Information
-
Patent Grant
-
6173688
-
Patent Number
6,173,688
-
Date Filed
Wednesday, December 23, 199826 years ago
-
Date Issued
Tuesday, January 16, 200124 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Sughrue, Mion, Zinn, Macpeak & Seas, PLLC
-
CPC
-
US Classifications
Field of Search
US
- 123 9015
- 123 9017
- 123 9031
- 123 9037
- 074 568 R
- 464 1
- 464 2
- 464 160
-
International Classifications
-
Abstract
Since conventionally the chip seal 14, 16 and the metallic blade spring 15, 17 have been formed separately, assembly efficiency has been poor (for example when the chip seal 14, 16 is inserted, the metallic blade spring 15, 17 detaches and falls out) which lowers productivity. As a result, the cross sectional shape of the chip seal 21 which pushes against the rotor 13 is made in the shape of a letter L.
Description
FIELD OF THE INVENTION
The present invention relates to a valve timing variation device which controls the timing of the opening and closing of a valve.
DESCRIPTION OF THE PRIOR ART
FIGS. 7 and 8
are cross sections showing a conventional valve timing variation device.
FIGS. 9A and 9B
are cross sections showing the structure of a chip seal of a valve timing variation device. In the figures, reference numeral
1
denotes an electronic control unit (hereafter ECU) which controls the oil control valve
2
and the like.
2
is an oil control valve (hereafter OCV) which supplies working oil to the actuator
3
under the control of the ECU
1
.
3
is an actuator which controls the displacement angle of the camshaft
6
with respect to the timing pulley
8
when the working oil is supplied from the OCV
2
and which continuously regulates the timing of the opening and closing of the air intake valve.
4
and
5
are oil passages through which the working oil which is supplied from the OCV
2
flows.
6
is a camshaft which drives the opening and closing of the intake valve of the engine.
7
is a cam of the camshaft
6
.
8
is a timing pulley arranged on one end of the camshaft
6
.
9
is a bearing of the camshaft
6
.
10
is a housing mounted so as to be freely rotatable with respect to the camshaft
6
.
11
is a case fixed to the housing
10
.
12
is a bolt which fixes the case
11
to the housing
10
.
13
is a rotor which is fixed to the camshaft
6
and which rotates relative to the case
11
.
14
and
16
are chip seals which prevent the movement of oil between the oil chambers
18
which are separated by the case
11
and the rotor
13
.
15
is a metallic blade spring which is disposed between case
11
and the chip seal
14
and which pressures the chip seal
14
against the rotor
13
.
17
is a metallic blade spring which is disposed between rotor
13
and the chip seal
14
and which pressures the chip seal
16
against the case
11
.
18
are oil chambers which are separated by the case
11
and the rotor
13
.
Next the operation of the invention will be explained.
Although the valve timing variation device controls the rotational direction of the housing
10
and the timing of the opening and closing of the air intake and exhaust valves of the engine by controlling of the amount of oil flowing into each oil chamber
18
, in order to prevent the movement of oil between the oil chambers
18
, a chip seal
14
is pushed against the rotor
13
and a chip seal
16
is pushed against the case
11
.
In other words, as shown in
FIG. 9A
, the chip seal
14
is pushed against the rotor
13
by the blade spring
15
disposed between the case
11
and the chip seal
14
. Furthermore the chip seal
16
as shown in
FIG. 9B
, is pushed against the case
11
by the blade spring
17
which is disposed between the rotor
13
and the chip seal
16
.
The attachment of the chip seals
14
and
16
is performed by insertion between the case
11
and the rotor
13
in the direction from the left side of
FIGS. 9A and 9B
(the front of
FIG. 8
) to the right side (the back of
FIG. 8
) so that the chip seals
14
,
16
and the metallic blade springs
15
,
17
do not become disassembled.
Apart from the conventional example given above, a similar arrangement is disclosed in JP-A-9-324611.
Since conventional valve timing variation devices are constructed as above, chip seals
14
,
16
are pushed onto the rotor
13
or the case
11
using blade springs
15
,
17
. However since the chip seals
14
,
16
and the blade springs
15
,
17
have different structures, the problem has arisen that assembly efficiency is extremely poor (for example when the chip seals
14
,
16
are inserted the blade spring
15
,
17
becomes detached and fall out) which reduces productivity.
SUMMARY OF THE INVENTION
The present invention is proposed to solve the above problems and has the objective of obtaining a valve timing variation device which can increase assemblying efficiency when the chip seals are assembled.
According to the first embodiment of the invention, the chip seal of the valve timing variation device has the shape of a letter āLā when taken in cross section.
According to the first embodiment of the invention, since the cross sectional shape of the chip seal has the shape of a letter āLā, the efficiency of assembling the chip seal can be increased.
According to the second embodiment of the present invention, the valve timing variation device is adapted to integrally form a chip seal and a flexible member.
According to the second embodiment, since the chip seal and the flexible member are formed integrally, assemblying efficiency of the chip seal is conspicuously increased.
According to the third embodiment of the present invention, the valve timing variation device is adapted to insert a blade spring into the chip seal.
According to the third embodiment, since the blade spring is formed to be inserted into the chip seal, it is possible to avoid the deficiency of the chip seal and the blade spring disassembling during assembly.
According to the fourth embodiment of the present invention, the valve timing variation device is adapted so that both legs of the chip seal are bent to form a flexible member.
According to the fourth embodiment, since both legs of the chip seal are bent to form a flexible member, it is possible to reduce manufacturing costs and at the same time conspicuously improve assembling efficiency of the chip seal.
According to the fifth embodiment of the present invention, the valve timing variation device is adapted to fix the flexible member which has lower hardness than the chip seal to the chip seal.
According to the fifth embodiment, by fixing the flexible member which has lower hardness than the chip seal to the chip seal, it is possible to lower manufacturing costs and to conspicuously increase assembling efficiency of the chip seal.
According to the sixth embodiment of the invention, the valve timing variation device adapted to construct the member on the rotor side of the chip seal using soft flexible resin.
According to the sixth embodiment, using soft flexible resin to construct the member on the rotor side of the chip seal enables the flexible member to be dispensed with.
According to the seventh embodiment of the present invention, the valve timing variation device is adapted so that the chip seal is pushed to the case side by the flexible member.
According to the seventh embodiment, since the chip seal is pushed to the case side by the flexible member, it is possible to prevent the movement of oil between the oil chambers which are separated by the case and the rotor.
According to the eighth embodiment, the valve timing variation device is adapted so that the chip seal is pushed to the rotor side by the flexible member.
According to the eighth embodiment, since the chip seal is pushed to the rotor side by the flexible member, it is possible to prevent the movement of oil between the oil chambers which are separated by the case and the rotor.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the first embodiment of the present invention.
FIGS. 2A and 2B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the second embodiment of the present invention.
FIGS. 3A and 3B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the third embodiment of the present invention.
FIGS. 4A and 4B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the fourth embodiment of the present invention.
FIGS. 5A and 5B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the fifth embodiment of the present invention.
FIGS. 6A and 6B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the sixth embodiment of the present invention.
FIG. 7
is a cross section showing a conventional valve timing variation device.
FIG. 8
is a cross section showing a conventional valve timing variation device.
FIGS. 9A and 9B
are cross sections which show the structure of a chip seal of a valve timing variation device.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The embodiments of the present invention are explained below.
Embodiment 1
FIGS. 1A and 1B
are cross sections which show the structure of a chip seal of a valve timing variation device according to the first embodiment of the present invention. In the figures, reference numeral
11
denotes a case fixed to a housing
10
,
11
a
is a notch of the case
11
which stores the chip seal
21
and
13
is a rotor which is fixed to the camshaft
6
and which rotates relative to the case
11
.
13
a
is a notch of the rotor
13
which stores the chip seal
23
.
21
and
23
are chip seals which prevent the movement of oil between the oil chambers
18
which are separated by the case
11
and the rotor
13
.
21
a
and
23
a
are distal sections of the chip seals
21
,
23
.
22
is a metallic blade spring (flexible member) which is disposed between the case
11
and the chip seal
21
and which pressures the chip seal
21
against the rotor
13
.
24
is a is a metallic blade spring (flexible member) which is disposed between the rotor
13
and the chip seal
23
and which pressures the chip seal
23
against the case
11
.
Next the operation of the invention will be explained.
The valve timing variable device controls the axial direction of the housing and the timing of the opening and closing of the exhaust valve and the air intake valve of an engine by controlling the amount of oil entering the oil chambers
18
. In order to prevent the movement of oil between each oil chamber
18
, a chip seal
21
is pressed against the rotor
13
and a chip seal
23
is pressed against the case
11
.
In other words, as shown in
FIG. 1A
, the chip seal
21
is pressed against the rotor
13
by the metallic blade spring
22
disposed between the case
11
and the chip seal
21
.
The chip seal
23
as shown in
FIG. 1B
is pressed against the case
11
by the metallic blade spring
22
disposed between the rotor
13
and the chip seal
23
.
However the chip seals
21
,
23
are different from conventional chip seals
14
,
16
. Their cross sectional shape is in the shape of a letter L and the sealing performance of the lateral sections of the chip seals
21
,
23
is improved as the lateral sections of the chip seals
21
,
23
are stored in the notches
11
a,
13
a
of the rotor
13
and the case
11
.
The assembly of the chip seal
21
,
23
is performed by insertion between the case
11
and the rotor
13
from the left side of
FIGS. 1A and 1B
(the front of
FIG. 8
) towards the right side (the rear of
FIG. 8
) so that the chip seals
21
,
23
and the metallic blade springs
22
,
24
do not become disassembled. The insertion of the tip
21
a,
23
a
of the chip seals
21
,
23
is easy due to the fact that the tip
21
a,
23
a
of the chip seals
21
,
23
is narrow in comparison with conventional chip seals
14
,
16
. Hence the ease of assembly of the chip seal can be improved.
Embodiment 2
In embodiment 1 above, the L-shaped cross sectional shape of the chip seal
21
,
23
was explained. However as shown in
FIGS. 2A and 2B
, the chip seal may be integrated with a flexible member.
In other words, the chip seal and the flexible member are integrated by forming the metallic blade spring
26
,
28
within the chip seal
25
,
27
.
In this way, when the chip seal
25
,
27
is assembled, the chip seal
25
,
27
and the metallic blade spring
26
,
28
do not become disassembled and assembling efficiency is conspicuously improved.
Embodiment 3
In embodiment 2 above, the chip seal was explained as integrated with the flexible member. However as shown in
FIGS. 3A and 3B
, both legs of the chip seal may be bent to form a flexible member.
In other words, the legs
29
a,
29
b,
30
a,
30
b
of the chip seal
29
,
30
have the shape as shown in FIG.
3
and the legs
29
a,
29
b,
30
a,
30
b
of the chip seal
29
,
30
may be flexible.
In this way, as a flexible member such as a metallic blade spring becomes redundant, costs are reduced and the assembly efficiency is conspicuously improved.
Embodiment 4
In embodiment 2 above, the chip seal was explained as integrated with the flexible member. However as shown in
FIGS. 4A and 4B
, a flexible member of lower hardness than the chip seal may be fixed to the chip seal.
In other words, as shown in
FIG. 4A
, when the chip seal
31
a
is pushed against the rotor
13
, the chip seal
31
on the rotor side
13
is constructed using a hard highly slidable resin such as nylon or carbon. The chip seal
31
b
(flexible member) on the case side
11
is constructed using a soft resin with high flexibility such as rubber or elastomer.
Furthermore as shown in
FIG. 4B
, when the chip seal
32
a
is pushed against the case
11
, the chip seal
32
a
on the case side
11
is constructed using a hard highly slidable resin such as nylon or carbon. The chip seal
32
b
(flexible member) on the rotor side
13
is constructed using a soft resin with high flexibility such as rubber or elastomer.
In this way since a flexible member such as the metallic blade spring becomes redundant, costs are reduced and assembling efficiency is conspicuously improved.
Embodiment 5
In embodiment 3 above, the flexible chip seal was explained as having flexibility in the leg sections. However as shown in
FIGS. 5A and 5B
, the slidable surface of the chip seals
29
,
30
and the leg sections are laminated and both legs
29
a,
29
b,
30
a,
30
b
may be constructed using a soft highly flexible resin such as rubber or elastomer. Hence the same effect as embodiment 3 can be achieved.
Embodiment 6
In embodiment 4 above, a bilayer of two resins of different hardness was formed to construct the chip seal. However as shown in
FIGS. 6A and 6B
, the cross sectional shape of the chip seal may be in the shape of a letter L.
In this way, the same effect as embodiment 4 above is achieved and the performance of the seal on the lateral surface of the chip seal is enhanced.
Claims
- 1. A valve timing variation device comprising a case which is fixed to a housing, a rotor which is fixed to a camshaft and which rotates relative to said case and a chip seal which prevents the movement of oil between oil chambers, which are separated by said case and said rotor, by being pushed by a flexible member wherein said chip seal is formed integrally with said flexible member and said flexible member is inseparable from said chip seal.
- 2. A valve timing variation device according to claim 1, wherein said flexible member is a blade spring which is formed within said chip seal.
- 3. A valve timing variation device according to claim 1 wherein said flexible member of lower hardness than said chip seal is fixed to said chip seal.
- 4. A valve timing variation device according to claim 1 wherein said chip seal is pushed on the case side by said flexible member.
- 5. A valve timing variation device according to claim 1 wherein said chip seal is pushed on the rotor side by said flexible member.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-206722 |
Jul 1998 |
JP |
|
US Referenced Citations (6)
Foreign Referenced Citations (2)
Number |
Date |
Country |
1454747 |
Nov 1976 |
EP |
9-324611 |
Dec 1997 |
JP |