | Appelbaum et al. | Jul 2000 | A |
6109895 | Ray et al. | Aug 2000 | A |
6117126 | Appelbaum et al. | Sep 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6150623 | Chen | Nov 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6179829 | Bisch et al. | Jan 2001 | B1 |
6187182 | Reynolds | Feb 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6251113 | Appelbaum et al. | Jun 2001 | B1 |
6260434 | Holtorf | Jul 2001 | B1 |
6360630 | Holtorf | Mar 2002 | B2 |
6368269 | Lane | Apr 2002 | B1 |
6411062 | Baranowski et al. | Jun 2002 | B1 |
6424124 | Ichihara et al. | Jul 2002 | B2 |
6436072 | Kullas et al. | Aug 2002 | B1 |
6452120 | Chen | Sep 2002 | B1 |
6452123 | Chen | Sep 2002 | B1 |
6491661 | Boukhny et al. | Dec 2002 | B1 |
6511454 | Nakao et al. | Jan 2003 | B1 |
6537445 | Muller | Mar 2003 | B2 |
6561999 | Nazarifar et al. | May 2003 | B1 |
6595948 | Suzuki et al. | Jul 2003 | B2 |
6632214 | Morgan et al. | Oct 2003 | B2 |
6674030 | Chen et al. | Jan 2004 | B2 |
6830555 | Rockley et al. | Dec 2004 | B2 |
6852092 | Kadziauskas et al. | Feb 2005 | B2 |
6862951 | Peterson et al. | Mar 2005 | B2 |
6908451 | Brody et al. | Jun 2005 | B2 |
6962488 | Davis et al. | Nov 2005 | B2 |
6962581 | Thoe | Nov 2005 | B2 |
6986753 | Bui | Jan 2006 | B2 |
7011761 | Muller | Mar 2006 | B2 |
7012203 | Hanson et al. | Mar 2006 | B2 |
7070578 | Leukanech et al. | Jul 2006 | B2 |
7073083 | Litwin, Jr. et al. | Jul 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7103344 | Menard | Sep 2006 | B2 |
7167723 | Zhang | Jan 2007 | B2 |
7169123 | Kadziauskas et al. | Jan 2007 | B2 |
7236766 | Freeburg | Jun 2007 | B2 |
7236809 | Fischedick et al. | Jun 2007 | B2 |
7242765 | Hairston | Jul 2007 | B2 |
7244240 | Nazarifar et al. | Jul 2007 | B2 |
7289825 | Fors et al. | Oct 2007 | B2 |
7300264 | Souza | Nov 2007 | B2 |
7316664 | Kadziauskas et al. | Jan 2008 | B2 |
7336976 | Ito | Feb 2008 | B2 |
7381917 | Dacquay et al. | Jun 2008 | B2 |
7439463 | Brenner et al. | Oct 2008 | B2 |
7465285 | Hutchinson et al. | Dec 2008 | B2 |
7470277 | Finlay et al. | Dec 2008 | B2 |
7526038 | McNamara | Apr 2009 | B2 |
7591639 | Kent | Sep 2009 | B2 |
7731484 | Yamamoto et al. | Jun 2010 | B2 |
7776006 | Childers et al. | Aug 2010 | B2 |
7785316 | Claus et al. | Aug 2010 | B2 |
7811255 | Boukhny et al. | Oct 2010 | B2 |
7883521 | Rockley et al. | Feb 2011 | B2 |
7921017 | Claus et al. | Apr 2011 | B2 |
7967777 | Edwards et al. | Jun 2011 | B2 |
8015912 | Stimpson | Sep 2011 | B2 |
8070712 | Muri et al. | Dec 2011 | B2 |
8075468 | Min et al. | Dec 2011 | B2 |
9033940 | Muri et al. | May 2015 | B2 |
9180240 | Farrell | Nov 2015 | B2 |
9500188 | Ly | Nov 2016 | B2 |
9658468 | Dai | May 2017 | B2 |
10330094 | Gledhill, III | Jun 2019 | B2 |
20010023331 | Kanda et al. | Sep 2001 | A1 |
20010047166 | Wuchinich | Nov 2001 | A1 |
20010051788 | Paukovits et al. | Dec 2001 | A1 |
20020004657 | Morgan et al. | Jan 2002 | A1 |
20020007671 | Lavi et al. | Jan 2002 | A1 |
20020019215 | Romans | Feb 2002 | A1 |
20020045887 | Dehoogh et al. | Apr 2002 | A1 |
20020070840 | Fischer et al. | Jun 2002 | A1 |
20020098859 | Murata | Jul 2002 | A1 |
20020137007 | Beerstecher | Sep 2002 | A1 |
20020179462 | Silvers | Dec 2002 | A1 |
20020183693 | Peterson et al. | Dec 2002 | A1 |
20030028091 | Simon et al. | Feb 2003 | A1 |
20030050619 | Mooijman et al. | Mar 2003 | A1 |
20030083016 | Evans et al. | May 2003 | A1 |
20030108429 | Angelini et al. | Jun 2003 | A1 |
20030125717 | Whitman | Jul 2003 | A1 |
20030224729 | Arnold | Dec 2003 | A1 |
20030226091 | Platenberg et al. | Dec 2003 | A1 |
20040019313 | Childers et al. | Jan 2004 | A1 |
20040037724 | Haser et al. | Feb 2004 | A1 |
20040097868 | Kadziauskas et al. | May 2004 | A1 |
20040127840 | Gara | Jul 2004 | A1 |
20040193182 | Yaguchi et al. | Sep 2004 | A1 |
20040212344 | Tamura et al. | Oct 2004 | A1 |
20040215127 | Kadziauskas et al. | Oct 2004 | A1 |
20040224641 | Sinn | Nov 2004 | A1 |
20040253129 | Sorensen et al. | Dec 2004 | A1 |
20050039567 | Peterson et al. | Feb 2005 | A1 |
20050054971 | Steen et al. | Mar 2005 | A1 |
20050069419 | Cull et al. | Mar 2005 | A1 |
20050070859 | Cull et al. | Mar 2005 | A1 |
20050070871 | Lawton et al. | Mar 2005 | A1 |
20050095153 | Demers et al. | May 2005 | A1 |
20050103607 | Mezhinsky | May 2005 | A1 |
20050109595 | Mezhinsky et al. | May 2005 | A1 |
20050118048 | Traxinger | Jun 2005 | A1 |
20050119679 | Rabiner et al. | Jun 2005 | A1 |
20050130098 | Warner | Jun 2005 | A1 |
20050187513 | Rabiner et al. | Aug 2005 | A1 |
20050197131 | Ikegami | Sep 2005 | A1 |
20050209552 | Beck et al. | Sep 2005 | A1 |
20050228266 | McCombs | Oct 2005 | A1 |
20050236936 | Shiv et al. | Oct 2005 | A1 |
20050245888 | Cull | Nov 2005 | A1 |
20050261628 | Boukhny et al. | Nov 2005 | A1 |
20050267504 | Boukhny et al. | Dec 2005 | A1 |
20060035585 | Washiro | Feb 2006 | A1 |
20060036180 | Boukhny et al. | Feb 2006 | A1 |
20060041220 | Boukhny et al. | Feb 2006 | A1 |
20060046659 | Haartsen et al. | Mar 2006 | A1 |
20060074405 | Malackowski et al. | Apr 2006 | A1 |
20060078448 | Holden | Apr 2006 | A1 |
20060114175 | Boukhny | Jun 2006 | A1 |
20060145540 | Mezhinsky | Jul 2006 | A1 |
20060219049 | Horvath et al. | Oct 2006 | A1 |
20060219962 | Dancs et al. | Oct 2006 | A1 |
20060224107 | Claus et al. | Oct 2006 | A1 |
20060236242 | Boukhny et al. | Oct 2006 | A1 |
20070016174 | Millman et al. | Jan 2007 | A1 |
20070049898 | Hopkins et al. | Mar 2007 | A1 |
20070060926 | Escaf | Mar 2007 | A1 |
20070073214 | Dacquay et al. | Mar 2007 | A1 |
20070073309 | Kadziauskas et al. | Mar 2007 | A1 |
20070078379 | Boukhny et al. | Apr 2007 | A1 |
20070085611 | Gerry et al. | Apr 2007 | A1 |
20070107490 | Artsyukhovich et al. | May 2007 | A1 |
20070231205 | Williams et al. | Oct 2007 | A1 |
20070249942 | Salehi et al. | Oct 2007 | A1 |
20070287959 | Walter et al. | Dec 2007 | A1 |
20080033342 | Staggs | Feb 2008 | A1 |
20080066542 | Gao | Mar 2008 | A1 |
20080082040 | Kubler et al. | Apr 2008 | A1 |
20080082077 | Williams | Apr 2008 | A1 |
20080112828 | Muri et al. | May 2008 | A1 |
20080114290 | King et al. | May 2008 | A1 |
20080114291 | Muri et al. | May 2008 | A1 |
20080114300 | Muri et al. | May 2008 | A1 |
20080114311 | Muri et al. | May 2008 | A1 |
20080114312 | Muri | May 2008 | A1 |
20080114387 | Hertweck et al. | May 2008 | A1 |
20080125695 | Hopkins et al. | May 2008 | A1 |
20080125697 | Gao | May 2008 | A1 |
20080125698 | Gerg et al. | May 2008 | A1 |
20080129695 | Li | Jun 2008 | A1 |
20080146989 | Zacharias | Jun 2008 | A1 |
20080200878 | Davis et al. | Aug 2008 | A1 |
20080243105 | Horvath | Oct 2008 | A1 |
20080262476 | Krause et al. | Oct 2008 | A1 |
20080281253 | Injev et al. | Nov 2008 | A1 |
20080294087 | Steen et al. | Nov 2008 | A1 |
20080312594 | Urich et al. | Dec 2008 | A1 |
20090005712 | Raney | Jan 2009 | A1 |
20090005789 | Charles | Jan 2009 | A1 |
20090048607 | Rockley | Feb 2009 | A1 |
20090087327 | Voltenburg, Jr. et al. | Apr 2009 | A1 |
20090124974 | Crank et al. | May 2009 | A1 |
20090163853 | Cull et al. | Jun 2009 | A1 |
20100036256 | Boukhny et al. | Feb 2010 | A1 |
20100069825 | Raney | Mar 2010 | A1 |
20100069828 | Steen et al. | Mar 2010 | A1 |
20100140149 | Fulkerson et al. | Jun 2010 | A1 |
20100152685 | Goh | Jun 2010 | A1 |
20100185150 | Zacharias | Jul 2010 | A1 |
20100249693 | Links | Sep 2010 | A1 |
20100280435 | Raney et al. | Nov 2010 | A1 |
20110092887 | Wong et al. | Apr 2011 | A1 |
20110092924 | Wong et al. | Apr 2011 | A1 |
20110092962 | Ma et al. | Apr 2011 | A1 |
20110098721 | Tran et al. | Apr 2011 | A1 |
20110160646 | Kadziauskas et al. | Jun 2011 | A1 |
20110208047 | Fago | Aug 2011 | A1 |
20110251569 | Turner et al. | Oct 2011 | A1 |
20120065580 | Gerg et al. | Mar 2012 | A1 |
20120078181 | Smith et al. | Mar 2012 | A1 |
20120083735 | Pfouts | Apr 2012 | A1 |
20120083736 | Pfouts et al. | Apr 2012 | A1 |
20120083800 | Andersohn | Apr 2012 | A1 |
20130072853 | Wong et al. | Mar 2013 | A1 |
20130169412 | Roth | Jul 2013 | A1 |
20130184638 | Scarpaci | Jul 2013 | A1 |
20130184676 | Kamen et al. | Jul 2013 | A1 |
20130245543 | Gerg et al. | Sep 2013 | A1 |
20130289475 | Muri et al. | Oct 2013 | A1 |
20130303978 | Ross | Nov 2013 | A1 |
20130336814 | Kamen et al. | Dec 2013 | A1 |
20140178215 | Baxter et al. | Jun 2014 | A1 |
20140188076 | Kamen et al. | Jul 2014 | A1 |
20140276424 | Davis et al. | Sep 2014 | A1 |
20160151564 | Magers et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2006235983 | May 2007 | AU |
3311104 | Sep 1984 | DE |
3826414 | Feb 1989 | DE |
56019 | Jul 1982 | EP |
424687 | May 1991 | EP |
619993 | Oct 1994 | EP |
1010437 | Jun 2000 | EP |
1072285 | Jan 2001 | EP |
1113562 | Jul 2001 | EP |
1464310 | Oct 2004 | EP |
1469440 | Oct 2004 | EP |
1550406 | Jul 2005 | EP |
1704839 | Sep 2006 | EP |
1779879 | May 2007 | EP |
1787606 | May 2007 | EP |
1849443 | Oct 2007 | EP |
1849444 | Oct 2007 | EP |
1857128 | Nov 2007 | EP |
1310267 | Jan 2008 | EP |
1873501 | Jan 2008 | EP |
1900347 | Mar 2008 | EP |
1925274 | May 2008 | EP |
1867349 | Nov 2008 | EP |
2264369 | Dec 2006 | ES |
2230301 | Oct 1990 | GB |
2352887 | Feb 2001 | GB |
2438679 | Dec 2007 | GB |
S5724482 | Feb 1982 | JP |
S58167333 | Oct 1983 | JP |
S62204463 | Sep 1987 | JP |
2005195653 | Jul 2005 | JP |
2008188110 | Aug 2008 | JP |
9220310 | Nov 1992 | WO |
9315777 | Aug 1993 | WO |
9317729 | Sep 1993 | WO |
9324082 | Dec 1993 | WO |
WO-9324082 | Dec 1993 | WO |
9405346 | Mar 1994 | WO |
9632144 | Oct 1996 | WO |
9737700 | Oct 1997 | WO |
9818507 | May 1998 | WO |
9917818 | Apr 1999 | WO |
0000096 | Jan 2000 | WO |
0070225 | Nov 2000 | WO |
0122696 | Mar 2001 | WO |
0226286 | Apr 2002 | WO |
0228449 | Apr 2002 | WO |
0234314 | May 2002 | WO |
03102878 | Dec 2003 | WO |
04096360 | Nov 2004 | WO |
2004114180 | Dec 2004 | WO |
05084728 | Sep 2005 | WO |
05092023 | Oct 2005 | WO |
05092047 | Oct 2005 | WO |
06101908 | Sep 2006 | WO |
06125280 | Nov 2006 | WO |
2007121144 | Oct 2007 | WO |
2007143677 | Dec 2007 | WO |
2007143797 | Dec 2007 | WO |
2007149637 | Dec 2007 | WO |
2008030872 | Mar 2008 | WO |
2008060859 | May 2008 | WO |
2008060902 | May 2008 | WO |
2008060995 | May 2008 | WO |
2009123547 | Oct 2009 | WO |
2010054146 | May 2010 | WO |
2010054225 | May 2010 | WO |
2010151704 | Dec 2010 | WO |
2012006425 | Jan 2012 | WO |
2012151062 | Nov 2012 | WO |
2013142009 | Sep 2013 | WO |
2015009945 | Jan 2015 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2016/049970, dated Dec. 5, 2016, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/066036, dated Jul. 4, 2016, 20 pages. |
Boyd, “Preparing for the Transition” in: The Art and the Science of Cataract Surgery, Chapter 7, 2001, pp. 93-133. |
Definition of “Parameter”, Retrieved from the Internet. |
English Human Translation of JP57024482 from Feb. 9, 1982. |
European Search Report for Application No. EP10164058, dated Jun. 25, 2010, 2 pages. |
European Search Report for Application No. EP13184138.9, dated Oct. 24, 2013, 7 pages. |
Examination Report dated Mar. 28, 2012 for European Application No. EP09791072 filed Jul. 31, 2009, 3 pages. |
Merritt R., et al., Wireless Nets Starting to link Medical Gear [online] 2004 [retrieved on Feb. 12, 2007]. Retrieved from the Internet. |
Phacoemulsification, [online] [retrieved on Jul. 1, 2009]. Retrieved from the Internet: , 2 pages. |
International Search Report and Written Opinion for Application No. PCT/US2016/061648, dated Feb. 7, 2017, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160067090 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61612307 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14686582 | Apr 2015 | US |
Child | 14940004 | US | |
Parent | 13776988 | Feb 2013 | US |
Child | 14686582 | US |