The present invention relates to a valve timing control apparatus for an internal combustion engine which variably controls timings of opening and closing an engine valve (i.e., an intake valve and an exhaust valve) during an engine operation.
Japanese Patent Application Unexamined Publication No. 2005-325749 discloses a valve timing control apparatus that includes a housing constituted of a housing body and a front plate, a vane rotor and a torsion spring installed between the housing and the vane rotor. With the provision of the torsion spring, a biasing force of the torsion spring acts on the vane rotor to move against a reaction force of a valve spring (a force to retard a rotational phase of a camshaft) which is generated upon an opening operation and a closing operation of an engine valve. As a result, the valve timing control apparatus can be enhanced in operating performance and response performance.
However, in the valve timing control apparatus of the above conventional art, one end portion of the torsion spring is fixedly engaged in a through hole formed in a cylindrical sleeve portion projecting from the front plate. Due to the construction, the torsion spring must be mounted to the front plate in such a state that the biasing force of the torsion spring is exerted on the front plate, before assembling the front plate to the housing body. Thus, an operation of assembling the valve timing control apparatus is carried out with labor, and therefore, is made inconvenient.
It is an object of the present invention to solve the above-described technological problem in the conventional art and provide a valve timing control apparatus for an internal combustion engine which is capable of mounting a torsion spring to a front plate even after assembling the front plate to the housing body.
In one aspect of the present invention, there is provided a valve timing control apparatus for an internal combustion engine, including:
a generally cylindrical housing body rotatable by a rotational force that is transmitted from a crankshaft of the engine to the housing body, the housing body being opened to at least one axial end thereof, the housing body having a plurality of shoes projecting on an inner periphery thereof to define a plurality of hydraulic chambers;
a vane rotor including a rotor body fixed to a camshaft, and a plurality of vanes projecting on an outer periphery thereof to divide the plurality of hydraulic chambers into phase-advance hydraulic chambers and phase-retard hydraulic chambers, the vane rotor being rotatable relative to the housing body toward a phase-advance side by supplying hydraulic pressure to the phase-advance hydraulic chambers and discharging hydraulic pressure from the phase-retard hydraulic chambers, the vane rotor being rotatable relative to the drive rotation member toward a phase-retard side by supplying hydraulic pressure to the phase-retard hydraulic chambers and discharging hydraulic pressure from the phase-advance hydraulic chambers;
a front plate fixed to an axial end of the housing body, the front plate including a cylindrical sleeve portion that projects from a central portion of the front plate, and a cutout portion formed on a side of an axial end of the sleeve portion, the cutout portion extending through a circumferential wall of the sleeve portion in parallel to a radial direction of the sleeve portion over a predetermined angular range in a circumferential direction of the sleeve portion; and
a torsion spring having one end portion fixed to the vane rotor and the other end portion bent in a radially outward direction of the torsion spring and fixedly engaged with the cutout portion,
wherein the cutout portion comprises one side wall surface, the other side wall surface opposed to the one side wall surface in a substantially parallel relation thereto, and an end wall surface with which the other end portion of the torsion spring is engaged, the cutout portion being formed such that a first straight line extending through the end wall surface toward an inner peripheral side of the sleeve portion is located closer to a central axis of the sleeve portion than a second straight line extending through the other side wall surface toward the inner peripheral side of the sleeve portion.
In a further aspect of the present invention, there is provided a valve timing control apparatus for an internal combustion engine, including:
a generally cylindrical drive rotation member rotatable by a rotational force that is transmitted from a crankshaft of the engine to the drive rotation member, the drive rotation member being opened to at least one axial end thereof, the drive rotation member defining a plurality of hydraulic chambers on an inner peripheral side thereof;
a vane rotor fixed to a camshaft, the vane rotor dividing the plurality of hydraulic chambers into a phase-advance hydraulic chambers and phase-retard hydraulic chambers, the vane rotor being rotatable relative to the drive rotation member toward a phase-advance side by supplying hydraulic pressure to the phase-advance hydraulic chambers and discharging hydraulic pressure from the phase-retard hydraulic chambers, the vane rotor being rotatable relative to the drive rotation member toward a phase-retard side by supplying hydraulic pressure to the phase-retard hydraulic chambers and discharging hydraulic pressure from the phase-advance hydraulic chambers;
a front plate fixed to an axial end of the drive rotation member, the front plate including a cylindrical sleeve portion that projects from a central portion of the front plate, and a cutout portion formed on a side of an axial end of the sleeve portion, the cutout portion extending through a circumferential wall of the sleeve portion in parallel to a radial direction of the sleeve portion over a predetermined angular range in a circumferential direction of the sleeve portion; and
a torsion spring having one end portion fixed to the vane rotor and the other end portion bent in a radially outward direction of the torsion spring and fixedly engaged with the cutout portion,
wherein the cutout portion comprises one wall surface with which the other end portion of the torsion spring is engaged, and the other wall surface opposed to the one wall surface, the other wall surface making an obtuse angle relative to a tangent to an inner peripheral surface of sleeve portion.
In a still further aspect of the present invention, there is provided a valve timing control apparatus for an internal combustion engine, including:
a generally cylindrical drive rotation member rotatable by a rotational force that is transmitted from a crankshaft of the engine to the drive rotation member, the drive rotation member being opened to at least one axial end thereof, the drive rotation member defining a plurality of hydraulic chambers on an inner peripheral side thereof;
a vane rotor fixed to a camshaft, the vane rotor dividing the plurality of hydraulic chambers into a phase-advance hydraulic chambers and a phase-retard hydraulic chambers, the vane rotor being rotatable relative to the drive rotation member toward a phase-advance side by supplying hydraulic pressure to the phase-advance hydraulic chambers and discharging hydraulic pressure from the phase-retard hydraulic chambers, the vane rotor being rotatable relative to the housing body toward a phase-retard side by supplying hydraulic pressure to the phase-retard hydraulic chambers and discharging hydraulic pressure from the phase-advance hydraulic chambers;
a front plate fixed to an axial end of the drive rotation member, the front plate including a cylindrical sleeve portion that projects from a central portion of the front plate, and a cutout portion formed on a side of an axial end of the sleeve portion, the cutout portion extending through a circumferential wall of the sleeve portion in parallel to a radial direction of the sleeve portion over a predetermined angular range in a circumferential direction of the sleeve portion; and
a torsion spring having one end portion fixed to the vane rotor and the other end portion bent in a radially outward direction of the torsion spring and fixedly engaged with the cutout portion,
wherein the cutout portion comprises one wall surface with which the other end portion of the torsion spring is engaged, and the other wall surface opposed to the one wall surface, the cutout portion being formed in such a position that the one wall surface is located closer to a straight line extending across a central axis of the sleeve portion than the other wall surface, by cutting the circumferential wall of the sleeve portion along the radial direction of the sleeve portion by a punch having a predetermined width.
In the valve timing control apparatus for an internal combustion engine, according to the present invention, a torsion spring can be assembled to a front plate from an outside by engaging the other end of the torsion spring with the cutout portion of the sleeve portion. Therefore, the torsion spring can be assembled to the front plate after the front plate is assembled to the housing body. As a result, it is possible to facilitate an assembly work of the valve timing control apparatus without requiring labor in assembling parts such as the front plate to the housing body or the vane rotor against a biasing force of the torsion spring. Accordingly, the valve timing control apparatus according to the present invention can serve to enhance productivity and cost reduction thereof.
Further, with the above construction of the cutout portion, the cutout portion can be formed into an obtusely angled shape at an inner circumferential end thereof. Therefore, even in a case where a winding portion of the torsion spring is caused to be in an inclined state and press against an inner peripheral surface of the sleeve portion due to torque applied to the torsion spring, the torsion spring can be prevented from suffering from damage and local abrasion in the winding portion.
Other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
In the following, a valve timing control apparatus for an internal combustion engine, according to an embodiment of the present invention is described with reference to the drawings.
Referring to
Specifically, as shown in
As shown in
As shown in
As shown in
As shown in
In addition, bolt seat portion 17 has first engaging portion 19 in the end surface thereof which serves to engage and fix one end portion 30a of torsion spring 30. First engaging portion 19 is in the form of a groove or cutout which extends along a radial direction of bolt seat portion 17 and is opened to the axial end surface of bolt seat portion 17. First engaging portion 19 is connected with spring seat portion 18 without forming a step therebetween, and extends through bolt seat portion 17 to communicate spring seat portion 18 and insertion hole 15b. One end portion 30a of torsion spring 30 is radially inwardly bent relative to spring portion 30c, that is, extends from the outer peripheral side of bolt seat portion 17 toward a central portion thereof, so that one end portion 30a is engaged with first engaging portion 19 and fixed to rotor body 15. First engaging portion 19 is overlapped with head 5a of cam bolt 5 in an axial direction of bolt seat portion 17 such that an axial opening of first engaging portion 19 is substantially closed by head 5a to thereby prevent one end portion 30a of torsion spring 30 from falling off from first engaging portion 19. By thus using head 5a of cam bolt 5 as an existing part, one end portion 30a of torsion spring 30 can be fixed to rotor body 15 without using any other fastening member. As a result, an operating efficiency of an assembly work of the valve timing control apparatus can be enhanced, and the cost can be reduced.
As shown in
As shown in
Specifically, as shown in
As shown in
Communication groove 40a is formed in the other end surface (a front surface) of wide vane 11 which is opposed to front plate 26. Communication groove 40a is opened to pin accommodating hole 34 at one end thereof, and is opened to spring seat portion 18 of rotor body 15 at an opposite end thereof, thereby serving to establish fluid communication between pin accommodating hole 34 and spring seat portion 18. Communication groove 40a is closed by front plate 26, and serves as back pressure relief passage 40. Back pressure relief passage 40 serves to discharge the working oil that is leaked toward back pressure chamber 36 through a fine radial clearance between an outer peripheral surface of large-diameter portion 32a of lock pin 32 and an inner peripheral surface of large-diameter portion 34a of pin accommodating hole 34. Back pressure relief passage 40 is formed in a position in a circumferential direction of vane rotor 10 in which back pressure relief passage 40 crosses mutual contact portion T of windings of spring portion 30c (see
Further, preferably, back pressure relief passage 40 is arranged in a circumferential position in which back pressure relief passage 40 crosses a maximum contact portion in which an outer periphery of spring portion 30c and an inner periphery of spring guide 41 as explained later are contacted with each other at a maximum intensity due to inclination of spring portion 30c which is caused when vane rotor 10 is rotated by a maximum angle relative to housing 20 (see
As shown in
As shown in
As shown in
As shown in
The construction of cutout portion 44 is now explained in detail. As shown in
Further, second engaging portion 45 is formed into a groove shape by cutting a part of one side wall surface 44a of cutout portion 44 such that a circumferential width of cutout portion 44 on the side of the axial end of sleeve portion 43 becomes stepwise smaller than a circumferential width of cutout portion 44 on a side of an opposite axial end of sleeve portion 43. In other words, as shown in
As shown in
Further, rear plate 27 has pin engaging hole 35 on the end surface (the front surface) in which lock pin 32 is engaged to restrain rotation of vane rotor 10 when vane rotor 10 is placed in a maximum phase-advance position. Specifically, as shown in
In addition, as shown in
As shown in
An operation of the valve timing control apparatus for an internal combustion engine, according to the embodiment will be explained by referring to
At the time at which the engine is started, as shown in
Subsequently, in a predetermined load range after the start of the engine, electromagnetic valve 55 is energized in response to a control signal from the ECU (not shown), so that phase-retard side hydraulic passage 51 is communicated with oil pump 53, and phase-advance side hydraulic passage 52 is communicated with drain passage 54. That is, the working oil discharged from oil pump 53 is supplied to respective phase-retard hydraulic chambers Re through phase-retard side hydraulic passage 51, so that hydraulic pressure in respective phase-retard hydraulic chambers Re becomes high. On the other hand, the working oil in respective phase-advance hydraulic chambers Ad is discharged to oil pan 56 through phase-advance side hydraulic passage 52 and drain passage 54, so that hydraulic pressure in respective phase-advance hydraulic chambers Ad becomes low. At this time, the working oil supplied to respective phase-retard hydraulic chambers Re is flowed into pin engaging hole 35 and urges lock pin 32 to be disengaged from pin engaging hole 35 to thereby allow free rotation of vane rotor 10. As a volume of respective phase-retard hydraulic chambers Re is increased with the hydraulic supply to respective phase-retard hydraulic chambers Re, vane rotor 10 is rotated in a counterclockwise direction as shown in
On the other hand, when the predetermined load range is shifted to the other load range, energization of electromagnetic valve 55 is interrupted in response to a control signal from the ECU, so that phase-advance side hydraulic passage 52 is communicated with oil pump 53, and phase-retard side hydraulic passage 51 is communicated with drain passage 54. That is, the working oil in respective phase-retard hydraulic chambers Re is discharged into oil pan 56 through phase-retard side hydraulic passage 51 and drain passage 54, so that hydraulic pressure in respective phase-retard hydraulic chambers Re becomes low. In contrast, the working oil discharged from oil pump 53 is supplied to respective phase-advance hydraulic chambers Ad through phase-advance side hydraulic passage 52, so that hydraulic pressure in respective phase-advance hydraulic chambers Ad becomes high. At this time, the hydraulic pressure in respective phase-advance hydraulic chambers Ad is introduced into annular space 38 between lock pin 32 and pin accommodating hole 34 through through hole 39 in accordance with the hydraulic supply to respective phase-advance hydraulic chambers Ad. With the hydraulic pressure introduced into annular space 38, lock pin 32 is held in a state disengaged from pin engaging hole 35. As a volume of respective phase-advance hydraulic chambers Ad is increased with the hydraulic supply to respective phase-advance hydraulic chambers Ad, vane rotor 10 is rotated in a clockwise direction as shown in
At the time immediately before stop of the engine, the hydraulic supply to respective phase-advance hydraulic chambers Ad and respective phase-retard hydraulic chambers Re is terminated, and vane rotor 10 is likely to rotate toward the phase-retard side due to alternate torque applied to camshaft 2. However, as shown in
The valve timing control apparatus according to the embodiment can attain the following functions and effects. As described above, free rotation of vane rotor 10 can be ensured or maintained by supplying the hydraulic pressure to pin engaging hole 35 and annular space 38 between lock pin 32 and pin accommodating hole 34. The hydraulic pressure supplied to pin engaging hole 35 and annular space 38 is leaked or flowed toward back pressure chamber 36 through the fine radial clearance between the outer peripheral surface of lock pin 32 and the inner peripheral surface of pin accommodating hole 34, and is discharged from back pressure chamber 36 into spring accommodating portion 42 through back pressure relief passage 40.
As described above, back pressure relief passage 40 is formed in the position in the circumferential direction of vane rotor 10 in which back pressure relief passage 40 crosses winding contact portion T of spring portion 30c of torsion spring 30 which is caused when vane rotor 10 is rotated by the maximum angle relative to housing 20. Accordingly, the working oil discharged through back pressure relief passage 40 is supplied to winding contact portion T, thereby lubricating the windings of spring portion 30c in winding contact portion T. As a result, wear caused between the windings of spring portion 30c in winding contact portion T can be suppressed to thereby enhance durability and reliability of the valve timing control apparatus according to the embodiment.
Further, as described above, the coiled wire spring formed by winding a piece of wire having a generally rectangular cross-section is used as torsion spring 30. In this case, when a rotational load (torque) is applied to torsion spring 30, spring portion 30c tends to be inclined in the axial direction of torsion spring 30 so that contact between the windings of spring portion 30c will be more frequently caused. However, even in such a case, spring portion 30c can be more effectively lubricated by supplying the working oil to winding contact portion T as described above. Particularly, in this embodiment, torsion spring 30 is a coiled wire spring formed of a piece of wire having a generally rectangular shape in cross-section which has long opposite sides in a radial direction of the coiled wire spring. In such a case, inclination of spring portion 30c in the axial direction of torsion spring 30 becomes still larger. Even in this case, lubrication of spring portion 30c can be more effectively carried out by supplying the working oil to winding contact portion T as described above.
Further, when the working oil is introduced into annular space 38 between lock pin 32 and pin accommodating hole 34 which is located adjacent to back pressure chamber 36, the working oil filled in the fine radial clearance between lock pin 32 and pin accommodating hole 34 tends to leak more frequently. Therefore, a sufficient amount of the working oil can be supplied to spring accommodating portion 42 through back pressure relief passage 40, so that good lubrication of winding contact portion T can be carried out.
Furthermore, when spring portion 30c of torsion spring 30 is inclined due to torque applied thereto, spring portion 30c is pressed against an inner peripheral surface of spring guide 41 as shown in
In addition, when spring portion 30c of torsion spring 30 is inclined relative to the inner peripheral surface of spring guide 41, spring portion 30c undergoes a largest pressing force at corner portion X located on an inner peripheral edge of the other side wall surface 44b of cutout portion 44 as shown in
Further, upon assembling torsion spring 30 to vane rotor 10 and front plate 26, firstly one end portion 30a of torsion spring 30 is fixedly engaged with first engaging portion 19 opened to the axial end surface (the front surface) of rotor body 15 which is exposed to the outside, through axial bore 43a of sleeve portion 43 of front plate 26. Next, the other end portion 30b of torsion spring 30 is fixedly engaged with second engaging portion 45 of cutout portion 44 opened to the axial end surface (the front surface) of front plate 26. Therefore, even after front plate 26 is assembled to housing 20, torsion spring 30 can be inserted from the outside into axial bore 43a of sleeve portion 43 of front plate 26 and assembled to vane rotor 10 and front plate 26. Accordingly, the valve timing control apparatus can be assembled without conducting such an inconvenient assembly work that parts are assembled against the biasing force of torsion spring 30 after assembling torsion spring 30 while vane rotor 10 and housing 20 are relatively rotated. The valve timing control apparatus can serve to enhance productivity thereof.
Furthermore, with the specific construction and arrangement of cutout portion 44 as described above, corner portion X between the other side wall surface 44b and the inner peripheral surface of sleeve portion 43 is formed at the non-sharp angle, i.e., at the obtuse angle as shown in
In addition, back pressure relief passage 40 is opened into vicinity of the position in which spring portion 30c is pressed against spring guide 41, in other words, the position in which spring portion 30c is pressed against corner portion X between the other side wall surface 44b of cutout portion 44 and the inner peripheral surface of sleeve portion 43. Accordingly, the specific effect of the above construction with lubrication of winding contact portion T through back pressure relief passage 40, it is possible to more effectively reduce adverse influence such as damage or local wear in spring portion 30c which is caused upon pressing against corner portion X.
The present invention is not particularly limited to the above embodiment. For instance, back pressure relief passage 40 can be in the form of a through hole formed in vane 11 without opening to the other end surface (the front surface) of vane 11.
Further, the valve timing control apparatus according to the embodiment of the present invention has the following features and effects.
(a) Straight line L1 extending through end wall surface 45a toward the inner peripheral side of sleeve portion 43 substantially extends through central axis C of the sleeve portion 43. With this construction, upon assembling torsion spring 30, an amount of contraction of torsion spring 30 in the circumferential direction can be minimized to thereby enhance an operating efficiency of the assembly work of torsion spring 30.
(b) Cutout portion 44 comprises stop 45b to restrict displacement of the other end portion 30b of torsion spring 30 in the axial direction of torsion spring 30. With this construction, retention of torsion spring 30 can be enhanced to thereby serve to suppress fall off of torsion spring 30 from cutout portion 44.
(c) In the valve timing control apparatus as described in the above feature (b), cutout portion 44 has a first circumferential width on the side of the axial end of the sleeve portion 43 and a second circumferential width on a side of an opposite axial end of sleeve portion 43 which is larger than the first circumferential width, stop 45b extending by a difference between the first circumferential width and the second circumferential width.
(d) In the valve timing control apparatus as described in the above feature (c), stop 45b is disposed between one side wall surface 44a and end wall surface 45a to form a step therebetween.
(e) Torsion spring 30 is a coiled wire spring formed of a piece of wire having a generally rectangular shape in cross-section. With this construction, an axial length of torsion spring 30 can be reduced, thereby serving to downsize the valve timing control apparatus. Further, as compared to windings of a torsion spring have a circular shape, inclination of torsion spring 30 which is caused upon torque is applied thereto becomes large. Therefore, with the specific construction of cutout portion 44 (i.e., corner portion X with a non-sharp angle between the other side wall surface 44b and the inner peripheral surface of sleeve portion 43), an effect of reducing wear of torsion spring 30 can be more effectively attained.
(f) In the valve timing control apparatus as described in the above feature (e), windings of torsion spring 30 are substantially contacted with each other.
(g) One end portion 30a of torsion spring 30 is bent in the radially inward direction of torsion spring 30, and is fixedly engaged with first engaging portion (groove) 19 formed in the axial end surface of rotor body 15. With this construction, it is possible to restrict displacement of torsion spring 30 in the circumferential direction thereof and assembly torsion spring 30 from an outside in the axial direction of torsion spring 30.
(h) In the valve timing control apparatus as described in the above feature (g), one end portion 30a of torsion spring 30 is prevented from falling off from first engaging portion 19 by head 5a of cam bolt 5 that serves to fix vane rotor 10 to camshaft 2. By thus using an existing cam bolt 5, an operating efficiency of an assembly work of the valve timing control apparatus can be enhanced and the cost can be reduced without using any other fastening member for fixing one end portion 30a of torsion spring 30.
This application is based on a prior Japanese Patent Application No. 2012-196715 filed on Sep. 7, 2012. The entire contents of the Japanese Patent Application No. 2012-196715 are hereby incorporated by reference.
Although the invention has been described above by reference to a certain embodiment of the invention and modification of the embodiment, the invention is not limited to the embodiment and modification described above. Further variations of the embodiment and modification described above will occur to those skilled in the art in light of the above teachings. The scope of the invention is defined with reference to the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2012-196715 | Sep 2012 | JP | national |