Valve timing variation device

Information

  • Patent Grant
  • 6173688
  • Patent Number
    6,173,688
  • Date Filed
    Wednesday, December 23, 1998
    26 years ago
  • Date Issued
    Tuesday, January 16, 2001
    24 years ago
Abstract
Since conventionally the chip seal 14, 16 and the metallic blade spring 15, 17 have been formed separately, assembly efficiency has been poor (for example when the chip seal 14, 16 is inserted, the metallic blade spring 15, 17 detaches and falls out) which lowers productivity. As a result, the cross sectional shape of the chip seal 21 which pushes against the rotor 13 is made in the shape of a letter L.
Description




FIELD OF THE INVENTION




The present invention relates to a valve timing variation device which controls the timing of the opening and closing of a valve.




DESCRIPTION OF THE PRIOR ART





FIGS. 7 and 8

are cross sections showing a conventional valve timing variation device.

FIGS. 9A and 9B

are cross sections showing the structure of a chip seal of a valve timing variation device. In the figures, reference numeral


1


denotes an electronic control unit (hereafter ECU) which controls the oil control valve


2


and the like.


2


is an oil control valve (hereafter OCV) which supplies working oil to the actuator


3


under the control of the ECU


1


.


3


is an actuator which controls the displacement angle of the camshaft


6


with respect to the timing pulley


8


when the working oil is supplied from the OCV


2


and which continuously regulates the timing of the opening and closing of the air intake valve.


4


and


5


are oil passages through which the working oil which is supplied from the OCV


2


flows.


6


is a camshaft which drives the opening and closing of the intake valve of the engine.


7


is a cam of the camshaft


6


.


8


is a timing pulley arranged on one end of the camshaft


6


.


9


is a bearing of the camshaft


6


.






10


is a housing mounted so as to be freely rotatable with respect to the camshaft


6


.


11


is a case fixed to the housing


10


.


12


is a bolt which fixes the case


11


to the housing


10


.


13


is a rotor which is fixed to the camshaft


6


and which rotates relative to the case


11


.


14


and


16


are chip seals which prevent the movement of oil between the oil chambers


18


which are separated by the case


11


and the rotor


13


.


15


is a metallic blade spring which is disposed between case


11


and the chip seal


14


and which pressures the chip seal


14


against the rotor


13


.


17


is a metallic blade spring which is disposed between rotor


13


and the chip seal


14


and which pressures the chip seal


16


against the case


11


.


18


are oil chambers which are separated by the case


11


and the rotor


13


.




Next the operation of the invention will be explained.




Although the valve timing variation device controls the rotational direction of the housing


10


and the timing of the opening and closing of the air intake and exhaust valves of the engine by controlling of the amount of oil flowing into each oil chamber


18


, in order to prevent the movement of oil between the oil chambers


18


, a chip seal


14


is pushed against the rotor


13


and a chip seal


16


is pushed against the case


11


.




In other words, as shown in

FIG. 9A

, the chip seal


14


is pushed against the rotor


13


by the blade spring


15


disposed between the case


11


and the chip seal


14


. Furthermore the chip seal


16


as shown in

FIG. 9B

, is pushed against the case


11


by the blade spring


17


which is disposed between the rotor


13


and the chip seal


16


.




The attachment of the chip seals


14


and


16


is performed by insertion between the case


11


and the rotor


13


in the direction from the left side of

FIGS. 9A and 9B

(the front of

FIG. 8

) to the right side (the back of

FIG. 8

) so that the chip seals


14


,


16


and the metallic blade springs


15


,


17


do not become disassembled.




Apart from the conventional example given above, a similar arrangement is disclosed in JP-A-9-324611.




Since conventional valve timing variation devices are constructed as above, chip seals


14


,


16


are pushed onto the rotor


13


or the case


11


using blade springs


15


,


17


. However since the chip seals


14


,


16


and the blade springs


15


,


17


have different structures, the problem has arisen that assembly efficiency is extremely poor (for example when the chip seals


14


,


16


are inserted the blade spring


15


,


17


becomes detached and fall out) which reduces productivity.




SUMMARY OF THE INVENTION




The present invention is proposed to solve the above problems and has the objective of obtaining a valve timing variation device which can increase assemblying efficiency when the chip seals are assembled.




According to the first embodiment of the invention, the chip seal of the valve timing variation device has the shape of a letter ā€œLā€ when taken in cross section.




According to the first embodiment of the invention, since the cross sectional shape of the chip seal has the shape of a letter ā€œLā€, the efficiency of assembling the chip seal can be increased.




According to the second embodiment of the present invention, the valve timing variation device is adapted to integrally form a chip seal and a flexible member.




According to the second embodiment, since the chip seal and the flexible member are formed integrally, assemblying efficiency of the chip seal is conspicuously increased.




According to the third embodiment of the present invention, the valve timing variation device is adapted to insert a blade spring into the chip seal.




According to the third embodiment, since the blade spring is formed to be inserted into the chip seal, it is possible to avoid the deficiency of the chip seal and the blade spring disassembling during assembly.




According to the fourth embodiment of the present invention, the valve timing variation device is adapted so that both legs of the chip seal are bent to form a flexible member.




According to the fourth embodiment, since both legs of the chip seal are bent to form a flexible member, it is possible to reduce manufacturing costs and at the same time conspicuously improve assembling efficiency of the chip seal.




According to the fifth embodiment of the present invention, the valve timing variation device is adapted to fix the flexible member which has lower hardness than the chip seal to the chip seal.




According to the fifth embodiment, by fixing the flexible member which has lower hardness than the chip seal to the chip seal, it is possible to lower manufacturing costs and to conspicuously increase assembling efficiency of the chip seal.




According to the sixth embodiment of the invention, the valve timing variation device adapted to construct the member on the rotor side of the chip seal using soft flexible resin.




According to the sixth embodiment, using soft flexible resin to construct the member on the rotor side of the chip seal enables the flexible member to be dispensed with.




According to the seventh embodiment of the present invention, the valve timing variation device is adapted so that the chip seal is pushed to the case side by the flexible member.




According to the seventh embodiment, since the chip seal is pushed to the case side by the flexible member, it is possible to prevent the movement of oil between the oil chambers which are separated by the case and the rotor.




According to the eighth embodiment, the valve timing variation device is adapted so that the chip seal is pushed to the rotor side by the flexible member.




According to the eighth embodiment, since the chip seal is pushed to the rotor side by the flexible member, it is possible to prevent the movement of oil between the oil chambers which are separated by the case and the rotor.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A and 1B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the first embodiment of the present invention.





FIGS. 2A and 2B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the second embodiment of the present invention.





FIGS. 3A and 3B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the third embodiment of the present invention.





FIGS. 4A and 4B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the fourth embodiment of the present invention.





FIGS. 5A and 5B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the fifth embodiment of the present invention.





FIGS. 6A and 6B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the sixth embodiment of the present invention.





FIG. 7

is a cross section showing a conventional valve timing variation device.





FIG. 8

is a cross section showing a conventional valve timing variation device.





FIGS. 9A and 9B

are cross sections which show the structure of a chip seal of a valve timing variation device.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The embodiments of the present invention are explained below.




Embodiment 1





FIGS. 1A and 1B

are cross sections which show the structure of a chip seal of a valve timing variation device according to the first embodiment of the present invention. In the figures, reference numeral


11


denotes a case fixed to a housing


10


,


11




a


is a notch of the case


11


which stores the chip seal


21


and


13


is a rotor which is fixed to the camshaft


6


and which rotates relative to the case


11


.


13




a


is a notch of the rotor


13


which stores the chip seal


23


.


21


and


23


are chip seals which prevent the movement of oil between the oil chambers


18


which are separated by the case


11


and the rotor


13


.


21




a


and


23




a


are distal sections of the chip seals


21


,


23


.


22


is a metallic blade spring (flexible member) which is disposed between the case


11


and the chip seal


21


and which pressures the chip seal


21


against the rotor


13


.


24


is a is a metallic blade spring (flexible member) which is disposed between the rotor


13


and the chip seal


23


and which pressures the chip seal


23


against the case


11


.




Next the operation of the invention will be explained.




The valve timing variable device controls the axial direction of the housing and the timing of the opening and closing of the exhaust valve and the air intake valve of an engine by controlling the amount of oil entering the oil chambers


18


. In order to prevent the movement of oil between each oil chamber


18


, a chip seal


21


is pressed against the rotor


13


and a chip seal


23


is pressed against the case


11


.




In other words, as shown in

FIG. 1A

, the chip seal


21


is pressed against the rotor


13


by the metallic blade spring


22


disposed between the case


11


and the chip seal


21


.




The chip seal


23


as shown in

FIG. 1B

is pressed against the case


11


by the metallic blade spring


22


disposed between the rotor


13


and the chip seal


23


.




However the chip seals


21


,


23


are different from conventional chip seals


14


,


16


. Their cross sectional shape is in the shape of a letter L and the sealing performance of the lateral sections of the chip seals


21


,


23


is improved as the lateral sections of the chip seals


21


,


23


are stored in the notches


11




a,




13




a


of the rotor


13


and the case


11


.




The assembly of the chip seal


21


,


23


is performed by insertion between the case


11


and the rotor


13


from the left side of

FIGS. 1A and 1B

(the front of

FIG. 8

) towards the right side (the rear of

FIG. 8

) so that the chip seals


21


,


23


and the metallic blade springs


22


,


24


do not become disassembled. The insertion of the tip


21




a,




23




a


of the chip seals


21


,


23


is easy due to the fact that the tip


21




a,




23




a


of the chip seals


21


,


23


is narrow in comparison with conventional chip seals


14


,


16


. Hence the ease of assembly of the chip seal can be improved.




Embodiment 2




In embodiment 1 above, the L-shaped cross sectional shape of the chip seal


21


,


23


was explained. However as shown in

FIGS. 2A and 2B

, the chip seal may be integrated with a flexible member.




In other words, the chip seal and the flexible member are integrated by forming the metallic blade spring


26


,


28


within the chip seal


25


,


27


.




In this way, when the chip seal


25


,


27


is assembled, the chip seal


25


,


27


and the metallic blade spring


26


,


28


do not become disassembled and assembling efficiency is conspicuously improved.




Embodiment 3




In embodiment 2 above, the chip seal was explained as integrated with the flexible member. However as shown in

FIGS. 3A and 3B

, both legs of the chip seal may be bent to form a flexible member.




In other words, the legs


29




a,




29




b,




30




a,




30




b


of the chip seal


29


,


30


have the shape as shown in FIG.


3


and the legs


29




a,




29




b,




30




a,




30




b


of the chip seal


29


,


30


may be flexible.




In this way, as a flexible member such as a metallic blade spring becomes redundant, costs are reduced and the assembly efficiency is conspicuously improved.




Embodiment 4




In embodiment 2 above, the chip seal was explained as integrated with the flexible member. However as shown in

FIGS. 4A and 4B

, a flexible member of lower hardness than the chip seal may be fixed to the chip seal.




In other words, as shown in

FIG. 4A

, when the chip seal


31




a


is pushed against the rotor


13


, the chip seal


31


on the rotor side


13


is constructed using a hard highly slidable resin such as nylon or carbon. The chip seal


31




b


(flexible member) on the case side


11


is constructed using a soft resin with high flexibility such as rubber or elastomer.




Furthermore as shown in

FIG. 4B

, when the chip seal


32




a


is pushed against the case


11


, the chip seal


32




a


on the case side


11


is constructed using a hard highly slidable resin such as nylon or carbon. The chip seal


32




b


(flexible member) on the rotor side


13


is constructed using a soft resin with high flexibility such as rubber or elastomer.




In this way since a flexible member such as the metallic blade spring becomes redundant, costs are reduced and assembling efficiency is conspicuously improved.




Embodiment 5




In embodiment 3 above, the flexible chip seal was explained as having flexibility in the leg sections. However as shown in

FIGS. 5A and 5B

, the slidable surface of the chip seals


29


,


30


and the leg sections are laminated and both legs


29




a,




29




b,




30




a,




30




b


may be constructed using a soft highly flexible resin such as rubber or elastomer. Hence the same effect as embodiment 3 can be achieved.




Embodiment 6




In embodiment 4 above, a bilayer of two resins of different hardness was formed to construct the chip seal. However as shown in

FIGS. 6A and 6B

, the cross sectional shape of the chip seal may be in the shape of a letter L.




In this way, the same effect as embodiment 4 above is achieved and the performance of the seal on the lateral surface of the chip seal is enhanced.



Claims
  • 1. A valve timing variation device comprising a case which is fixed to a housing, a rotor which is fixed to a camshaft and which rotates relative to said case and a chip seal which prevents the movement of oil between oil chambers, which are separated by said case and said rotor, by being pushed by a flexible member wherein said chip seal is formed integrally with said flexible member and said flexible member is inseparable from said chip seal.
  • 2. A valve timing variation device according to claim 1, wherein said flexible member is a blade spring which is formed within said chip seal.
  • 3. A valve timing variation device according to claim 1 wherein said flexible member of lower hardness than said chip seal is fixed to said chip seal.
  • 4. A valve timing variation device according to claim 1 wherein said chip seal is pushed on the case side by said flexible member.
  • 5. A valve timing variation device according to claim 1 wherein said chip seal is pushed on the rotor side by said flexible member.
Priority Claims (1)
Number Date Country Kind
10-206722 Jul 1998 JP
US Referenced Citations (6)
Number Name Date Kind
3990819 Ritchie Nov 1976
5305721 Burtis Apr 1994
5666914 Ushida et al. Sep 1997
5738056 Mikame et al. Apr 1998
5865151 Fukaya et al. Feb 1999
5957098 Fukuhara et al. Sep 1999
Foreign Referenced Citations (2)
Number Date Country
1454747 Nov 1976 EP
9-324611 Dec 1997 JP