Valve timing adjusting device

Information

  • Patent Grant
  • 6637388
  • Patent Number
    6,637,388
  • Date Filed
    Tuesday, July 10, 2001
    23 years ago
  • Date Issued
    Tuesday, October 28, 2003
    21 years ago
Abstract
A valve timing adjusting device has a lock mechanism for restricting a rotational motion of an internal rotor 7 relative to an external rotor 5. The lock mechanism has a plunger 45, which is movable along a radial direction of the external rotor 5 and restricts the rotational motion of the internal rotor 7 relative to the external rotor 5 on condition that the prevention of the rotational motion of the internal rotor 7 relative to the external rotor 5 is removable, a receiving hole 7a, which is arranged on an outer circumferential surface of the internal rotor 7 and receives the plunger 45, a spring 21, which presses the plunger 45 inwardly along the radial direction of the external rotor 5 by a prescribed pressure, a holder 46, which determines a position of the spring 21, and a knock pin 47 which prevents the holder 46 from being moved outwardly along the radial direction of the external rotor 5.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a valve timing adjusting device in which an open-close timing of a suction (or intake) valve or an exhaust valve of an engine is changed according to operation conditions of the engine.




2. Description of Related Art




A prior-art example of a vane type valve timing adjusting device is disclosed in the Published Unexamined Japanese Patent Application H9-303118 (1997). In this valve timing adjusting device, a cam shaft is driven with a timing pulley or a chain sprocket which is rotated in synchronization with the rotation of a crank shaft of an engine, and a suction valve or an exhaust valve is opened or closed according to a phase difference based on a rotational movement of the cam shaft relative to the timing pulley or the chain sprocket.





FIG. 1

to

FIG. 3

are drawings respectively showing a vane type conventional valve timing adjusting device.

FIG. 1

is a vertical sectional view of the valve timing adjusting device, and FIG.


2


and

FIG. 3

are respectively sectional views taken substantially along line A—A of FIG.


1


.

FIG. 2

shows the valve timing adjusting device set in a position condition in which a cam shaft is placed at a maximally spark-lag (or timing-retarded) position in phase with respect to the rotation of a timing pulley, and

FIG. 3

shows the valve timing adjusting device set in a position condition in which a cam shaft is placed at a maximally spark-advance (or timing-advance) position in phase with respect to the rotation of a timing pulley. In

FIG. 1

,


1


indicates a valve timing adjusting device.


2


indicates a cam shaft for a suction valve. The cam shaft


2


is rotatably supported by a cylinder head (not shown). As shown in

FIG. 1

, a timing pulley


3


is arranged on a top portion of the cam shaft


2


to receive a rotational force of a crank shaft (not shown) of an engine through a belt or chain. An external rotor


5


is integrally fixed to the timing pulley


3


by using a plurality of bolts


4


to prevent a rotational movement of the timing pulley


3


relative to the external rotor


5


. A cover


6


is fixed to one end of the external rotor


5


by using the bolts


4


. In an internal opening of the external rotor


5


, an internal rotor


7


is arranged. A length of the internal rotor


7


in an axial direction of the cam shaft


2


is almost equal to that of the external rotor


5


. The internal rotor


7


is integrally fitted to the top portion of the cam shaft


2


by a bolt


9


so as to place the timing pulley


3


between a protruding portion


8


of the cam shaft


2


and the internal rotor


7


. In the inside of the cam shaft


2


, a spark-advance oil passage


10


and a spark-lag oil passage


11


are formed by drilling work so as to extend in the axial direction of the cam shaft


2


. The spark-advance oil passage


10


and the spark-lag oil passage


11


lead to an oil supply source (not shown) through an oil supply channel


12


and an oil discharge channel


13


which are arranged in a cylinder head (not shown).




As shown in FIG.


2


and

FIG. 3

, on the inner circumferential side of the external rotor


5


, five pressure chambers


15


and a supporting hole


16


are formed. The five pressure chambers


15


are partitioned by a plurality of portioning walls (or a plurality of shoes)


14


of the external rotor


5


, and the supporting hole


16


extends in a radial direction of the external rotor


5


. A leading hole


17


is arranged in near to the center of the bottom of the supporting hole


16


, and a diameter of the leading hole


17


is smaller than that of the supporting hole


16


. A slide pin


18


is inserted into the leading hole


17


. A slide pin supporting portion


19


is integrally formed with the slide pin


18


so as to be formed into the bottom portion of the slide pin


18


. A ring member


20


is fixedly attached to the outer circumferential surface of the supporting hole


16


, and a spring


21


is arranged in a position between the slide pin supporting portion


19


and the ring member


20


so as to press the slide pin


18


toward the inner circumferential side of the external rotor


5


. Here, the ring member


20


is inserted into the supporting hole


16


with a fixed force or is screwed to the outer circumferential surface of the supporting hole


16


to be fixed in the supporting hole


16


. Therefore, the ring member


20


functions as a supporting seat to fix one end of the spring


21


at a prescribed position.




On the outer circumferential surface of the inner rotor


7


, five vanes


22


are fitted to the inner rotor


7


so as to be placed in the five pressure chambers


15


respectively. Each vane


22


can be rotated in a circle-circumferential direction of the cam shaft


2


in the corresponding pressure chamber


15


, and the vanes


22


divide the five pressure chambers


15


into a group of spark-advance hydraulic oil chambers


23


,


24


,


25


,


26


and


27


and a group of spark-lag hydraulic oil chambers


28


,


29


,


30


,


31


and


32


. An oil pressure in each spark-advance hydraulic oil chamber


23


,


24


,


25


,


26


or


27


is adjusted by oil supplied or discharged through the spark-advance oil passage


10


and a spark-advance oil passage


33


,


34


,


35


,


36


or


37


. Also, an oil pressure in each spark-lag hydraulic oil chamber


28


,


29


,


30


,


31


or


32


is adjusted by oil supplied or discharged through the spark-lag oil passage


11


and a spark-lag oil passage


38


,


39


,


40


,


41


or


42


.


43


indicates a receiving hole. arranged in the internal rotor


7


. The slide pin


18


can be inserted into the receiving hole


43


.


44


indicates an oil passage leading to the receiving hole


43


. The oil passage


44


leads to the spark-advance oil passage


10


and the spark-advance oil passages


33


,


34


,


35


,


36


and


37


.




Next, an operation is described.




In the position condition shown in

FIG. 2

, the cam shaft


2


is placed at a maximally spark-lag position with respect to the rotation direction of the timing pulley


3


shown by an arrow of FIG.


2


. When the timing pulley


3


is rotated with a crank shaft (not shown), the rotational-force of the timing pulley


3


is transmitted to the cam shaft


2


, which can not rotate relative to the timing pulley


3


, through the slide pin


18


, and the cam shaft


2


is rotated in the rotation direction indicated by the arrow of FIG.


2


.




Here, the phase of each vane


22


can be changed in the rotation direction of the cam shaft


2


, and information relating to a rotation frequency in an engine and a driving power of the engine is sent to a control circuit (not shown). Therefore, in cases where it is judged in the control circuit that the advance of the cam shaft


2


in phase with respect, to the rotation of the timing pulley


3


is preferred, oil is supplied to the spark-advance oil passage


10


, oil of the spark-lag oil passage


11


is discharged, and the phase of the cam shaft


2


with respect to the timing pulley


3


is changed. More precisely, a control valve (not shown) leading to both the oil supply channel


12


and the oil. discharge channel


13


is controlled so as to supply oil to the spark-advance oil passage


10


. The oil supplied to the spark-advance oil passage


10


flows into the oil passage


44


, and the oil pushes the top portion of the slide pin


18


against the resilient force of the spring


21


. In the position condition shown in

FIG. 2

, the top end of the spark-advance oil passage


33


does not lead to the spark-advance hydraulic oil chamber


23


, and the top end of the spark-advance oil passage


37


does not lead to the spark-advance hydraulic oil chamber


27


. Therefore, the oil pressure in the oil passage


44


is necessarily increased by the oil which is supplied from the spark-advance oil passages


34


,


35


and


36


to the spark-advance hydraulic oil chambers


24


,


25


and


26


respectively, the slide pin


18


is pushed out from the receiving hole


43


, and each vane


22


moved with the cam shaft


2


is rotated in the rotation direction indicated by the arrow of FIG.


2


. When the cam shaft


2


is rotated by a prescribed angle, the top ends of the spark-advance oil passages


33


and


37


lead to the spark-advance hydraulic oil chambers


23


and


27


, and the oil is supplied to the spark-advance hydraulic oil chambers


23


and


27


. In contrast, the oil placed in the spark-lag hydraulic oil chambers


28


,


29


,


30


,


31


and


32


is discharged through the spark-lag oil passages


38


,


39


,


40


,


41


and


42


and the spark-lag oil passage


11


. Therefore, each vane


22


is rotated and moved to the maximally spark-advance position shown in

FIG. 3

by using an oil pressure difference between both hydraulic oil chambers placed on the both sides of the vane


22


. Thus the cam shaft


2


is advanced in phase with respect to the rotation of the timing pulley


3


.




In contrast, in cases where it is desired to move the cam shaft


2


to a spark-lag position in phase with respect to the rotation of the timing pulley


3


, oil is supplied in an opposite direction to move each vane


22


placed in the maximally spark-advance position shown in

FIG. 3

to the maximally spark-lag position shown in FIG.


2


. In detail, the control valve (not shown) is controlled so as to supply oil from the spark-lag oil passage


11


to the spark-lag hydraulic oil chambers


28


,


29


,


30


,


31


and


32


through the spark-lag oil passages


38


,


39


,


40


,


41


or


42


, and the oil placed in the spark-advance hydraulic oil chambers


23


,


24


,


25


,


26


and


27


is discharged through the spark-advance oil passages


33


,


34


,


35


,


36


and


37


and the spark-advance oil passage


10


. Therefore, each vane


22


is rotated and moved to the maximally spark-lag position shown in

FIG. 2

by using an oil pressure difference between both hydraulic oil chambers placed on the both sides of the vane


22


. In this position condition, when the timing pulley


3


is rotated, the slide pin


18


, which is pushed by the spring


21


toward the cam shaft


2


, is inserted into the receiving hole


43


, and rotation of the cam shaft


2


relative to the timing pulley


3


is prevented.




However, in the conventional valve timing adjusting device, the ring member


20


is inserted into the supporting hole


16


with a fixed force or is screwed to the outer circumferential surface of the supporting hole


16


to be fixed in the supporting hole


16


. Therefore, for example, the fitting of the ring member


20


to the outer circumferential surface of the supporting hole.


16


may easily become loosened because of a failure in the press fitting of the ring member


20


. Otherwise the fitting of the ring member


20


may easily become loosened because of both a temperature change and a difference in a coefficient of linear thermal expansion between the ring member


20


and the external rotor


5


, or the screwed connection of the ring member


20


with the outer circumferential surface of the supporting hole


16


is easily loosened because of vibration. As a result, the position of the ring member


20


is shifted, and the spring


21


, which gives the resilient force toward a shaft center of the valve timing adjusting device, is set to an unnecessarily prolonged length. Therefore, the resilient force of the spring


21


is lowered, and there is probability that the slide pin


18


comes out from the receiving hole


43


. In this case, even though it is required to prevent the rotational motion of the inner rotor


7


relative to the external rotor


5


, there is probability that the prevention of the rotational motion of the inner rotor


7


relative to the external rotor


5


is impossible. Also, in extreme cases, there is probability that the ring member


20


comes out from the supporting hole


16


. In this case, there is probability that complete failure is caused in the valve timing adjusting device.




SUMMARY OF THE INVENTION




An object of the present invention is to provide, with due consideration to the drawbacks of the conventional valve timing adjusting device, a valve timing adjusting device in which a preventing means for preventing a position change in a holding means such as the ring member


20


is arranged to ensure prevention of detachment of the holding means and to ensure prevention of a position change of the holding means. The preventing means functions as a relative rotational motion preventing means to reliably prevent rotational motion of the inner rotor


7


relative to the external rotor


5


and to reliably remove the prevention of the relative rotational motion.




A valve timing adjusting device according to the present invention comprises a first rotation member which has a plurality of shoes and is arranged so as to be rotatable around a cam shaft, a second rotation member which has a plurality of vanes, is arranged in an internal hole of the first rotation member, is arranged to allow rotational motion relative to the first rotation member within a prescribed angle range and is fixed to the cam shaft, a spark-lag hydraulic oil chamber and a spark-advance hydraulic oil chamber which are respectively arranged between each vane of the second rotation member and the corresponding shoe of the first rotation member, and a lock mechanism for preventing the rotational motion of the second rotation member relative to the-first rotation member while being operated along a radial direction of the first rotation member. The lock mechanism comprises a restricting means, which is movable in the radial direction of the first rotation member, for restricting the rotational motion of the second rotation member relative to the first rotation member on condition that the prevention of the rotational motion of the second rotation member relative to the first rotation member is removable, a receiving hole, which is arranged on an outer circumferential surface of the second rotation member, for receiving the restricting means, a force giving means forgiving the restricting means a force which is directed inwardly along the radial direction of the first rotation member, a holding means for positioning the force giving means, and a preventing means for preventing the holding means from being moved outwardly along the radial direction of the first rotation member. Therefore, the preventing. means can prevent the holding means from moving outwardly along the radial direction of the first rotation member. Also, the preventing means can prevent the force giving means from moving outwardly along the radial direction of the first rotation member. Therefore, the preventing means can prevent the restricting means from early detaching from the receiving hole when the rotational motion of the second rotation member relative to the first rotation member is prevented, the slide pin


18


can be reliably caught by a receiving hole


43


if necessary. Accordingly, the rotational motion of the second rotation member relative to the first rotation member can be reliably prevented.




Also, in the valve timing adjusting device according to the present invention, the preventing means, for example, using a knock pin is arranged in the first rotation member along an axial direction of the first rotation member, and a top end of the preventing means is caught by the holding means. In this case, because the preventing means is caught by the holding means, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the holding means has a smaller diameter portion at an outside position along the radial direction of the first rotation member, the holding means has an uneven portion composed of the smaller diameter portion and a larger diameter portion adjacent to the smaller diameter portion, a top portion of the preventing means is caught by the uneven portion. In this case, because the preventing means is caught by the uneven portion, the holding means and the restricting means can be easily, prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, one end of the preventing means, which penetrates through the first rotation member in an axial direction of the first rotation member, is supported to allow rotational motion of the preventing means relative to the cam shaft and is caught by a third rotation member, and the other end of the preventing means is caught by the holding means. In this case, when a positioning means for determining a relative position of the third rotation member to the first rotation member is used as the restricting means, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the first rotation member has both a receiving hole, which extends in the radial direction of the first rotation member and receives the holding means, and a circular shaped groove which is formed on an inner wall surface of the receiving hole, and the preventing means is formed of a nearly-annular member, of which a part is cut out, and can be tightly fitted in the circular shaped groove. In this case, because the preventing means, which is tightly fitted in the circular shaped groove of the first rotation member and is fixed to the first rotation member, can come in contact with the holding means, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the first rotation member has both a receiving hole, which extends in the radial direction of the first rotation member and receives the holding means, and a circular shaped groove which is formed on an inner wall surface of the receiving hole, the holding means has a protruding portion which protrudes outwardly along the radial direction of the first rotation member, and the preventing means is formed of a disk-shaped member which has both an outer end portion caught by the circular shaped groove of the first rotation member and a center opening from which the protruding portion of the holding means is received. In this case, the protruding portion of the holding means penetrates through the center opening of the restricting means, and the outer end portion of the preventing means is caught by the circular shaped groove of the first rotation member. Therefore, when the protruding portion of the holding means is pushed inwardly along the radial direction of the first rotation member while the deformation of the preventing means is maintained, the holding means is deformed and inserted into the preventing means, and the shape of the preventing means is returned to a nearly original shape. Therefore, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the preventing means is formed of an annular cover with which an outer circumferential surface of the first rotation member is covered, and an inner circumferential surface of the annular cover comes in contact, with the holding means. In this case, when the annular cover of the first rotation member is used as the preventing means, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the preventing means is formed of a skirt portion of an nearly-tubular cover member with which both the first rotation member and the second rotation member are covered, and an inner circumferential surface of the skirt portion of the nearly-tubular cover member comes in contact with the holding means. In this case, when the nearly-tubular cover member is used as the preventing means, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the first rotation member has a receiving hole which extends in the radial direction of the first rotation member and receives the holding means, and the preventing means comprises both a first screw portion, which is arranged on an outer circumferential surface of the holding means according to a rolling operation, and a second screw portion which is arranged on an inner circumferential surface of the receiving hole according to the rolling operation and is connected with the first screw portion. In this case, because the second screw portion is connected with the first screw portion, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.




Also, in the valve timing adjusting device according to the present invention, the preventing means further comprises adhesive with which a space between the first screw portion and the second screw portion is coated. In this case, because a screw-connection plane between the first screw portion and the second screw portion is coated with the adhesive, the holding means and the restricting means can be easily prevented from being moved outwardly along the radial direction of the first rotation member.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a vertical sectional view of a vane type conventional valve timing adjusting device.





FIG. 2

is a sectional view taken substantially along line A—A of

FIG. 1

in a position condition in which a cam shaft is placed at a maximally spark-lag position in phase with respect to the rotation of a timing pulley.





FIG. 3

is a sectional view taken substantially along line A—A of

FIG. 1

in a position condition in which a cam shaft is placed at a maximally spark-advance position in phase with respect to the rotation of a timing pulley.





FIG. 4

is a vertical sectional view showing an important part of a valve timing adjusting device according to a first embodiment of the present invention.





FIG. 5

is a vertical sectional view showing an important part of a valve timing adjusting device according to a second embodiment of the present invention.





FIG. 6

is a vertical sectional view showing an important part of a valve timing adjusting device according to a third embodiment of the present invention.





FIG. 7

is a vertical sectional view showing an important part of a valve timing adjusting device according to a fourth embodiment of the present invention.





FIG. 8

is a vertical sectional view showing an important part of a valve timing adjusting device according to a fifth embodiment of the present invention.





FIG. 9

is a vertical sectional view showing an important part of a valve timing adjusting device according to a sixth embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The invention will now be described with reference to the accompanying drawings.




Embodiment 1





FIG. 4

is a vertical sectional view showing an important part of a valve timing adjusting device according to a first embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the first embodiment, the constituent elements, which are the same as those of the conventional valve timing adjusting device shown in

FIG. 1

, are indicated by the same reference numerals as those used in

FIG. 1

, and the description of such constituent elements is omitted.




In

FIG. 4

,


7




a


indicates a receiving hole which is formed on the inward side of the outer circumferential surface of the inner rotor (or second rotation member)


7


along a radial direction of the inner rotor


7


. The diameter of the receiving hole


7




a


is the same as that of the supporting hole


16


of the external rotor (or first rotation member)


5


, and the receiving hole


7




a


leads to an oil control valve (not shown) through an oil passage (not shown). In the supporting hole


16


, a plunger


45


is arranged so as to be able to slide on the inner surface of the supporting hole


16


. The plunger


45


functions as a restricting means for restricting a rotational motion of the internal rotor


7


relative to the external rotor


5


. A holder


46


is arranged in the supporting hole


16


as a holding means. A spring (or a force giving means)


21


is arranged between the plunger


45


and the holder


46


. The plunger


45


is pushed by the spring


21


inwardly along the radial direction of the external rotor


5


. The holder


46


is formed in a nearly cylindrical shape and has an uneven portion


46




a


which is composed of both a larger diameter portion placed at an inner position in the radial direction of the external rotor


5


and a smaller diameter portion placed at an outer position in the radial direction of the external rotor


5


. In the external rotor


5


, a penetrating hole


5




a


penetrating from the supporting hole


16


to a plane of the external rotor


5


(that is, a plane coming in contact with the timing pulley


3


) along an axial direction of the external rotor


5


is formed, and a knock pin


47


functioning as a preventing means is inserted into the penetrating hole


5




a


. One end of the knock pin


47


comes in contact with the uneven portion


46




a


of the holder


46


in the supporting hole


16


, so that the holder


46


is prevented by the knock pin


47


from being moved. outwardly along the radial direction of the external rotor


5


. Also, the other end of the knock pin


47


is inserted into a hole


3




a


of the timing pulley (or third rotations member)


3


to determine a relative position of the timing pulley


3


to the external rotor


5


.




A lock mechanism according to the first embodiment comprises the plunger


45


, the receiving hole


7




a


, the spring


21


, the holder


46


and the knock pin


47


. Here,


48


indicates a chip seal, and


49


indicates a back spring formed of a plate spring. The back spring


49


pushes the chip seal


48


so as to come in contact with the internal rotor


7


.




Next, an operation is described.




In cases where it is desired to move the cam shaft


2


to a spark-lag position with respect to the rotation direction of the timing pulley


3


, oil is supplied from an oil supply source (not shown) to the spark-lag hydraulic oil chamber adjacent to each vane, and oil is discharged from the spark-advance hydraulic oil chamber adjacent to the vane. Therefore, each vane is rotated and moved to the maximally spark-lag position while using an oil pressure difference between both the hydraulic oil chambers placed on the both sides of the vane. In this position condition, when the timing pulley


3


. is rotated, the plunger


45


, which is pushed by the spring


21


toward the cam shaft


2


, is inserted into the receiving hole


7




a


of the internal rotor


7


, rotational motion of the cam shaft


2


, which is fixed to the internal rotor


7


, relative to the timing pulley


3


, which is fixed to the external rotor


5


by the knock pin


47


, is prevented.




In the conventional valve timing adjusting device, in cases where temperature or vibration of an engine undergoes considerable variation due to increases or decreases in a rotation speed of the engine or a load on the engine,the fitting of the ring member


20


is easily loosened because of a difference in coefficient of linear thermal expansion between the ring member


20


and the external rotor


5


, or the screw connection of the ring member


20


is easily loosened. As a result, the position of the ring member


20


is shifted, and the resilient force of the spring


21


is lowered. In this case, even though a relative movement between the external rotor


5


and the internal rotor


7


is set to be restricted, the plunger


45


becomes detached from the internal rotor


7


, and there is possibility that a rotational motion of the cam shaft


2


relative to the timing pulley


3


cannot be prevented. Also, in the worst case, the ring member


20


comes out from the supporting hole


16


, and there is possibility that complete component failure is caused in the conventional valve timing adjusting device.




However, in the valve timing adjusting device according to the first embodiment, even though a holding force for the holder


46


is lowered because of the influence of heat or vibration and a centrifugal force on the plunger


45


and the like is added, the holder


46


, in which the spring


21


pushing the plunger


45


is held in the supporting hole


16


, can be prevented from being moved outwardly along the radial direction of the external rotor


5


. Accordingly, though the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


46


is prevented from being moved outwardly along the radial direction of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




In the first embodiment, the knock pin


47


functions as a preventing pin for preventing the plunger


45


from being moved outwardly along the radial direction of the external rotor


5


and functions as a positioning pin for determining a relative position of the external rotor


5


to the timing pulley


3


. Therefore, the number of parts in the valve timing adjusting device can be reduced as compared with a case where a pin is used for each function, and the weight and cost of the valve timing adjusting device can be reduced. However, it is applicable that the knock pin


47


be used only as a preventing pin and another part be used as a positioning pin.




Also, in the first embodiment, the uneven portion


46




a


is arranged in the holder


46


, and one end of the knock pin


47


comes in contact with the uneven portion


46




a


to prevent the holder


46


from being moved outwardly along the radial direction of the external rotor


5


. However, the end of the knock pin


47


can come in contact with any plane of the holder


46


on condition that the plane of the holder


46


is one of planes facing on the outer side in the radial direction of the external rotor


5


.




Also, in the first embodiment, the larger diameter portion and the smaller diameter portion are arranged in the holder


46


as the uneven portion


46




a


in the axial direction of the holder


46


to arrange a corner for the contact with the knock pin


47


. However, even though the holder


46


has only one diameter in its axial direction, it is applicable that a groove for the contact with the knock pin


47


be formed substantially in the center of the outer surface of the holder


46


in the axial direction of the holder


46


so as to extend all around the holder


46


.




Embodiment 2





FIG. 5

is a vertical sectional view showing an important part of a valve timing adjusting device according to a second embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the second embodiment, the constituent elements, which are the same as those of the valve timing adjusting device of the first embodiment shown in

FIG. 4

, are indicated by the same reference numerals as those used in

FIG. 4

, and the description of the constituent elements is omitted.




Features of a valve timing adjusting device according to the second embodiment are as follows. A holder (a holding means)


50


formed in a tubular shape and having a bottom is arranged in the supporting hole


16


functioning as an arranging hole. A nearly-annular member (a preventing means)


51


formed in a nearly annular shape is tightly fitted in a circular shaped groove (not shown) which is formed on the inner circumferential surface of the supporting hole


16


. The nearly-annular member


51


is detachable from the circular shaped groove of the supporting hole


16


. A lock mechanism comprises the holder


50


, the nearly-annular member


51


, the plunger


45


, the receiving hole


7




a


and the spring


21


. Therefore, as shown in

FIG. 5

, because the nearly-annular member


51


is tightly fitted in the circular shaped groove (hot shown) of the supporting hole


16


, the holder can be reliably prevented by the nearly-annular member


51


from being moved outwardly along the radial direction of the external rotor


5


. Accordingly, though the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


46


is prevented from being moved outwardly along the radial direction of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




It is applicable that the circular shaped groove (not shown) be formed all around the inner circumferential surface of the supporting hole


16


. Also, it is applicable that the circular shaped groove (not shown) be formed in a position corresponding to the shape of the nearly-annular member


51


on the inner circumferential surface of the supporting hole


16


. Also, it is not required to form the nearly-annular member


51


out of a material having a perfectly annular shape. That is, by considering a fitting workability, it is preferable that the nearly-annular member


51


be formed in a C-ring shape or an E-ring shape. However, the second embodiment is not limited to the nearly-annular member


51


formed in a C-ring shape or an E-ring shape.




In the second embodiment, the outer diameter of the nearly-annular member


51


is larger than the inner diameter of the supporting hole


16


by two times of a depth of the circular shaped groove (not shown). Therefore, the nearly-annular member


51


is deformable so as to pass through the supporting hole


16


, and the nearly-annular member


51


is flexible to immediately return the deformed shape of the nearly-annular member


51


to the original shape. Therefore, it is preferable that the nearly-annular member


51


be formed out of a flexible material such as metal, plastic or the like.




Embodiment 3





FIG. 6

is a vertical sectional view, showing an important part of a valve timing adjusting device according to a third embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the third embodiment, the constituent elements, which are the same as those of the valve timing adjusting device of the first or second embodiment shown in

FIG. 4

or

FIG. 5

, are indicated by the same reference numerals as those used in

FIG. 4

or

FIG. 5

, and the description of such constituent elements is omitted.




Features of a valve timing adjusting device according to the third embodiment are as follows. A holder


52


has an uneven portion


52




a


which is composed of a larger diameter portion, a middle diameter portion and a smaller diameter portion. The larger diameter portion of the uneven portion


52




a


is placed on the inner side in the radial direction of the external rotor


5


, the middle diameter portion of the uneven portion


52




a


is placed on the outer side in the radial direction of the external rotor


5


, and the smaller diameter portion of the uneven portion


52




a


is placed between the larger diameter portion and the middle diameter portion to connect the larger diameter portion and the middle diameter portion. A protruding portion


52




b


is composed of the middle diameter portion and the smaller diameter portion of the uneven portion


52




a


. The holder


52


is arranged in the supporting hole


16


. A nut member (or a preventing means)


53


formed substantially in the shape of a disk has a center opening


53




a


into which the protruding portion


52




b


of the holder


52


can be inserted. A lock mechanism comprises the holder


52


, the nut member


53


, the plunger


45


, the receiving hole


7




a


and the spring


21


. The outer end portion of the nut member


53


can be tightly fitted in a circular shaped groove (not shown) which is formed on the inner circumferential surface of the supporting hole


16


. When the protruding portion


52




b


of the holder


52


is inserted into the center opening


53




a


of the nut member


53


, the inner end portion of the nut member


53


facing the center opening


53




a


is caught by the uneven portion


52




a


of the holder


52


. Thereafter, when the top portion of the protruding portion


52




b


of the holder


52


is pushed inwardly along the radial direction of the external rotor


5


, the outer end portion of the nut member


53


is tightly fitted in the circular shaped groove of the supporting hole


16


. Thereafter, when the top portion of the protruding portion


52




b


of the holder


52


is furthermore pushed inwardly along the radial direction of the external rotor


5


, a center portion formed in the protruding portion


52




b


of the holder


52


is pushed down inwardly along the radial direction of the external rotor


5


until the shape of the nut member


53


is returned to an original flat shape. To smoothly deform the nut member


53


during the pushing of the-protruding portion


52




b


of the holder


52


, a cut-out portion


52




c


is formed in the center portion formed in the protruding portion


52




b


of the holder


52


.




In the third embodiment, the nut member


53


functioning as the preventing means is deformed in advance before the nut member


53


is fitted to the holder


52


, the protruding portion


52




b


of the holder


52


is pushed down so as to return the shape of the nut member


53


to its original flat shape, and the holder


53


is fixed in the supporting hole


16


. That is, a so-called push-nut structure is adopted. Therefore, unless the uneven portion


52




a


of the holder


52


is broken, the holder


52


can be reliably prevented from being moved outwardly along the radial direction of the external rotor


5


. Accordingly, the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


52


is prevented from being moved outwardly along the radial direction of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




Embodiment 4





FIG. 7

is a vertical sectional view showing an important. part of a valve timing adjusting device according to a fourth embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the fourth embodiment, the constituent elements, which are the same as those of the valve timing adjusting device of the first, second or third embodiment, are indicated by the same reference numerals as those used in the first, second or third embodiment, and the description of such constituent elements is omitted.




Features of a valve timing adjusting device according to the fourth embodiment are as follows. A holder


54


having a nearly cylindrical shape is arranged in the supporting hole


16


. The outer circumferential surface of the external rotor


5


is covered with an annular cover (or a preventing means)


55


, and the inner circumferential surface of the annular cover


55


comes in contact with the holder


54


. A lock mechanism comprises the holder


54


, the annular cover


55


, the plunger


45


, the receiving hole


7




a


and the spring


21


.




To prevent the holder


54


from being moved outwardly along the radial direction of the external rotor


5


by using the inner circumferential surface of the annular cover


55


, as shown in

FIG. 7

, it is required to set the position of the holder


54


in the supporting hole


16


so as to make both the outer side surface of the holder


5


in the radial direction of the external rotor


5


and the outer circumferential surface of the external rotor


5


form a nearly flat plane. Therefore, because the position of the holder


54


is set as is described above, the holder


54


can be prevented from being moved outwardly along the radial direction of the external rotor


5


. Accordingly, though the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


54


is prevented from being moved outwardly along the radial direction, of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




In the fourth embodiment, the inner circumferential surface of the annular cover


55


functioning as a protecting member of the external rotor


5


is used as the preventing means. However, the fourth embodiment is not limited to this configuration. For example, it is applicable that a protruding portion (not shown) be arranged at a prescribed position of the inner circumferential surface of the annular cover


55


and the protruding portion be put into the supporting hole


16


so as to come in contact with the holder


54


. Therefore, the holder


54


can be prevented from being moved outwardly along the radial direction of the external rotor


5


.




Embodiment 5





FIG. 8

is a vertical sectional view showing an important part of a valve timing adjusting device according to a fifth embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the fifth embodiment, the constituent elements, which are the same as those of the valve timing adjusting device of the first, second, third or fourth embodiment, are indicated by the same reference numerals as those used in the first, second, third or fourth embodiment, and the description of such constituent elements is omitted.




Features of a valve timing adjusting device according to the fifth embodiment are as follows. A holder


56


is formed in a tubular shape and has a bottom. The cover


6


has a skirt portion (or a preventing means)


6




a


, and the inner circumferential surface of the skirt portion


6




a


of the cover


6


comes in contact with the outer side surface of the holder


56


in the radial direction of the external rotor


5


. A lock mechanism comprises the holder


56


, the cover


6


, the plunger


45


, the receiving hole


7




a


and the spring


21


. Therefore, as shown in

FIG. 8

, the holder


56


can be prevented from being moved outwardly along the radial direction of the external rotor


5


by using the cover


6


which protects the external rotor


5


and a portion of the internal rotor


7


. Accordingly, though the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


56


is prevented from being moved outwardly along the radial direction of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




Embodiment 6





FIG. 9

is a vertical sectional view showing an important part of a valve timing adjusting device according to a sixth embodiment of the present invention. In constituent elements of the valve timing adjusting device according to the sixth embodiment, the constituent elements, which are the same as those of the valve timing adjusting device of the first, second, third, fourth or fifth embodiment, are indicated by the same reference numerals as those used in the first, second, third, fourth or fifth embodiment, and the description of such constituent elements is omitted.




Features of a valve timing adjusting device according to the sixth embodiment are as follows. A holder


57


is formed in a tubular shape and has a bottom, and a first screw portion (not shown) is formed on the outer circumferential surface of the holder


57


according to a rolling operation. Also, a second screw portion (not shown) is formed on a part of the inner circumferential surface of the supporting hole


16


according to the rolling operation so as to be connected with the first screw portion of the holder


57


. Therefore, the holder


57


is screwed to the inner circumferential surface of the supporting hole


16


. A lock mechanism comprises the holder


57


, the screw portions, the plunger


45


, the receiving hole


7




a


and the spring


21


. Therefore, as shown in

FIG. 9

, the holder


57


can be prevented from being moved outwardly along the. radial direction of the external rotor


5


. Accordingly, though the plunger


45


is not prevented from slightly moving outwardly due to the centrifugal force along the radial direction of the external rotor


5


against the resilient force of the spring


21


, because the holder


57


is prevented from being moved outwardly along the radial direction of the external rotor


5


and the spring


21


is contracted, the detachment of the plunger


45


from the receiving hole


7




a


can be reliably prevented.




In the sixth embodiment, the holder


57


is screwed to the inner circumferential surface of the supporting hole


16


. However, there is probability that the connection of the screw portions is loosened because of vibration. Therefore, to reliably fix the connection of the screw portions, it is applicable that an adhesive layer


58


be arranged between the screw portions.




As is described above, in the valve timing adjusting device according to the present invention, a restricting means for restricting a rotational motion of a second rotation member relative to a first rotation member on condition that the prevention of the, rotational motion of the second rotation member relative to the first rotation member is removable, a force giving means for giving a force to the restricting means, a holding means for positioning the force giving means and a preventing means for preventing the holding means from being moved outwardly along a radial direction of the first rotation member are provided. Therefore, when the rotational motion of the second rotation member relative to the first rotation member is restricted, the movement of the holding means can be reliably prevented. Accordingly, a cam shaft fixed to the second rotation member and a timing pulley fixed to the first rotation member can be reliably rotated in synchronization with each other. That is, the valve timing adjusting device is useful for the changing of an open-close timing of a suction valve or an exhaust valve in an engine.



Claims
  • 1. A valve timing adjusting device, comprising:a first rotation member which has a plurality of shoes and is arranged so as to be rotatable around a cam shaft; a second rotation member which has a plurality of vanes, is arranged in an internal hole of the first rotation member, is arranged to allow rotational motion relative to the first rotation member within a prescribed angle range and is fixed to the cam shaft; a timing-retarded hydraulic oil chamber and a timing-advance hydraulic oil chamber which are respectively arranged between each vane of the second rotation member and the corresponding shoe of the first rotation member; and a lock mechanism for preventing the rotational motion of the second rotation member relative to the first rotation member, the lock mechanism being operable along a radial direction of the first rotation member, the lock mechanism comprising: a supporting hole provided in a radial direction of the first rotation member, the supporting hole being formed on an outward side of the inner circumferential surface of the first rotation member; a plunger that is adapted to be slidably inserted into the supporting hole; a receiving hole provided in a radial direction of the second rotation member, the receiving hole being formed on an inward side of the outer circumferential surface of the second rotation member and being adapted to align with the supporting hole; a holder positioned in the supporting hole of the first rotation member and located on the outer side of an outer circumferential surface of the first rotation member; an elastic member provided between the plunger and the holder; a penetrating hole provided in an axial direction of the first rotation member to connect the supporting hole with an external surface of the first rotation member; and a knock pin located in the penetrating hole and adapted to contact the holder.
  • 2. The valve timing adjusting device according to claim 1, wherein the holder is cylindrical-shaped and has a grooved portion that engages the knock pin.
  • 3. The valve timing adjusting device according to claim 1, wherein the penetrating hole is located on the outer side of the outer circumferential surface of the first rotation member proximate to the holder.
  • 4. A valve timing adjusting device, comprising:a first rotation member which has a plurality of shoes and is arranged so as to be rotatable around a cam shaft; a second rotation member which has a plurality of vanes, is arranged in an internal hole of the first rotation member, is arranged to allow rotational motion relative to the first rotation member within a prescribed angle range and is fixed to the cam shaft; a timing-retarded hydraulic oil chamber and a timing-advance hydraulic oil chamber which are respectively arranged between each vane of the second rotation member and the corresponding shoe of the first rotation member; and a lock mechanism for preventing the rotational motion of the second rotation member relative to the first rotation member, the lock mechanism being operable along a radial direction of the first rotation member, the lock mechanism comprising: restricting means, which is movable in the radial direction of the first rotation member, for restricting the rotational motion of the second rotation member relative to the first rotation member on condition that the prevention of the rotational motion of the second rotation member relative to the first rotation member is removable; receiving hole, which is arranged on an outer circumferential surface of the second rotation member, for receiving the restricting means; force giving means for giving the restricting means a force which is directed inwardly along the radial direction of the first rotation member; holding means for positioning the force giving means; and preventing means for preventing the holding means from being moved outwardly along the radial direction of the first rotation member; wherein the preventing means is arranged in the first rotation member along an axial direction of the first rotation member, and a first end of the preventing means engages the holding means; wherein a second end of the preventing means is supported so as to enable rotational motion of the first rotation member relative to the cam shaft, wherein the second end engages a third rotation member.
CROSS-REFERENCE TO THE RELATED APPLICATION

This application is a continuation of International Application No. PCT/JP99/06263, whose International filing date is Nov. 10, 1999, the disclosures of which Application are incorporated by reference herein, and which International Application was not published in English.

US Referenced Citations (5)
Number Name Date Kind
5836277 Kira et al. Nov 1998 A
5845615 Nakamura et al. Dec 1998 A
6035816 Ogawa et al. Mar 2000 A
6039015 Sato Mar 2000 A
6039016 Noguchi Mar 2000 A
Foreign Referenced Citations (12)
Number Date Country
198 27 930 Jan 1999 DE
199 18 910 Nov 1999 DE
0 915 234 May 1999 EP
945669 Jan 1964 GB
06-109181 Apr 1994 JP
09-060508 Mar 1997 JP
09-303118 Nov 1997 JP
10-339116 Dec 1998 JP
11-132015 May 1999 JP
11-141313 May 1999 JP
11-223112 Aug 1999 JP
11-311110 Nov 1999 JP
Continuations (1)
Number Date Country
Parent PCT/JP99/06263 Nov 1999 US
Child 09/901063 US