This patent arises from the U.S. national stage of International Patent Application Serial No. PCT/US2011/027229, having an International Filing Date of Mar. 4, 2011, which is hereby incorporated by reference in its entirety.
Fluid ejection systems employ a print head having print nozzles to expel fluid droplets onto print media, which dry to form images. To provide ink to the print nozzles, an ink reservoir or supply is fluidly coupled to the print head. To reduce operating costs, some fluid ejection systems employ an ink supply that is separately replaceable so that the print head is not discarded when an ink supply is depleted. However, fluid ejection systems having replaceable ink supplies may be susceptible to excessive air or gas accumulation within the fluid ejection system (e.g., a chamber adjacent the print nozzles). Excessive air or gas accumulation may affect printing quality, may cause print drool through the print nozzles and/or shorten the operational life of the print nozzles. To purge excessive air or gas that may accumulate within a fluid ejection system, the fluid ejection system may employ an air management system.
Certain examples are shown in the above-identified figures and described in detail below. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic for clarity and/or conciseness. Although the following discloses example methods and apparatus, it should be noted that such methods and apparatus are merely illustrative and should not be considered as limiting the scope of this disclosure. Further, although the illustrated examples described in the figures illustrate an air management system for use with on-axis fluid ejection systems or printing systems (e.g., ink jet printing systems), the example air management systems described herein may also be employed with off-axis fluid ejection systems. Further, while exemplary fluid-jet pen structures are described, the example air management systems described herein may be implemented with other replenishable or replaceable fluid pens, print assemblies, or any other fluid ejection printing system(s) that enable printing on media (e.g., paper).
Some known fluid ejection systems or print systems employ disposable fluid cartridges that have a fluid reservoir or fluid supply integral with a print head mechanism that expels fluid droplets on to a print media. When the fluid reservoir is depleted, the print assembly along with the print head mechanism is replaced. However, the print head mechanism typically has a significantly longer useful life than the time it takes to deplete the fluid within the print assembly. Thus, frequent replacement of the print head mechanism may result in higher printing costs.
To enable replenishment of a fluid supply (e.g., an ink supply) without having to replace a print head mechanism, some print assemblies employ a refillable or separately replaceable fluid supply cartridge or reservoir. For example, some known fluid ejection or printing systems employ a free-fluid print assembly that includes an on-board or on-axis, detachable or replaceable fluid supply or reservoir that can be replaced or refilled as needed. For example, a print head mechanism of the print assembly may be permanently attached to a printer and the fluid reservoir may be removably attached to the print head mechanism. Additionally, to reduce the size of printers, some known fluid ejection systems employ a print head mechanism that is fluidly coupled to a separate, self-contained fluid supply reservoir that is away from the print head mechanism (e.g., “off-axis” printing).
Using a refillable or replaceable fluid supply cartridge can significantly reduce the cost of a fluid ejection system because a fluid supply cartridge or reservoir may be replaced or refilled without requiring replacement of a costly print head mechanism. However, print assemblies having refillable or replaceable fluid supply cartridges are susceptible to excessive air or gas (e.g., air) accumulation within the print assembly. Excessive air or gas accumulation affects the print quality of the fluid ejection or printing system. For example, excessive air accumulation within the print assembly may act to restrict flow and may cause print head starvation, thereby preventing the ejection of fluid droplets from the print head mechanism. To purge excessive air or gas accumulation, fluid ejection systems usually employ an air management system.
Some known example print assemblies employ an air management system having a holding chamber to hold or store air or gas accumulated within the print assembly. The holding chamber is sized based on a predicted amount of gas or air that may be generated over the life of the print head mechanism. However, this air management system requires accurate sizing of the holding chamber based on a predicted accumulation of air or gas over the life of the print head mechanism. However, such an air management system may be inaccurately sized and/or may increase the overall dimensional envelope of the print assembly.
In other known fluid ejection systems, to remove air or gas from the print assembly, a known air management system employs push or vacuum priming to push or pull air and gas through the print head mechanism. However, such known methods require frequent priming of the print assembly, which may result in a significant amount of fluid or ink waste and may affect the quality of the print head mechanism. To purge air or gas from another known fluid ejection system, an air management system employs at least one mechanical valve in combination with a pump. However, such a known system requires a servo motor to mechanically open each mechanical valve and such additional components significantly increase the costs of the fluid ejection system.
Example methods, systems and apparatus described herein overcome at least the foregoing problems and improve an air/gas purging operation of a fluid ejection system while employing a cost-effective air management system. More specifically, the example methods and apparatus described herein provide a printing apparatus or print assembly having an air management system for removing or purging unwanted air or gas that accumulates in the fluid ejection system.
An example air management system described herein purges air or gas that accumulates in a filter-side chamber (e.g., an area under a standpipe filter) adjacent a print head assembly into an inlet chamber without purging the air or gas via a nozzle of the print head mechanism in fluid communication with the filter-side chamber. The purged air is to be stored in a fluid supply cartridge until the fluid supply cartridge has been depleted and the fluid supply cartridge is replaced or refilled with fluid. To control fluid flow between the chambers, the print head assembly employs a valve system.
An example valve system described herein employs one or more valves that provide a uni-directional purging flow path during an air purging operation. For example, an air management system described herein employs a first valve (e.g., a check valve) to control fluid flow between a filter-side chamber (e.g., a manifold of a print head mechanism) and a return or valve chamber, and a second valve to control fluid flow between the return chamber and an inlet chamber. In particular, during an air purge operation, the first and second valves cooperate to purge air from the filter-side chamber to the inlet chamber via the return chamber. To activate the valve system, the fluid ejection system employs a pressure source (e.g., a pump) to provide a series of pressure pulses during an air purge operation.
Unlike some known air management systems that require periodic or frequent air purging operations to occur prior to a print job after the printer has been idle for a period of time (e.g., a week), the example air management system described herein allows for uninterrupted printing during the life of the fluid supply. In other words, the air management system is activated to purge air or gas from the print assembly only after a fluid supply has been replenished, replaced or refilled and is not activated again until another fluid supply is once again replenished, replaced or refilled. Reducing the number of air purging operations significantly reduces the amount of fluid waste that would otherwise occur with some known air management systems and maintains a healthy print head mechanism.
Additionally, unlike some known print assemblies, the example valve systems described herein prevent unfiltered fluid stored in a fluid reservoir and/or the inlet chamber from flowing to the print head mechanism due to fluid sloshing during either a printing operation or during handling or transportation of the print assembly. Unfiltered fluid may have particles or contaminates that may hinder a print head.
The pen assembly 102 includes a pen body 106, a pen housing 108 and a print head assembly 110. The print head assembly 110 is coupled to an end 112 of the pen body 106 and expels or ejects fluid droplets (e.g., ink droplets) onto a print media in a direction illustrated by arrow 114. The print head assembly 110 of the illustrated example defines a manifold 116 and includes a flex circuit 118 and an orifice or nozzle plate 120 that has an array of print head nozzles to expel or eject fluid droplets onto a print media. Thermal excitation of ink near the nozzles ejects fluid droplets through the nozzles and onto a print medium. To provide thermal excitation, the nozzle plate 120 may include heating elements such as, for example, resistors, etc. In other examples, other types of fluid droplet generators may be employed such as, for example, piezoelectric transducers.
To fluidly couple the print head assembly 110 and the fluid supply cartridge 104, the pen body 106 includes the pen housing 108. As described in greater detail below in connection with
The removable fluid supply cartridge 104 of the illustrated example is an on-board, on-axis detachable reservoir that can be refilled or replaced as needed. More specifically, the fluid supply cartridge 104 is removably coupled to the pen body 106 and can be replaced (or refilled) without having to replace the print head assembly 110. The fluid supply cartridge 104 of the illustrated example has a body 126 defining a fluid chamber or reservoir 128 that holds a fluid supply. The body 126 includes an air inlet channel 132 and a fluid outlet channel 134. To couple the fluid supply cartridge 104 to the pen body 106, the body 126 of the fluid supply cartridge 104 includes a channel 136 to receive a guide or support 138 of the pen housing 108. When the fluid supply cartridge 104 is coupled to the pen body 106, the fluid reservoir 128 is in fluidic communication with the print head assembly 110 via the passageway 122.
To prevent free flow of fluid to the nozzles when the print head assembly 110 is not activated, the fluid jet printing system provides fluid from the fluid reservoir 128 to the print head assembly 110 at a pressure that is lower than ambient atmospheric pressure (e.g., a backpressure or negative pressure). For example, the pressure of a fluid 130 within the passageway 122 is between approximately −10 and −5 inches of water column. Without such a backpressure control mechanism, the fluid 130 may leak or drool through the nozzles onto a printing surface when the print head assembly 110 is in an inactive state.
The fluid supply cartridge 104 of the illustrated example includes a backpressure control mechanism. The fluid reservoir 128 of the illustrated example is a fluid cartridge spring bag having a variable volume, fluid filled bladder that defines a variable reservoir of the fluid supply cartridge 104. To create a negative pressure inside the fluid reservoir 128, a spring, for example, imparts a lateral or outward force on the variable volume fluid reservoir 128 to provide a backpressure (a negative pressure of −5 w.c.). As the fluid 130 is depleted, the fluid reservoir 128 progressively collapses toward a center of the body 126 until substantially all of the fluid 130 has been depleted from the fluid reservoir 128. Also, the spring is to collapse with the fluid reservoir 128 but is calibrated with sufficient spring force to bias the reservoir 128 slightly outwardly to maintain or provide a negative pressure as the fluid is depleted and the reservoir 128 collapses. In some examples, a backpressure mechanism such as, for example, a regulator (a spring loaded lever and bag or spring bag regulator) may be disposed within the pen assembly 102 to regulate the pressure of the pen assembly 102 when the fluid is supplied from an on-axis or off-axis fluid reservoir. For example, in an off-axis configuration, a fluid delivery system (e.g., a reservoir and regulator valve) may be fluidly coupled to the body 126 via an inlet 139, which draws in fluid (e.g., ink). For an on-axis system, the regulator may draw in air via the inlet 139. In other examples, any suitable backpressure mechanism may be employed.
During print job or a fluid supply cartridge change, gas or air may accumulate adjacent the print head assembly 110 or flow channel 124, thereby restricting the ability of the print head assembly 110 to receive and/or deliver fluid to a print media.
To prevent excessive accumulation of air or gas, the pen assembly 102 of the illustrated example employs an air management system 140 that includes a valve system 142. To purge gas or air, the air management system 140 is activated, for example, after the fluid supply cartridge 104 has been replaced with another fluid supply cartridge. To activate the valve system 142 of the illustrated example, the air management system 140 employs a pressure source 144. When the valve system 142 is activated, the valve system 142 purges or returns gas and/or air adjacent the print head assembly 110 to the fluid reservoir 128 as described in greater detail below.
The pressure source 144 of the illustrated example is a pump that is fluidly coupled to the fluid reservoir 128. To fluidly couple the pressure source 144 to the fluid reservoir 128, the pen body 106 includes an air supply manifold 146. The air supply manifold 146 fluidly couples the pressure source 144 to the fluid supply cartridge 104 via tubing 148. A coupler 150 (e.g., a rubber seal) having a passageway 152 fluidly couples the air supply manifold 146 to the air inlet channel 132 of the fluid supply cartridge 104. The coupler 150 of the illustrated example is composed of a rubber material to provide seal between the pen body 106 and the body 126 of the fluid supply cartridge 104.
The body 202 of the pen housing 108 of the illustrated example defines one or more fluid compartments or chambers. The body 202 of the illustrated example defines a first or inlet chamber 206 and a second or return chamber 208. The return chamber 208 is separated from the inlet chamber 206 via a middle or internal wall 210. The internal wall 210 of the illustrated example is disposed between a first outer side wall 212 and a second outer side wall 214. The body 202 also includes a first laterally extending wall 216 extending between the internal wall 210 and the first outer side wall 212 and a second laterally extending wall 218 extending between the internal wall 210 and the second outer side wall 214. The first laterally extending wall 216 defines a first valve seat 220 and the second laterally extending wall 218 defines a second valve seat 222. Thus, the valve seats 220 and 222 of the illustrated example are integrally formed with the pen housing 108 as a unitary piece or structure. Further, an inner surface 224a of the return chamber 208 and/or a surface 224b of the internal wall 210 may be tapered between the valve seat 220 and an upper end 226 of the return chamber 208.
To prevent fluid from escaping through the body 202, the upper end 226 of the return chamber 208 includes a cap 228. The area of the return chamber 208 between the valve seat 222 and the cap 228 defines an air spring chamber 230. The cap 228 may be a rigid member such as, for example, a plastic cap, a metallic cap, etc. However, in other examples, the cap 228 may be a flexible membrane to provide a variable volume return chamber 208 that expands to enable the air spring chamber 230 to hold more air.
To remove contaminates from the fluid 130, the pen housing 108 employs a porous mesh barrier or filter 232. The filter 232 of the illustrated example is coupled to a lower surface 234 of the pen housing 108 beneath the inlet chamber 206. In particular, the filter 232 of the illustrated example is disposed at an angle relative to first outer side wall 212 of the body 202 and slopes upward toward the return chamber 208. The filter 232 has openings sized to prevent passage of contaminate particles past the inlet chamber 206. The filter 232 of the illustrated example is a mesh screen or membrane fabricated of a material such as, for example, stainless steel or any material that does not react with the fluid 130. For example, the filter 232 may be a stainless steel mesh screen having openings that each have diameters of approximately 10-12 microns.
When coupled to the pen body 106, the lower surface 234 of the pen housing 108 and the filter 232 partially define a filter-side chamber 236 when the pen housing 108 is coupled to the pen body 106. For example, the filter-side chamber 236 is fluidly coupled to the manifold 116 and the flow channel 124.
To collect gas bubbles that form or develop in the filter-side chamber 236 (e.g., the manifold 116 or the flow channel 124), the body 202 and the filter-side chamber 236 defines a gas accumulation area 238 adjacent an inlet 240 of the return chamber 208. For example, the internal wall 210 and the first outer side wall 212 partially define the gas accumulation area 238. The gas accumulation area 238 of the illustrated example is positioned adjacent the inlet chamber 206 and at least partially above the filter 232.
To control fluid flow between the chambers 206, 208 and 236, the pen housing 108 employs the valve system 142. The valve system 142 includes a first valve 242 (a check ball valve) to control fluid flow between the filter-side chamber 236 and the return chamber 208, and a second valve 244 to control fluid flow between the return chamber 208 and the inlet chamber 206. In the illustrated example, the first valve 242 is a check valve and the second valve 244 is a one-way, normally closed valve. More specifically, the first valve 242 is a ball valve composed of a material having a density that is greater than the density of the fluid 130. For example, the ball valve may be composed of stainless steel, plastic or any other suitable material having a density greater than the density of the fluid 130. To limit a travel of the first valve 242, the valve system 142 of the illustrated example also includes a retainer 246 disposed within the return chamber 208 above the first valve 242. In the illustrated example, the retainer 246 is composed of Polypropylene. However, in other examples, the retainer 246 may be composed of stainless steel, plastic, a composite, or any other suitable material(s).
The second valve 244 of the illustrated example is depicted as an umbrella valve. However, in other examples, the second valve 244 may be any other suitable one-way, normally-closed valve. The first and second valves 242, 244 cooperate to purge air that accumulates in the filter-side chamber 236 into the inlet chamber 206 via the return chamber 208 without purging the same via a nozzle of the print head assembly 110.
To detect the level of the fluid 130 within the inlet chamber 206, the pen housing 108 employs one or more fluid sensors 248a, 248b (e.g., metallic pins). The pen housing 108 of the illustrated example includes a first fluid sensor 248a and a second fluid sensor 248b. For example, the fluid sensors 248a, 248b complete an electrical circuit when fluid in the inlet chamber 206 is present. When the fluid level drops below the first fluid sensor 248a, an electrical signal is altered due to an increased in resistance in the circuit. The electrical signal is sent to a controller of the fluid ejection system when the level of the fluid 130 in the inlet chamber 206 is at a low level and/or an empty or depleted level. The sensors 248a, 248b of the illustrated example are electrically coupled to a controller of the fluid ejection system via the flex circuit 118.
To prevent fluid in the inlet chamber 206 from drooling through the nozzles of the print head assembly 110 when the fluid supply cartridge 104 is removed during a supply change, the pen housing 108 of the illustrated example employs the bubble generator or control device 250. The control device 250 is disposed within the inlet chamber 206 and includes an opening 252 in fluid communication with a passageway 254 of the needle 204 and, thus, the fluid reservoir 128. When the fluid supply cartridge 104 is removed, air may flow through the passageway 254 of the needle 204 and causes the pressure within the fluid inlet chamber 206 to increase to atmospheric or ambient pressure, which may cause fluid 130 within the inlet chamber 206 to escape via the nozzles of the print head assembly 110. However, a meniscus of fluid forms across the opening 252 of the control device 250 and a surface tension of the fluid across the opening 252 prevents air flow through the passageway 254 and into the inlet chamber 206 until another fluid supply cartridge is coupled to the pen housing 108. In other words, the meniscus of fluid across the opening 252 acts as a plug to prevent air from flowing into the inlet chamber 206 and, thus, prevents ink drool via the nozzles when the fluid supply cartridge 104 is removed from the pen housing 108.
Additionally, the control device 250 controls the level of the fluid 130 in the inlet chamber 206. In other words, the fluid 130 from the fluid supply reservoir 128 flows into the inlet chamber 206 until the fluid level is substantially aligned with the opening 252 of the control device 250. The opening 252 of the control device 250 of the illustrated example is above the fluid sensors 248a, 248b.
In the illustrated example, the pen housing 108 is a unitary piece or structure that may be formed via injection molding. The first valve 242, the second valve 244, the retainer 246 and the sensors 248a, 248b may be assembled or coupled to the pen housing 108. The filter 232 and the cap 228 may then be coupled to the pen housing 108 via, for example, bonding, adhesive, welding, etc. The pen housing 108 may then be coupled to the pen body 106 via, for example, adhesive, plastic welding, over molding or any other suitable manufacturing process(es).
The stem 510 of the illustrated example is disposed within the orifice 506 of the valve seat 222. When disposed within the orifice 506, the partial peripheral edge 514 engages an upper surface 520 of the valve seat 222 to retain or couple the second valve 244 to the pen housing 108. When coupled to the valve seat 222, the second valve 244 is in the normally closed position 502 such that the flexible body 512 engages a sealing surface 522 of the valve seat 222. In particular, a length of the stem 510 and a thickness of the valve seat 222 are dimensioned such that a preload is imparted to a peripheral edge 524 of the flexible body 512 when the second valve 244 is coupled to the valve seat 222. The preload provided to the peripheral edge 524 of the flexible body 512 causes the flexible body 512 of the second valve 244 to obstruct or block an outlet 526 of the orifice 506 to prevent or substantially restrict fluid flow across the valve seat 222. The second valve 244 remains in the normally closed position 502 as shown in
Referring to
In operation, a controller activates the nozzles of the print head assembly 110 to expel or eject fluid onto a media traversing below the print head assembly 110. As noted above, the pressure within the inlet chamber 206 and, thus, the manifold 116 of the print head assembly 110 is negative or below atmospheric pressure. For example, the pressure within the pen body 106 may be between negative ten and negative five inches of water column (−10.0 wc to −5.0 wc). To eject a fluid droplet 606 from each nozzle onto a media, a pulse of current is passed through a heating element (e.g., via the flex circuit 118) causing a rapid vaporization of the fluid 130 in the nozzle adjacent the manifold 116 to form a bubble, which causes a large pressure increase to propel the fluid droplet 606 onto the media and drawing fluid 130 from the inlet chamber 206. The surface tension of the fluid, as well as condensation and contraction of a vapor bubble, pulls a further charge of fluid into a nozzle through the passageway 122 fluidly coupled to the fluid reservoir 128.
The fluid 130 may contain dissolved fluid (e.g., gas or air) that outgases in the print head assembly 110 during operation. The fluid travels up to the filter-side chamber 236 or the flow channel 124 via the manifold 116 illustratively depicted by arrow 608. The filter 232 prevents or restricts the gas or air from flowing within the inlet chamber 206. In particular, a meniscus of fluid forms over each aperture of the filter 232 due to the surface tension of the fluid and significantly restricts or prevents air or gas flow through the filter 232 from the filter-side chamber 236 toward the inlet chamber 206. Any gas or air bubbles trapped in the manifold 116 or the filter-side chamber 236 below the filter 232 float upward at an angle toward the gas accumulation area 238.
As shown in
The increase in pressure of the fluid in the filter-side chamber 236 causes the first valve 242 to move away from the valve seat 220 to an open position 706. In the open position 706, the first valve 242 allows the air or gas 702 in the gas accumulation area 238 to flow into the return chamber 208. Because the pressure in the return chamber 208 is lower than the pressurized filter-side chamber 236 when the first valve 242 initially moves to the open position 706, the air and gas 702 flows into the return chamber 208 until the pressure in the return chamber 208 is approximately substantially similar to, or equalizes with, the pressure in the filter-side chamber 236.
Further, because the pressure in both the return chamber 208 and the inlet chamber 206 are substantially equal when the air and gas 702 flows into the return chamber 208, the second valve 244 remains in the closed position 502 to prevent fluid flow between the pressurized return chamber 208 and the pressurized inlet chamber 206 (i.e., the pressure differential across the second valve 244 is less than a cracking pressure of the second valve 244). Further, the pressure in the inlet chamber 206 acts on the flexible body 512 of the second valve 244 in a direction toward the valve seat 222 to help prevent the second valve 244 from moving to the open position 504. Thus, as pressurized fluid flows into the return chamber 208, the air or gas 702 in the return chamber 208 accumulates in the air spring chamber 230 adjacent the cap 228 and the second valve 244 prevents back flow from the inlet chamber 206 to the return chamber 208. The air or gas 702 compresses when pressurized and accumulates in the return chamber 208 adjacent the cap 228. In the compressed state, the air or gas 702 provides or acts as an air spring.
As shown in
The second valve 244 moves to the open position 504 when the pressure differential across the second valve 244 is greater than the cracking pressure of the second valve 244. In the open position 504, the second valve 244 allows fluid flow from the pressurized return chamber 208 into the depressurized inlet chamber 206 until the pressure differential across the second valve 244 is less than the cracking pressure of the second valve 244. In other words, pressure in the return chamber 208 bleeds off and equalizes with the pressure of the inlet chamber 206 to, for example, −5 wc. The greater the amount of air or gas 702 that is compressed within the air spring chamber 230 of the return chamber 208, the greater the volume of fluid that is purged between the return chamber 208 and the inlet chamber 206 when the second valve 244 is in the open position 504. In particular, as the volume of fluid moves between the return chamber 208 and the inlet chamber 206, the air or gas 702 also moves to the fluid reservoir 128 via the needle 204. Due to its buoyancy, the air or gas 702 will be primarily pulled into the fluid reservoir 128.
As shown in
The pen housing assembly 800 of the illustrated example includes a plurality of pen housings 802-808 supported by a base 810. Each of the pen housings 802-808 is adapted to be coupled to a pen body (e.g., a pen body 106 of
Each of the pen housings 802-808 is constructed substantially similar to the pen housing 108 of
The foregoing description, therefore, should not be construed to limit the scope of the disclosure, which is defined in the claims that follow the description.
The example methods and apparatus described above were developed in an effort to improve the performance of an air management system of in fluid ejection system such as an inkjet printer and to reduce the costs associated with maintaining the print head assembly. Thus, embodiments of the disclosure are described with reference to an air management system for a fluid ejection system. As noted at the beginning of this Description, the examples shown in the figures and described above illustrate but do not limit the disclosure. Other forms, details, and embodiments may be made and implemented. Therefore, the foregoing description should not be construed to limit the scope of the disclosure, which is defined in the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/027229 | 3/4/2011 | WO | 00 | 8/22/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/121693 | 9/13/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6050682 | Pawlowski, Jr. et al. | Apr 2000 | A |
6270211 | Long et al. | Aug 2001 | B1 |
7819515 | Silverbrook et al. | Oct 2010 | B2 |
8480214 | Tsubaki | Jul 2013 | B2 |
20020167571 | Hayashi et al. | Nov 2002 | A1 |
20030038865 | Inamura | Feb 2003 | A1 |
20030202057 | Childs et al. | Oct 2003 | A1 |
20030202072 | Childs et al. | Oct 2003 | A1 |
20050264626 | Childs et al. | Dec 2005 | A1 |
20060033791 | Suzuki et al. | Feb 2006 | A1 |
20060132554 | Ota et al. | Jun 2006 | A1 |
20060187278 | Langford et al. | Aug 2006 | A1 |
20070052775 | Jung | Mar 2007 | A1 |
20080043076 | Coffey et al. | Feb 2008 | A1 |
20080297546 | Lee et al. | Dec 2008 | A1 |
20090009569 | Sasaki | Jan 2009 | A1 |
20090027461 | Asada | Jan 2009 | A1 |
20090267976 | Lee et al. | Oct 2009 | A1 |
20100053285 | Ito | Mar 2010 | A1 |
20100194830 | Yoshiike | Aug 2010 | A1 |
20100201759 | Kawase et al. | Aug 2010 | A1 |
20100289856 | Yamamoto et al. | Nov 2010 | A1 |
20120075390 | Park et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
101861246 | Oct 2010 | CN |
2006224312 | Aug 2006 | JP |
20020049716 | Jun 2002 | KR |
200924987 | Jun 2009 | TW |
Entry |
---|
International Searching Authority, “International Search Report,” issued in connection with international application serial No. PCT/US2011/027229, issued Nov. 25, 2011, 3 pages. |
International Searching Authority, “Written Opinion,” issued in connection with international application serial No. PCT/US2011/027229, issued Nov. 25, 2011, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130335493 A1 | Dec 2013 | US |