The invention, together with additional objectives, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:
Embodiments of the present invention will be described with reference to the accompanying drawings.
A valve timing control system according to a first embodiment of the present invention is shown in
As shown in
The drive force of the crankshaft is transferred via the valve timing control system 1 to a camshaft 3, which serves as a follower shaft and drives an intake valve (not shown) to open and close the same. The camshaft 3 is fitted into the chain sprocket 11, and is rotatable with a predetermined phase difference relative to the chain sprocket 11.
A vane rotor 15, which serves as a follower-side rotatable body, abuts against the end face of the camshaft 3 along its rotational axis. The camshaft 3 and the vane rotor 15 are fixed coaxially with a bolt 23. The vane rotor 15 and the camshaft 3 are set in position in their rotational direction by fitting a positioning pin 24 into the vane rotor 15 and the camshaft 3. The camshaft 3, the housing 10, and the vane rotor 15 rotate in a clockwise direction when viewed in a direction of an arrow III in
As shown in
The vane rotor 15 has a boss portion 154 coupled to the camshaft 3 at the axial end face, and the vanes 151-153 disposed at generally regular intervals in the rotational direction on the outer circumference of the boss portion 154. The vane rotor 15 is accommodated in the housing 10 in such a manner that the vane rotor 15 is rotatable relative to the housing 10. The vanes 151-153 are accommodated rotatably in the chambers 50, respectively. Each vane 151-153 divides the corresponding chamber 50 into two portions, i.e., a retard chamber and an advance chamber. The arrows of
A sealing member 25 is disposed in a corresponding slide gap, which is formed between the corresponding shoe 121-123 and the boss portion 154, which radially oppose each other. Also, a sealing member 25 is disposed in a corresponding slide gap, which is formed between the corresponding vane 151-153 and an inner peripheral wall surface of the peripheral wall 13. The sealing members 25 are fitted into a groove provided in an inner peripheral wall of each shoe 121-123 and a groove provided in an outer peripheral wall of each vane 151-153. Furthermore, the sealing members 25 are urged by a spring or the like against the outer peripheral wall surface of the boss portion 154 and the inner peripheral wall surface of the peripheral wall 13. With the above structure, each sealing member 25 limits a leakage flow of the hydraulic fluid between the corresponding retard chamber and the corresponding advance chamber, which are adjacent to each other.
As shown in
A hydraulic chamber 40 is provided on the chain sprocket 11 side of the stopper piston 32, and a hydraulic chamber 42 is provided on the outer circumference of the stopper piston 32. The pressure of hydraulic fluid supplied to the hydraulic chamber 40 and pressure of hydraulic fluid supplied to the hydraulic chamber 42 act in a direction for disconnecting the stopper piston 32 away from the fit ring 34. The hydraulic chamber 40 communicates with one of the advance chambers, discussed later, and the hydraulic chamber 42 communicates with one of the retard chambers. A distal end portion of the stopper piston 32 can be fitted into the fit ring 34 when the vane rotor 15 is located at the most retarded position relative to the housing 10. In the fitted state where the stopper piston 32 is fitted in the fit ring 34, the rotation of the vane rotor 15 relative to the housing 10 is restricted. A back pressure release groove 43 is provided in a portion of the vane rotor 15, which is located on a side of the stopper piston 32 that is opposite from the fit ring 34. The back pressure release groove 43 releases a back pressure, which changes when the stopper piston 32 slides.
When the vane rotor 15 rotates relative to the housing 10 from the most retarded position toward the advance side, the stopper piston 32 is displaced from the fit ring 34 in the rotational direction. Thus, the stopper piston 32 cannot be fitted into the fit ring 34.
As shown in
A hydraulic pump 202 of
Additionally, the hydraulic pump 202 pumps and thereby supplies the hydraulic fluid from the oil pan 200 into the supply passage 230. A drain switch valve 600 is switched by a duty ratio controlled drive current, which is supplied from an electronic control unit (ECU) 700 to a solenoid drive arrangement 620. A spool 630 of the drain switch valve 600 is displaced according to the duty ratio of the drive current. Depending on the position of the spool 630, the drain switch valve 600 is switched to supply the hydraulic fluid to a first-side control valve 601 or a second-side control valve 602 or to discharge the hydraulic fluid from the first-side control valve 601 or the second-side control valve 602. In the off state where the power supply to the drain switch valve 600 is turned off, the load applied by a spring 640 causes the spool 630 to sit at the position shown in
As shown in
As shown in
The retard passages 210, 211, 212, 213, 214 supply the hydraulic fluid from the supply passage 204 through the phase switch valve 60 to each retard chamber 51, 52, 53. Furthermore, the retard passages 210, 211, 212, 213, 214 discharge the hydraulic fluid from each retard chamber 51, 52, 53 through the phase switch valve 60 along the discharge passage 206 to the oil pan 200, which is a fluid discharge side. Accordingly, each of the retard passages 210, 211, 212, 213, 214 serves as both a retard supply passage and a retard discharge passage.
The advance passage 220 is connected to the advance chamber 55 through the advance passage 222 and a second-side check valve 90. An advance passage 221 is branched from the advance passage 220, and advance passages 223, 224 are branched from the advance passage 221. The advance passages 223, 224 are connected to the advance chambers 56, 57, respectively. As described above, the advance passage 222 is connected to the advance passage 220, and the advance passages 223, 224 are branched from the advance passage 221, which serves as a common passage.
The advance passages 220, 221, 222, 223, 224 supply the hydraulic fluid from the supply passage 204 through the phase switch valve 60 to each advance chamber 55, 56, 57. Furthermore, the advance passages 220, 221, 222, 223, 224 discharge the hydraulic fluid from each advance chamber 55, 56, 57 through the phase switch valve 60 along the discharge passage 206 to the oil pan 200, which is the fluid discharge side. Accordingly, each of the advance passages 220, 221, 222, 223, 224 serves as both an advance supply passage and an advance discharge passage.
With the passage arrangement configured in the above described manner, the hydraulic fluid can be supplied from the hydraulic pump 202 to the retard chambers 51, 52, 53, the advance chambers 55, 56, 57, and the hydraulic chambers 40, 42. Furthermore, the hydraulic fluid can be discharged from each hydraulic chamber to the oil pan 200. The camshaft 3 and the vane rotor 15, which form the retard passages 210, 211, 212, 213, 214 and the advance passages 220, 221, 222, 223, 224, serve as a fluid passage portion of the present invention.
The first-side check valve 80 is provided in the retard passage 212 among the retard passages 212, 213, 214, which are connected respectively to the retard chambers 51, 52, 53. The first-side check valve 80 is placed on a retard chamber 51 side of the bearing 2 in the retard passage 212. The first-side check valve 80 permits the hydraulic fluid to flow from the hydraulic pump 202 through the retard passage 212 into the retard chamber 51. Also, the first-side check valve 80 restricts, i.e., limits the hydraulic fluid to flow from the retard chamber 51 through the retard passage 212 back toward the hydraulic pump 202. The retard chamber 51, which connects to the retard passage 212 that has the first-side check valve 80, corresponds to a check valve connecting chamber of the present invention. Hereinafter, the retard chamber 51 may also be referred to as the control retard chamber 51. Additionally, each of the first-side check valve 80 and the second-side check valve 90, to be discussed later, corresponds to a phase check valve of the present invention.
The second-side check valve 90 is provided in the advance passage 222 among the advance passages 222, 223, 224, which are connected respectively to the advance chambers 55, 56, 57. The second-side check valve 90 is placed on an advance chamber 55 side of the bearing 2 in the advance passage 222. The second-side check valve 90 permits the hydraulic fluid to flow from the hydraulic pump 202 through the advance passage 222 into the advance chamber 55. Also, the second-side check valve 90 restricts, i.e., limits the hydraulic fluid to flow from the advance chamber 55 through the advance passage 222 back toward the hydraulic pump 202. The advance chamber 55, which connects to the advance passage 222 that has the second-side check valve 90, corresponds to a check valve connecting chamber of the present invention. Hereinafter, the advance chamber 55 may also be referred to as the control advance chamber 55.
As shown in
With this configuration, when the hydraulic fluid is supplied from the hydraulic pump 202 to the control retard chamber 51 or the control advance chamber 55 through the retard passage 212 or the advance passage 222, the valve body 81, 91 is displaced toward the stopper 84, 94 against the load exerted by the spring 83, 93 to separate from the valve seat 82, 92, thereby causing the corresponding retard passage 212 or advance passage 222 to open. Then, the hydraulic fluid in the retard passage 212 flows into the control retard chamber 51 through a supply-only hydraulic passage, i.e., a dedicated hydraulic supply passage 212a (see FIGS. 3 and 6A-6D) of the retard passage 212, which connects between the first-side check valve 80 and the control retard chamber 51. Similarly, the hydraulic fluid in the advance passage 222 flows into the control advance chamber 55 through a supply-only hydraulic passage, i.e., a dedicated hydraulic supply passage 222a (see FIGS. 3 and 7A-7D) of the advance passage 222, which connects between the second-side check valve 90 and the control advance chamber 55.
When the hydraulic fluid is caused to flow from the control retard chamber 51 or the control advance chamber 55 toward the hydraulic pump 202, the spring 83, 93 pushes the valve body 81, 91 against the valve seat 82, 92, thereby causing the corresponding advance passage 222 or retard passage 212 to be blocked.
The retard passage 212 is connected with a first-side discharge passage 225, which bypasses the first-side check valve 80 and communicates with the retard passage 212. The first-side discharge passage 225 is provided with the first-side control valve 601. The first-side control valve 601 blocks the first-side discharge passage 225 when the retard control operation is executed to rotate the vane rotor 15 toward the retard side. Furthermore, the first-side control valve 601 opens the first-side discharge passage 225 when the advance control operation is executed to rotate the vane rotor 15 toward the advance side. When the first-side discharge passage 225 is opened, the hydraulic fluid in the control retard chamber 51 is discharged through the first-side discharge passage 225 and the retard passage 212 (see FIGS. 3 and 6A-6D). Accordingly, the first-side discharge passage 225 serves as a discharge-only hydraulic passage, i.e., a dedicated hydraulic discharge passage. Each of the first-side discharge passage 225 and a second-side discharge passage 226 (discussed later), which serves as a bypass discharge passage, corresponds to a fluid discharge passage of the present invention.
The first-side control valve 601 is a switch valve, which is driven by a pilot pressure. The pilot pressure is applied from the hydraulic pump 202 through the supply passage 230 and the retard pilot passage 234 to the first-side control valve 601. In the non-applied state of the pilot pressure where the hydraulic fluid is discharged from the retard pilot passage 234, and thereby no pilot pressure is applied to the first-side control valve 601, the spool 631, which serves as a valve member, is displaced by the load exerted by the spring 641, which serves as a resilient member. Thus, the first-side discharge passage 225 is opened. In contrast, in the applied state of the pilot pressure where the hydraulic fluid is supplied to the retard pilot passage 234, and thereby the pilot pressure is applied to the first-side control valve 601, the spool 631 of the first-side control valve 601 is displaced to the position shown in
The advance passage 222 is connected with the second-side discharge passage 226, which bypasses the second-side check valve 90 and communicates with the advance passage 222. The second-side discharge passage 226 is provided with the second-side control valve 602. The second-side control valve 602 blocks the second-side discharge passage 226 when the advance control operation is executed to advance the vane rotor 15 toward the advance side. Furthermore, the second-side control valve 602 opens the second-side discharge passage 226 when the retard control operation is executed to rotate the vane rotor 15 toward the retard side. When the second-side discharge passage 226 is opened, the hydraulic fluid in the control advance chamber 55 is discharged through the second-side discharge passage 226 and the advance passage 222 (see FIGS. 3 and 7A-7D). Accordingly, the second-side discharge passage 226 serves as a discharge-only hydraulic passage, i.e., a dedicated hydraulic discharge passage.
The second-side control valve 602 is a switch valve, which is driven by a pilot pressure. The pilot pressure is applied from the hydraulic pump 202 through the supply passage 230 and the advance pilot passage 236 to the second-side control valve 602. In the non-applied state of the pilot pressure where the hydraulic fluid is discharged from the advance pilot passage 236, and thereby no pilot pressure is applied to the second-side control valve 602, a spool 632 is displaced to the position shown in
The supply passage 230, the retard pilot passage 234, and the advance pilot passage 236, discussed above, correspond to pilot passages of the present invention.
The spring 641, 642 applies load to the spool 631, 632 to place the spool 631, 632 in the open position, at which the corresponding first-side discharge passage 225 or second-side discharge passage 226 is opened. Thus, in the non-applied state of the pilot pressure where no pilot pressure is applied to the control valve 601, 602, the corresponding first-side discharge passage 225 or second-side discharge passage 226 is normally open. That is, the first-side control valve 601 and the second-side control valve 602 of the first embodiment are so-called “normally open switch valves”. A back pressure release passage 217, 227 is provided in a portion of the vane rotor 15 on the side where the spring 641, 642 is placed to apply load to the spool 631, 632 of the control valve 601, 602. The back pressure release passage 217, 227 releases back pressure, which changes when the spool 631, 632 slides.
The retard pilot passage 234 connects between the drain switch valve 600 and the first-side control valve 601, and the advance pilot passage 236 connects between the drain switch valve 600 and the second-side control valve 602. The drain switch valve 600 is switched to change a communication state of the retard pilot passage 234 and the advance pilot passage 236 relative to the supply passage 230 and the discharge passage 232. More specifically, the drain switch valve 600 realizes one of the following three selected states depending on the displaced position of the spool 630.
(1) The retard pilot passage 234 communicates with the supply passage 230, while the advance pilot passage 236 communicates with the discharge passage 232.
(2) Both of the retard pilot passage 234 and the advance pilot passage 236 communicate with the supply passage 230.
(3) The retard pilot passage 234 communicates with the discharge passage 232, while the advance pilot passage 236 communicates with the supply passage 230.
As shown in
Now, a description will be made to the operation of the vane rotor 15 and the phase switch valve 60 in the valve timing control system 1 with reference to
In the state where the internal combustion engine is stopped, the stopper piston 32 is fitted in the fit ring 34. Right after starting of the internal combustion engine, no hydraulic fluid is yet supplied from the hydraulic pump 202 to the retard chambers 51, 52, 53, the advance chambers 55, 56, 57, the hydraulic chamber 40, and the hydraulic chamber 42. Thus, the stopper piston 32 remains fitted in the fit ring 34, and the camshaft 3 is held in the most retarded position relative to the crankshaft. Thereby, until the hydraulic fluid is supplied to each hydraulic chamber, this allows for preventing the housing 10 and the vane rotor 15 from swinging or shaking to collide with each other due to variations in torque exerted on the camshaft and thereby generating rattle sound.
Upon starting of the internal combustion engine, when a sufficient amount of hydraulic fluid is supplied from the hydraulic pump 202, the hydraulic pressure of the hydraulic fluid supplied to the hydraulic chamber 40 or the hydraulic chamber 42 causes the stopper piston 32 to be disconnected from the fit ring 34. Thus, the vane rotor 15 can freely rotate relative to the housing 10. Then, the phase difference of the camshaft relative to the crankshaft is adjusted by controlling the hydraulic pressure applied to each retard chamber and each advance chamber.
When power supply to the phase switch valve 60 is turned off as shown in
Here, the retard passage 212, which supplies the hydraulic fluid to the retard chamber 51, is a dedicated passage, which connects between the retard passage 210 and the retard chamber 51. The retard passages 213, 214, which supply the hydraulic fluid to the retard chambers 52, 53, are branch passages, which are branched from the retard passages 211 that is the supply passage. Accordingly, the flow quantity of the hydraulic fluid per unit time supplied from the retard passage 212 to the retard chamber 51 is larger than the flow quantity of the hydraulic fluid per unit time supplied from the retard passage 213, 214 to the retard chamber 52, 53. Thus, the retard chamber 51 is filled with the hydraulic fluid earlier than, i.e., is filled with the hydraulic fluid at the faster rate (higher flow rate) than the retard chambers 52, 53 even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low.
In this state, the hydraulic fluid in the advance chambers 56, 57 is discharged through the advance passages 223, 224, the advance passage 221, the phase switch valve 60, and the discharge passage 206 to the oil pan 200. During the retard control operation, the second-side check valve 90 is closed, and the second-side control valve 602 opens the second-side discharge passage 226. Thus, the hydraulic fluid in the control advance chamber 55 bypasses the second-side check valve 90 and is then discharged to the oil pan 200 through the second-side discharge passage 226, the second-side control valve 602, the advance passage 220, the phase switch valve 60, and the discharge passage 206.
The hydraulic fluid is supplied to each retard chamber, and the hydraulic fluid from each advance chamber is discharged in this manner. Thereby, the vane rotor 15 receives the hydraulic fluid pressure from the three retard chambers 51, 52, 53, so that the vane rotor 15 rotates relative to the housing 10 toward the retard side.
As shown in
However, in the first embodiment, the first-side check valve 80 is disposed in the retard passage 212, and the first-side control valve 601 blocks the first-side discharge passage 225 during the retard control operation. Thus, the discharge of the hydraulic fluid from the control retard chamber 51 to the retard passage 212 does not occur. Accordingly, in the state where the hydraulic pressure of the hydraulic pump 202 is relatively low, even when the vane rotor 15 receives the torque fluctuation toward the advance side, the vane rotor 15 is not returned toward the advance side relative to the housing 10. As a result, the hydraulic fluid will not flow out of the retard chambers 52, 53 either. Accordingly, even when the vane rotor 15 receives the torque fluctuation from the camshaft toward the advance side, the vane rotor 15 can be prevented from returning toward the advance side, which is the side opposite from the target phase, relative to the housing 10. This allows the vane rotor 15 to quickly reach the target phase on the retard side.
As discussed above, at the time of supplying the hydraulic fluid to each retard chamber 51, 52, 53, the retard chamber 51, which is connected with the first-side check valve 80, is filled with the hydraulic fluid at the faster rate than the other retard chambers 52, 53. When the retard chamber 51 is filled with the hydraulic fluid, the first-side check valve 80 is closed because of the application of the torque fluctuation to the vane rotor 15 toward the advance side even when the pressure of the hydraulic fluid in the retard chamber 51 is relatively low. In this way, the hydraulic fluid is not discharged from the retard chamber 51, and the vane rotor 15 is not returned toward the advance side relative to the housing 10. Thus, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the first-side check valve 80 can be quickly driven, and thereby the vane rotor 15 can quickly reach the target phase on the retard side.
When the vane rotor 15 receives the torque fluctuation toward the retard side and the advance side during the retard control operation, the pressure of the hydraulic fluid in each retard chamber changes irrespective of whether the hydraulic pressure of the hydraulic pump 202 is low or high. The pressure fluctuation of the hydraulic fluid in each retard chamber would be transmitted as pressure pulsation from the retard passage 213, 214 to the retard passage 210, the phase switch valve 60 and the supply passage 204. Here, when the vane rotor 15 receives the torque fluctuation, the pressure of the hydraulic fluid, which is on the retard chamber side or the advance chamber side of the phase switch valve 60, is increased relative to the pressure of the hydraulic fluid, which is on the hydraulic pump 202 side of the phase switch valve 60. Therefore, the pressure of the hydraulic fluid, which is on the retard chamber side or the advance chamber side of the phase switch valve 60, shows the greater change in comparison to the pressure of the hydraulic fluid, which is on the hydraulic pump 202 side of the phase switch valve 60. In contrast, the pressure of the hydraulic fluid, which is on the hydraulic pump 202 side of the phase switch valve 60, shows a smaller change in comparison the pressure of the hydraulic fluid, which is on the retard chamber side or the advance chamber side of the phase switch valve 60.
Thus, according to the first embodiment, the supply passage 230 is branched from the supply passage 204 on the hydraulic pump 202 side of the phase switch valve 60. The hydraulic fluid is supplied from the supply passage 230 to the retard pilot passage 234 or the advance pilot passage 236 through the drain switch valve 600, so that the pilot pressure is applied to the first-side control valve 601 or the second-side control valve 602. Therefore, even when the vane rotor 15 receives the torque fluctuation toward the retard side and the advance side at the time of executing the retard control operation, the pressure pulsation, which is transmitted to the retard pilot passage 234 that receives the hydraulic fluid from the supply passage 230 through the drain switch valve 600, can be reduced. In this context, even when the vane rotor 15 receives the torque fluctuation during the retard control operation, the pilot pressure, which is received from the retard pilot passage 234, allows the spool 631 of the first-side control valve 601 to keep the first-side discharge passage 225 blocked.
Furthermore, since the hydraulic fluid in each advance chamber and the advance pilot passage 236 is discharged to the oil pan 200 during the retard control operation, no pressure pulsation is conveyed to the second-side control valve 602 even when the vane rotor 15 receives the torque fluctuation during the retard control operation. Accordingly, the load exerted by the spring 642 allows the spool 632 of the second-side control valve 602 to keep the second-side discharge passage 226 open.
Next, as shown in
Here, the advance passage 222, which supplies the hydraulic fluid to the advance chamber 55, is a dedicated passage, which connects between the advance passage 220 and the advance chamber 55. The advance passages 223, 224, which supply the hydraulic fluid to the advance chambers 56, 57, are branch passages, which are branched from the advance passage 221 that is the supply passage. Therefore, the flow quantity of the hydraulic fluid per unit time supplied from the advance passage 222 to the advance chamber 55 is larger than the flow quantity of the hydraulic fluid per unit time supplied from each of the advance passages 223, 224 to the corresponding advance chamber 56, 57. Thus, the advance chamber 55 is filled with the hydraulic fluid earlier than, i.e., at the faster rate than the advance chambers 56, 57 even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low.
In this state, the hydraulic fluid in the retard chambers 52, 53 is discharged through the retard passages 213, 214, the retard passage 211, the phase switch valve 60, and the discharge passage 206 to the oil pan 200. During the advance control operation, the first-side check valve 80 is closed, and the first-side control valve 601 opens the first-side discharge passage 225. Thus, the hydraulic fluid in the control retard chamber 51 bypasses the first-side check valve 80 and is then discharged to the oil pan 200 through the first-side discharge passage 225, the first-side control valve 601, the retard passage 210, the phase switch valve 60, and the discharge passage 206.
The hydraulic fluid is supplied to each advance chamber, and the hydraulic fluid from each retard chamber is discharged in this manner. Thereby, the vane rotor 15 receives the hydraulic fluid pressure from the three advance chambers 5556, 57, so that the vane rotor 15 rotates relative to the housing 10 toward the advance side.
As shown in
However, in the first embodiment, the second-side check valve 90 is disposed in the advance passage 222, and the second-side control valve 602 blocks the second-side discharge passage 226 during the advance control operation. Thus, the discharge of the hydraulic fluid from the control advance chamber 55 to the advance passage 222 does not occur. Accordingly, in the state where the hydraulic pressure of the hydraulic pump 202 is relatively low, even when the vane rotor 15 receives the torque fluctuation toward the retard side, the vane rotor 15 is not returned toward the retard side relative to the housing 10. As a result, the hydraulic fluid does not flow out of the advance chamber 56, 57, either. Accordingly, as shown in
As discussed above, at the time of supplying the hydraulic fluid to each advance chamber, the advance chamber 55, which is connected with the second-side check valve 90, is filled with the hydraulic fluid at the faster rate than the other advance chambers 56, 57. When the advance chamber 55 is filled with the hydraulic fluid, the second-side check valve 90 is closed because of the application of the torque fluctuation to the vane rotor 15 toward the retard side even when the pressure of the hydraulic fluid in the advance chamber 55 is relatively low. In this way, the hydraulic fluid is not discharged from the advance chamber 55, and the vane rotor 15 is not returned toward the retard side relative to the housing 10. Thus, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the second-side check valve 90 can be quickly driven, and thereby the vane rotor 15 can quickly reach the target phase on the advance side.
When the vane rotor 15 receives the torque fluctuation toward the retard side and the advance side during the advance control operation, the pressure of the hydraulic fluid in each advance chamber changes irrespective of whether the hydraulic pressure of the hydraulic pump 202 is low or high. The pressure fluctuation of the hydraulic fluid in each advance chamber would be transmitted as pressure pulsation from the advance passages 223, 224 to the advance passage 220, the phase switch valve 60 and the supply passage 204. However, as discussed above, the supply passage 230 is branched from the supply passage 204 on the hydraulic pump 202 side of the phase switch valve 60. The hydraulic fluid is supplied from the supply passage 230 to the retard pilot passage 234 or the advance pilot passage 236 through the drain switch valve 600, so that the pilot pressure is applied to the first-side control valve 601 or the second-side control valve 602. Therefore, even when the vane rotor 15 receives the torque fluctuation toward the retard side and the advance side at the time of executing the advance control operation, the pressure pulsation, which is transmitted to the advance pilot passage 236 that receives the hydraulic fluid from the supply passage 230 through the drain switch valve 600, can be reduced. In this context, even when the vane rotor 15 receives the torque fluctuation during the advance control operation, the pilot pressure, which is received from the advance pilot passage 236, allows the spool 632 of the second-side control valve 602 to keep the second-side discharge passage 226 blocked.
Furthermore, since the hydraulic fluid in each retard chamber and the retard pilot passage 234 is discharged to the oil pan 200 during the advance control operation, no pressure pulsation is conveyed to the first-side control valve 601 even when the vane rotor 15 receives the torque fluctuation during the advance control operation. Accordingly, the load exerted by the spring 641 allows the spool 631 of the first-side control valve 601 to keep the first-side discharge passage 225 open.
As shown in
When the vane rotor 15 receives the torque fluctuation toward both of the retard side and the advance side during the intermediate sustaining control operation shown in
Furthermore, at the time of executing the intermediate sustaining control operation, the spool 63 of the phase switch valve 60 blocks the retard passage 210 and the advance passage 220. Thus, when the vane rotor 15 receives the torque fluctuation, the phase switch valve 60 blocks the conduction of the pressure pulsation from the retard chamber side and the advance chamber side to the phase switch valve 60. In this way, the fluctuation of the pilot pressure can be reduced, so that the first-side control valve 601 and the second-side control valve 602 can keep the retard pilot passage 234 and the advance pilot passage 236 in the blocked state.
Now, referring to
During the retard control operation, the second-side control valve 602 and the phase switch valve 60 are switched into the state, in which the hydraulic fluid is discharged from each advance chamber. Thus, as shown in
Additionally, during the retard control operation, hydraulic fluid is supplied from the retard passage 210 and the retard passage 211 to the retard passages 212, 213, 214. Thus, when the vane rotor does not receive the positive and negative torque fluctuations, the first-side check valve 80 opens the retard passage 212, so that hydraulic fluid is supplied from the retard passage 212 to the control retard chamber 51 through the supply-only hydraulic passage 212a.
As shown in
On the other hand, as shown in
During the advance control operation, the first-side control valve 601 and the phase switch valve 60 are switched to the state, in which the hydraulic fluid is discharged from each retard chamber. Thus, as shown in
Additionally, during the advance control operation, hydraulic fluid is supplied from the advance passage 220 and the advance passage 221 to the advance passages 222, 223, 224. Thus, when the vane rotor does not receive the positive and negative torque fluctuations, the second-side check valve 90 opens the advance passage 222, so that hydraulic fluid is supplied from the advance passage 222 to the control advance chamber 55 through the supply-only hydraulic passage 222a.
As shown in
On the other hand, as shown in
As shown in
As shown in
According to the first embodiment, the first-side check valve 80 is disposed in the retard passage 212, and the second-side check valve 90 is disposed in the advance passage 222. Furthermore, during the intermediate sustaining control operation, the first-side discharge passage 225 is blocked by the first-side control valve 601, and the second-side discharge passage 226 is blocked by the second-side control valve 602. Thereby, even when the vane rotor 15 receives the torque fluctuation toward both the retard side and the advance side in the intermediate sustaining control operation for holding the vane rotor 15 in the target phase, the working fluid can be prevented from flowing out of the control retard chamber 51 and the control advance chamber 55. Thus, even when the vane rotor 15 receives the torque fluctuation toward both the retard side and the advance side during the intermediate sustaining control operation, the vane rotor 15 is not returned to the retard side nor the advance side relative to the housing 10. As a result, the hydraulic fluid does not flow out of the retard chamber 52, 53 and the advance chamber 56, 57. It is thus possible to prevent the relative rotation of the vane rotor 15 toward the retard side and the advance side during the intermediate sustaining control operation, thereby limiting a deviation in the valve timing of the intake valve.
Furthermore, in the first embodiment, the phase switch valve 60 is placed on the hydraulic pump 202 side of the bearing 2, and the first-side check valve 80, the second-side check valve 90, the first-side control valve 601 and the second-side control valve 602 are placed on the retard chamber side and the advance chamber side of the bearing 2. Thus, when the vane rotor 15 receives the torque fluctuation, leakage of the hydraulic fluid from the retard chamber or the advance chamber through the bearing can be limited, and suction of air through a slide clearance of the bearing can be limited.
Also, since the first-side check valve 80, the second-side check valve 90, the first-side control valve 601 and the second-side check valve 606 are received in the vane rotor 15, the passage length between the first-side check valve 80 and the retard chamber 51 and the passage length between the second-side check valve 90 and the advance chamber 55 become relatively short. Thus, a dead volume, which is formed by the passage between the first-side check valve 80 and the retard chamber 51 and the passage between the second-side check valve 90 and the advance chamber 55, is reduced. Therefore, even when the vane rotor 15 receives the torque fluctuation, the reduction of the pressure in the retard chamber 51 or the advance chamber 55, to which the hydraulic pressure is supplied, can be limited. As a result, the response in the phase control operation is improved.
The first embodiment employs the first-side control valve 601 and the second-side control valve 602 of the normally open type as the drain control valves. In contrast, a valve timing control system 4 according to a second embodiment employs a first-side control valve 801 and a second-side control valve 810 of a normally closed type shown in
More specifically, in the first-side control valve 801 and the second-side control valve 810, the two springs 641, 642 apply load to a spool 802 of the first-side control valve 801 and a spool 812 of the second-side control valve 810 to block the first-side discharge passage 225 and the second-side discharge passage 226, respectively. Thus, in the non-applied state of the pilot pressure where no pilot pressure is applied to both the control valves 801, 810, the first-side discharge passage 225 and the second-side discharge passage 226 are normally blocked.
Now, there will be described the control operation of the pilot pressure, which is applied to the first-side control valve 801 and the second-side control valve 810 in the switching control operation of the drain switch valve 820 during the phase control operation.
During the retard control operation, power supply to the solenoid drive arrangement 620 is turned off, and thus a spool 822 of the drain switch valve 820 is in the position shown in
The hydraulic fluid is supplied from the drain switch valve 820 to the retard pilot passage 234, so that the pilot pressure is applied to the first-side control valve 801. In contrast, the hydraulic fluid is discharged from the advance pilot passage 236 through the drain switch valve 820, so that the pilot pressure is not applied to the second-side control valve 810.
The drain switch valve 820 blocks the supply of the hydraulic fluid to the retard pilot passage 234 and the advance pilot passage 236, so that the pilot pressure is not applied to the first-side control valve 801 and the second-side control valve 810.
As described above, the second embodiment is different from the first embodiment in terms of the controlling of the pilot pressure through the drain switch valve 820. However, as shown in
In the valve timing control system 5, 6 in each of the third and fourth embodiments, the retard passages 212, 213, 214 are branched from the retard passage 210.
With the above construction of the retard passages, according to the third embodiment, a passage cross sectional area of the retard passage 212, which is connected to the retard chamber 51 and is provided with the first-side check valve 80, is larger than that of the other retard passages 213, 214. In contrast, with the above construction of the retard passages, in the valve timing control system 6 of the fourth embodiment, a passage length of the retard passage 212, which is connected to the retard chamber 51 and is provided with the first-side check valve 80, is shorter than that of the other retard passages 213, 214.
With the above construction of the retard passages, according to the third and fourth embodiments, the pressure loss of the retard passage 212 is smaller than that of the other retard passages 213, 214. Therefore, the flow quantity of the hydraulic fluid per unit time supplied from the retard passage 212 to the retard chamber 51 is larger than the flow quantity of the hydraulic fluid per unit time supplied from each of the retard passages 213, 214 to the corresponding retard chamber 52, 53. As a result, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the retard chamber 51 can be filled with the hydraulic fluid at the faster rate.
Therefore, according to the third and fourth embodiments, even when the pressure of hydraulic fluid in the retard chamber 51 is relatively low, the first-side check valve 80 is closed because of the application of the torque fluctuation to the vane rotor 15 toward the advance side. In this way, the hydraulic fluid is not discharged from the retard chamber 51, and the vane rotor 15 is not returned toward the advance side relative to the housing 10. Thus, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the first-side check valve 80 can be quickly driven, and thereby the vane rotor 15 can quickly reach the target phase on the retard side.
Furthermore, in the valve timing control system 5, 6 of each of the third and fourth embodiments, the advance passages 222, 223, 224 are branched from the advance passage 220.
With the above construction of the advance passages, according to the third embodiment, a passage cross sectional area of the advance passage 222, which is connected to the advance chamber 55 and is provided with the second-side check valve 90, is larger than that of the other advance passages 223, 224. In contrast, with the above construction of the advance passages, in the valve timing control system 6 of the fourth embodiment, a passage length of the advance passage 222, which is connected to the advance chamber 55 and is provided with the second-side check valve 90, is shorter than that of the other advance passages 223, 224.
With the above construction of the advance passages, according to the third and fourth embodiments, the pressure loss of the advance passage 222 is smaller than that of the other advance passages 223, 224. Therefore, the flow quantity of the hydraulic fluid per unit time supplied from the advance passage 222 to the advance chamber 55 is larger than the flow quantity of the hydraulic fluid per unit time supplied from each of the advance passages 223, 224 to the corresponding advance chamber 56, 57. As a result, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the advance chamber 55 can be filled with the hydraulic fluid at the faster rate.
Therefore, according to the third and fourth embodiments, even when the pressure of hydraulic fluid in the advance chamber 55 is relatively low, the second-side check valve 90 is closed because of the application of the torque fluctuation to the vane rotor 15 toward the retard side. In this way, the hydraulic fluid is not discharged from the advance chamber 55, and the vane rotor 15 is not returned toward the retard side relative to the housing 10. Thus, even when the pressure of the hydraulic fluid, which is supplied from the hydraulic pump 202, is relatively low, the second-side check valve 90 can be quickly driven, and thereby the vane rotor 15 can quickly reach the target phase on the advance side.
In the aforementioned embodiments, the retard chamber and the advance chamber are connected with the first-side check valve 80 and the second-side check valve 90, respectively, which serve as the phase check valves, and are also connected with the first-side control valve and the second-side control valve, respectively, which serve as the drain control valves, respectively. Alternatively, one of the retard chamber and the advance chamber may be connected with the phase check valve and the drain control valve.
Additionally, in the aforementioned embodiments, only the retard passage 212 among the plurality of retard passages 212, 213, 214 has the first-side check valve 80. However, it is only required that the first-side check valve 80 is installed in at least one of the plurality of retard passages 212, 213, 214. For example, the first-side check valve 80 may be installed in each of all the retard passages 212, 213, 214. Even in this case, at least one of the retard passages 212, 213, 214 may be formed to have the smaller pressure loss and thereby to implement a larger flow quantity of the hydraulic fluid in comparison to the rest of the retard passages 212, 213, 214, and the at least one first-side check valve 80 may be provided in the at least one of the retard passages 212, 213, 214.
Additionally, in the aforementioned embodiments, only the advance passage 222 among the plurality of advance passages 222, 223, 224 has the second-side check valve 90. However, it is only required that the second-side check valve 90 is installed in at least one of the plurality of advance passages 222, 223, 224. For example, the second-side check valve 90 may be installed in each of all the advance passages 222, 223, 224. Even in this case, at least one of the advance passages 222, 223, 224 may be formed to have the smaller pressure loss and thereby to implement a larger flow quantity of the hydraulic fluid in comparison to the rest of the advance passages 222, 223, 224, and the at least one second-side check valve 90 may be provided in the at least one of the advance passages 222, 223, 224.
In the aforementioned embodiments, the phase check valve and the drain control valve are installed in the vane rotor 15 on the side of the bearing 2 where the advance chambers and the retard chambers are located. In contrast to this, the phase check valve and the drain control valve may be installed outside the vane rotor 15. Alternatively, the phase check valve and the drain control valve may be installed on the hydraulic pump 202 side of the bearing 2.
In the aforementioned embodiments, the present invention is applied in the valve timing control system of the intake valve. Alternatively, the present invention may also be applied to a valve timing control system for adjusting the valve timing of the exhaust valve or both the intake valve and the exhaust valve.
Additional advantages and modifications will readily occur to those skilled in the art. The invention in its broader terms is therefore not limited to the specific details, representative apparatus, and illustrative examples shown and described.
Number | Date | Country | Kind |
---|---|---|---|
2006-246715 | Sep 2006 | JP | national |