1. Field of the Invention
This invention relates to a valve train device for an engine and, more particularly, to a valve train device which can continuously change valve opening duration and/or the amount of valve lift.
2. Description of the Related Art
It is known in the art how to provide engines with a valve train device that is capable of continuously changing intake valve opening duration and/or the amount of valve lift. An example of such a valve train device comprises a camshaft, which drives an intake valve to open and close through a rocker arm, a swing arm that is driven to swing by the camshaft and a control arm that is interposed between a swing cam surface of the swing arm and a rocker-side depressed surface of the rocker arm. The valve opening duration and the amount of valve lift is continuously varied by continuously changing a point of the control arm that comes into contact with the swing cam surface and a point of the control arm that comes into contact with the depressed surface of the rocker arm (See e.g., JP-A-Sho 59-500002).
In the conventional valve train device described above, the device includes the rocker arm, the swing arm and the control arm. The contact point between the control arm and the swing cam surface, as well as the contact point between the control arm and the rocker-side depressed surface is displaced to vary the valve lift and valve lift duration. While effective, there is a concern that the size of the overall device might increase depending on the features of the components determined to rigidly secure the device and on the layout of such components.
In view of the foregoing, it is, therefore, an object of an embodiment of the present invention to provide a valve train device for an engine capable of rigidly securing the components as well a providing a compact arrangement.
Accordingly, one embodiment of the present invention comprises a valve train device for an engine for driving a valve which opens and closes a valve opening of a combustion chamber. The device comprises a valve drive device and drive force transmission mechanism. The drive force transmission mechanism is configured to transmit a driving force from the drive member to the valve. The drive force transmission mechanism comprises a transmission portion configured to transmit the driving force from the drive member to the valve and a variable portion configured to continuously change a state of the transmission portion to thereby continuously change an opening duration of the valve or the amount of valve lift. At least part of the variable portion is positioned within in the transmission portion.
For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein
A general architecture that implements various features of specific embodiments of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
An embodiment of the present invention will be described hereinafter with reference to the attached drawings. FIGS. 1 to 3 describe a first embodiment of the invention.
In
In the embodiments described below, reference will be made to the intake valve 3 and intake valve device 1. However, it should be appreciated that certain features and aspects of these embodiments may also be applied to an exhaust device and exhaust valve. It should also be appreciated that various features, aspects and advantages of the present invent may be used with engines having more than one or more intake valves and/or exhaust valves, and any of a variety of configurations including a variety of numbers of cylinders and cylinder arrangements (V, W, opposing, etc.).
A valve train device 7 is disposed generally above the intake valve 3. The valve train device 7 is configured to drive the intake valve 3 to open and close by transmitting a driving force from an intake camshaft (driving member) 8 to the intake valve 3 via a driving force transmission mechanism. The driving force transmission mechanism includes a transmitting portion for transmitting the driving force from the intake camshaft 8 to the intake valve 3, and a variable portion for continuously changing the state of the transmitting portion transmitting the driving force, thereby continuously changing an opening duration of the valve 3 and the amount of valve lift.
More specifically, in the illustrated embodiment, the driving force transmission mechanism is configured such that: the intake camshaft 8 causes a first swing arm 9 to swing or pivot, the swing arm 9 causes a first rocker arm 11 to swing pivot through a first control arm 10, and the swing or pivoting motion of the first rocker arm 11 causes the intake valve 3 to proceed and retract in the axial direction, and thus the intake valve opening 2b is opened and closed.
Causing the first control arm 10 to proceed and retract can continuously vary a contact point between the first control arm 10 and the first swing arm 9 and a contact point between the first control arm 10 and the first rocker arm 11, thereby continuously changing the opening duration of the intake valve 3 and the amount of valve lift.
The intake camshaft 8 is arranged in parallel with a crankshaft (not shown) and supported to be rotatable and immobile in the direction perpendicular to the intake camshaft and in the axial direction through a cam journal portion formed on the cylinder head 2 and a cam cap provided on an upper mating face of the journal portion. The intake camshaft 8 is formed with a single cam nose 8c common to the left and right intake valves, including a base circle portion 8a having a uniform diameter, and a lift portion 8b having a specified cam profile. Each cylinder is preferably provided with a single cam nose.
The first swing arm 9 includes a pair of left and right swing arm portions 9a, 9a, a swing cam surface (i.e., a first swing cam surface) 9b, a roller shaft 9c, and a swing roller 9d. The pair of swing arm portions 9a, 9a are supported for free swinging or pivotal movement with a swing support shaft 12, which is preferably arranged in parallel with the intake camshaft 8 and is immobile in the direction perpendicular to the swing shaft and in the axial direction. In the illustrated embodiment, the swing cam surface 9b is formed integrally with a coupling portion for coupling the distal ends (lower ends) of the swing arm portions 9a. The roller shaft 9c is arranged in parallel with the swing shaft 12 and passes through the midsection between the left and right swing arm portions 9a, 9a. The swing roller 9d is rotatably supported with the roller shaft 9c and located between the left and right swing arm portions 9a, 9a.
The proximal ends (upper ends) of the swing arm portions 9a are supported with the swing support shaft 12 for free swinging or pivoting movement. The swing support shaft 12 is provided with a pair of left and right balance springs 13 as coil springs. Each balance spring 13 has an end 13a retained to a position of the swing arm portion 9a between the swing shaft 12 and the roller shaft 9c, and the other end 13b of each balance spring is retained to the cylinder head 2. The balance spring 13 urges the first swing arm 9 clockwise of
The swing cam surface 9b is generally in the shape of a plate having a curved surface in a base circle portion 9e and a lift portion 9f which are connected to each other continuously. The first swing arm 9 is provided so that the base circle portion 9e is positioned nearer to a rocker shaft 14 and the lift portion 9f is positioned opposite the rocker arm support shaft 14. The base circle portion 9e has an arcuate shape of a radius R1 around the axial center of the swing shaft 12 as the center of swing (a). Thus, while the base circle portion 9e depresses the roller 10c, the intake valve 3 is at a fully closed position and is not lifted with an increase of the swing angle of the first swing arm 9.
Meanwhile, the lift portion 9f lifts the intake valve 3 by a larger amount as the lift portion 8b of the intake camshaft 8, at the portion close to its top depresses the swing roller 9d, that is, as the swing angle of the first swing arm 9 increases. In this embodiment, the lift portion 9f includes a ramp zone which gives a constant speed, an acceleration zone which gives a varied speed, and a lift zone which gives generally a constant speed.
The rocker arm support shaft 14 includes a large-diameter portion 14a and an eccentric pin (eccentric shaft) 14b having a smaller diameter than the one for the large-diameter portion. The eccentric pin 14b is provided on an axial midsection of the large-diameter portion 14a, while being offset from an axial center (b) of the rocker shaft 14 toward the outer side in the radial direction. The large-diameter portion 14a is rotatably supported with the cylinder head 2. As shown in
The first rocker arm 11 is formed with left and right rocker arm portions 11a, 11a, a rocker coupling portion 11b, and ring-shaped bearing portions 11c, 11c. Lower-half portions on the distal end side of the left and right rocker arm portions 11a, 11a are coupled integrally with the rocker coupling portion 11b. The ring-shaped bearing portions 11c, 11c are formed integrally with the proximal ends of the left and right rocker arm portions 11a, 11a. The bearing portions 11c, 11c are supported with the large-diameter portions 14a, 14a of the rocker shaft 14. Part of the bearing portions 11c towards the rocker arm portions 11a are provided with a clearance recess 11f that conforms to the outwardly projecting shape of the eccentric pin 14b. Thus, the first rocker arm 11 and the rocker shaft 14 can be more efficiently assembled together.
The first control arm 10 is configured such that (i) left and right control-side depressing surfaces 10b, 10b are formed in an arcuate shape about the center of swing (a) on the lower face of the distal ends of the left and right bifurcated control arm portions 10a, 10a, (ii) the roller 10c in rotational contact with the swing cam surface 9b is pivoted between the distal ends of the control arm portions 10a, 10a, and (iii) a bifurcated, semi-circular bearing portion 10d is formed on the proximal ends of the control arm portions. The semi-circular bearing portion 10d is rotatably supported with the eccentric pin 14b of the rocker shaft 14. A come-off prevention spring 15 prevents the bearing portion and the eccentric pin from coming off.
The come-off prevention spring 15 can be made of spring steel band member, and has a holding portion 15a curved into approximately a C-shape and a depressing portion 15b that extends from the front end of the holding portion 15a toward the distal end of the rocker arm 11. The come-off prevention spring 15 is designed to retain a curved retaining portion 15c, which is formed adjacent to the boarder between the holding portion 15a and the depressing portion 15b, to a retained portion 10e of the control arm 10. The come-off prevention spring 15 is also designed to retain an accurate retaining portion 15d, which is formed opposite to the pressing portion 15b, to the eccentric pin 14b. Thereby, the come-off prevention spring 15 holds the bearing portion 10d and the eccentric pin 14b together for relative rotation while preventing them from separating from each other.
The distal end of the depressing portion 15b of the come-off prevention spring 15 comes into contact with a depressing groove 11e with a predetermined amount of spring force. In the illustrated embodiment, the depressing groove is provided on the topside of the rocker coupling portion 11b of the rocker arm 11 and at the center in the axial direction. The depressing groove 11e is formed in an arcuate shape about the center of rotation (a) of the first swing member 9. In the manner as described, the first control arm 10 is urged clockwise as shown in the drawing. The roller 10c comes into contact with the swing cam surface 9b. A slight gap (d) is created between the rocker-side depressed surface 11d and the control-side depressing surface 10b.
On the topside of the rocker coupling portion 11b of the first rocker arm 11, left and right rocker-side depressed surfaces (first depressed surfaces) 11d, 11d are formed to come into sliding contact with the left and right control-side depressing surfaces 10b, 10b. The rocker-side depressed surfaces 11d, 11d are formed in an arcuate shape of a radius R2 about the center of swing or pivoting motion (a) of the swing shaft 12. An extension line 11d′ of the arcuate is preferably configured so as to pass in the vicinity of the center of swing (b) of the rocker arm 11, and more preferably, to pass inside a rotation locus C (see
The left and right rocker arm portions 11a, 11a of the first rocker arm 11 have a larger height toward their proximal ends, when viewed from the side (see
The first rocker arm 11 is thereby rigidly secured. The left and right rocker arm portions 11a, 11a and the coupling portion 11b define a large space. The first control arm 10 is placed to be interposed between the left and right rocker arm portions 11a, 11a of the first rocker arm 11. A portion of the first control arm 10 on its proximal end side is thus accommodated in the space enclosed by the left and right rocker arm portions 11a, 11a and the coupling portion 11b.
The variable portion is constituted such that rotating the rocker shaft 14 allows a contact point (e) between the roller 10c and the swing cam surface 9b as well as a contact point (f) between the control-side depressing surface 10b and the rocker-side depressed surface 11d to continuously vary.
In the variable portion, displacement of the contact point relative to the rotation angle of the rocker shaft 14 in a high operation range in which the opening duration of the intake valve 3 is long and the amount of the valve lift is large (see the roller 10c shown by solid lines in
In other words, in the high operation range, the axial center of the eccentric pin 14b is positioned near (c1), while near (c2) in the low operation range. When the eccentric pin 14b is adjacent to (c1) or (c2), each displacement of the contact point (e) and (f) relative to the rotation angle of the rocker shaft 14 is smaller than that in another operation range. In contrast, in the medium operation range, the axial center of the eccentric pin 14b is positioned approximately between (c1) and (c2). When the eccentric pin 14b is adjacent approximately between (c1) and (c2), each displacement of the contact point (e) and (f) relative to the rotation angle of the rocker shaft 14 is larger than those in the other operation ranges.
An axial end surface 10f of the bearing portion 10d is in sliding contact with an end surface 14c of the large-diameter portion 14a of the rocker shaft 14, the end surface forming a step from the eccentric pin 14b, thereby positioning the first control arm 10 in the axial direction. In turn, an inner end surface 11c′ of the bearing portion 11c is in sliding contact with an opposite end surface to the end surface 10f of the bearing portion 10d of the first control arm 10, thereby positioning the rocker arm 11 in the axial direction.
Description will be next made of the operations and effects of this embodiment.
In the valve train device 7 of this embodiment, the rocker shaft driving mechanism controls a rotational angular position of the rocker shaft 14 in accordance with engine operation conditions determined based on the engine speed and load (throttle opening). For example, in a high-speed and high-load operation range, the angular position of the rocker shaft 14 is controlled to position the axial center of the eccentric pin 14 to (c1) as shown by solid lines in
In turn, in a low-speed and low-load operation range, the angular position of the rocker shaft 14 is controlled to position the axial center of the eccentric pin 14 to (c2) as shown by chain double-dashed lines in
In this embodiment, when the first control arm 10 and the first swing arm 9 are added to the first rocker arm 11, since the first control arm 10 is located such that its portion on its proximal end side is accommodated in the space defined by the left and right rocker arm portions 11a, 11a of the first rocker arm 11, and the coupling portion 11b coupling the bottom portions of the left and right rocker arm portions 11a, 11a, an increase in size of the overall device can be restricted, a more compact arrangement is achieved, while still rigidly securing the first rocker arm 11.
In this embodiment, the rocker-side depressed surface 11d is formed such that the extension line 11d′ thereof passes in vicinity of the center of swing (b) of the first rocker arm 11. More preferably, the structure is configure to allow the extension line 11d′ to pass inside the rotation locus C (see
The rocker-side depressed surface 11d is preferably formed in such a manner that the extension line 11d′ thereof passes in the vicinity of the center of swing (b) of the rocker arm 11. Thus, the force F transferred from the first swing arm 9 to the contact point (f) via the first control arm 10 can be efficiently transferred to the first rocker arm 11 and therefore to the valve 3. In other words, in this embodiment, since the rocker-side depressed surface 11d passes in the vicinity of the center of swing (b) of the first rocker arm 11, the rocker-side depressed surface 11d generally agrees with the straight line Lo. This increases a first component force F1 of the force F, the first component force F1 being perpendicular to the straight line Lo as a rotational force of the first rocker arm 11, the force F being transferred from the first control arm 10 to the first rocker arm 11. Thus, the transfer efficiency of the force F from the first control arm 10 to the first rocker arm 11 enhances.
The center of swing (a) of the first swing arm 9 is located at a point opposite to a valve shaft line L1 with respect to a straight line L2 parallel to the valve shaft line L1 and passing the axial center (b) of the rocker shaft 14, while being away from the straight line L2 by (g). This gives advantage to the extension line 11d′ of the rocker-side depressed surface 11d to pass in the vicinity of the center of rotation (b) of the first rocker arm 11. More specifically, as an angle formed between the direction of the force F applied to the first rocker arm 11 and the straight line Lo that connects a point of application of the force F and the center of swing (b) of the first rocker arm 11 is closer to the right angle, the transfer efficiency of the force F increases. Since the center of swing (a) of the first swing arm 9 is located on the side opposite to the valve shaft line L1, the direction of the force F can be easily set to be the direction perpendicular to the straight line Lo.
The eccentric pin 14b provided on the midsection of the rocker shaft 14 is adapted to support the bearing portion 10d of the control arm portion 10a for free rotation, and the come-off prevention spring 15 holds the bearing portion 10d and the eccentric pin 14b. This allows the opening duration of the valve 3 and the amount of valve lift to continuously change by using a very simple structure or solely rotating the rocker shaft 14. This also facilitates work for coupling the first control arm 10 and the eccentric pin 14b.
In the case of multi-cylinder engine, because uniform valve opening duration and amount of valve lift are preferably ensured for all cylinders, several first control arms 10 within the dimensional tolerance range are prepared to be selected in combination with the rocker shaft 14 in order to uniform the valve opening duration and the amount of valve. Assemble and removal work when such a selective combination is required can be easily carried out.
In the illustrated embodiment, the depressing portion 15b is integrally formed with the come-off prevention spring 15, the depressing portion 15b urging the first control arm 10 by depressing the first rocker arm 11, such that the roller 10c comes into contact with the swing cam surface 9b. Thus, the roller 10c of the first control arm 10 can be constantly in contact with the swing cam surface 9b of the first swing arm 9 by a simple constitution. Also, it is possible to constantly have a coating of lubricant between the swing cam surface 9b and the roller 10c, thereby ensuring lubrication therebetween.
In the illustrated embodiment, offset displacement of the eccentric pin 14b is configured such that the outer surface 14b′ of the eccentric pin 14b protrudes outward from the outer surface 14a′ of the rocker shaft 14 in the radial direction. This can increase the displacement of the first control arm 11 without increasing the diameter of the rocker shaft 14, thereby increasing the adjustment range for the valve opening duration and amount of valve lift.
When the eccentric pin 14b protrudes outward, an inner peripheral surface of the bearing portion 11c supported with the rocker shaft 14 of the first rocker arm 11 is formed with the clearance recess 11f which conforms with the amount of protrusion of the eccentric pin 14b. Thus, while the clearance recess 11f of the first rocker arm 11 fits the protrusion of the eccentric pin 14b, the first rocker arm 11 is displaced in the axial direction of the rocker shaft 14, so that the first rocker arm 11 can be more easily assembled with the rocker shaft 14
In the low operation range in which the opening duration of the valve 3 is short and the amount of valve lift is small, the eccentric pin 14b is positioned at (c2) so that the displacement of the contact point (e) relative to the rotation angle of the rocker shaft 14 is smaller than the displacement in the medium operation range in which the opening duration of the valve 3 and the amount of valve lift are medium. This, in the low engine speed range, can avoid abrupt variations in engine output due to slight variations in rotation angle of the rocker shaft 14, and can provide smooth operations, thereby avoiding jerky feeling.
In the high operation range in which the opening duration of the valve 3 is long and so forth, the eccentric pin 14b is positioned at (c1), so that the displacement of the contact point (e) relative to the opening angle of the rocker shaft 14 is preset smaller than the displacement in the medium operation range in which the opening duration of the valve is medium and so forth. This, in the high engine speed range, can reduce a torque required for rotating the rocker shaft 14, and can provide smooth driving operations.
The first control arm 10 is brought into sliding contact with the step 14c from the eccentric pin 14b of the rocker shaft 14, thereby positioning the first control arm in the axial direction. The first rocker arm 11 is brought into sliding contact with the axial end surface 10f of the first control arm 10, thereby positioning the first rocker arm in the axial direction. Therefore, positioning of the first control arm 10 and the first rocker arm 11 in the axial direction can be achieved without any dedicated parts.
The driving force transmission mechanism of the valve train device 7 in accordance with the second embodiment of the invention is configured such that a driving force from the intake camshaft 8 swings or pivots a second swing arm 29 through a second control arm 30, the second swing arm 29 swings a second rocker arm 31, and the swinging or pivoting motion of the second rocker arm 31 forces the intake valve 3 to travel back and forth in its axial direction, thereby opening and closing the intake valve opening 2b.
The back and forth motion of the second control arm 30 allows a contact point between the second control arm 30 and the second swing arm 29 to continuously vary, which in turn allows a contact point between the second swing arm 29 and the second rocker arm 31 to continuously vary, thereby continuously changing the opening duration of the intake valve 3 and the amount of valve lift.
The second swing arm 29 includes a pair of left and right swing arm portions 29a, 29a defining sidewalls of the second swing arm 29, and a coupling portion 29c defining a bottom wall of the second swing arm 29 and coupling the swing arm portions 29a, 29a. Proximal ends 29g, 29g of the pair of left and right swing arm portions 29a, 29a are swingably or pivotally supported with a swing support shaft 32, which is located parallel to the intake camshaft 8 and is immobile in directions perpendicular to the axis of the swing shaft 32 and in the axial direction thereof. The coupling portion 29c couples the lower edges of the pair of left and right swing arm portions 29a, 29a.
The lower face of the distal end of the coupling portion 29c can be formed integrally with a swing cam surface (second swing cam surface) 29b. The swing cam surface 29b is generally in the shape of a plate having a curved surface in a base circle portion 29e and a lift portion 29f which are connected to each other continuously. The swing cam surface 29b has a similar shape and function to the swing cam surface 9b of the first embodiment described above.
In the illustrated embodiment, the second control arm 30 is configured such that a control-side depressing surface (second depressing surface) 30b is formed in an arcuate shape on the lower face of the distal ends of the left and right bifurcated control arm portions 30a, 30a, and a roller 30c in rotational contact with the intake camshaft 8 is located between the distal ends of the control arm portions 30a, 30a and supported with a roller shaft 30d. A bifurcated, semi-circular bearing portion 30d is formed at the proximal ends of the control arm portions. The bearing portion 30d is rotatably supported with an eccentric pin (eccentric shaft) 32b of a small diameter, which is formed on the swing shaft 32 to be offset from the center thereof. A come-off prevention spring 15 prevents the bearing portion and the eccentric pin from coming off.
The left and right swing arm portions 29a, 29a of the second swing arm 29 are formed in the shape of a plate having a large height in the direction of swing, thereby securing the rigidity required for the second swing arm. Since the height of the second swing arm is designed to be large, a large space is defined by the swing arm portions 29a, 29a and the coupling portion 29c. The second control arm 30 is placed to be interposed between the left and right swing arm portions 29a, 29a of the second swing arm 29. A large part of the second control arm 30 is thereby accommodated in the space enclosed by the left and right swing arm portions 29a, 29a and the coupling portion 29c.
On the topside of the coupling portion 29c of the second swing arm 29, left and right swing-arm-side depressed surfaces (second depressed surfaces) 29d, 29d are formed to come into sliding contact with the left and right control-side depressing surfaces 30b, 30b of the second control arm 30.
The second swing arm 29 is urged with balance members or springs 33 (e.g., coil springs) such that the roller 30c comes into contact with the cam nose 8c of the intake camshaft 8. The second swing arm 29 is thereby prevented from moving away from the camshaft 8 at high engine speed. This avoids or reduces abnormal behavior of the swing arm 9.
The second rocker arm 31 is formed with left and right rocker arm portions 31a, 31a, a rocker coupling portion 31b, and ring-shaped bearing portions 31e, 31e. In the illustrated embodiment, distal ends of the left and right rocker arm portions 31a, 31a are coupled integrally with the rocker coupling portion 31b. The ring-shaped bearing portions 31e, 31e can be formed integrally with the proximal ends of the left and right rocker arm portions 31a, 31a. The bearing portions 31e, 31e are rotatably supported with a rocker shaft 34.
A rocker roller 31d defining a second depressed surface is located in the space enclosed by the left and right rocker arm portions 31a, 31a, the rocker coupling portion 31b and the rocker shaft 34, and rotatably supported with a roller shaft 31c. The rocker roller 31d is constantly in contact with the swing cam surface 29b. Opposite ends of the rocker coupling portion 31b in the axial direction of the rocker shaft depress the respective top ends of the left and right intake valves 3, 3.
In the valve train device 7 of the second embodiment, in a high-speed and high-load operation range for example, the angular position of the swing shaft 32 is controlled to position the second control arm 30 at the advanced end as shown by solid lines in
On the other hand, in a low-speed and low-load operation range, the angular position of the swing shaft 32 is controlled to position the second control arm 30 at the retracted end as shown by chain double-dashed lines in
In the second embodiment, when the second control arm 30 and the second swing arm 29 are added to the second rocker arm 31, since the second control arm 30 is located such that its large part is accommodated in the space defined by the left and right swing arm portions 29a, 29a of the second swing arm 29, and the coupling portion 29c coupling the bottom portions of the left and right swing arm portions 29a, 29a, an increase in size of the overall device can be restricted and a more compact arrangement is achieved while rigidly securing the second swing arm 29.
In this embodiment, the transmitting portion of the driving force transmission mechanism of the valve train device 7 comprises a fixedly located stationary cam 38; a third swing arm 39 in which a roller 39d at its distal end comes into contact with the stationary cam 38, a proximal end 39b is swingably or pivotally coupled to the third rocker arm 41, and the third swing arm 39 is driven to swing by the intake camshaft (driving member) 8 through a third control arm 40; a third rocker arm 41 in which it is coupled to the swingable third swing arm 39, the proximal end thereof is swingably supported with the rocker shaft 14, and the third rocker arm 41 is driven to swing or pivot by the intake camshaft 8 through the third control arm 40 and the third swing arm 39.
In this embodiment, the variable portion of the driving force transmission mechanism is constituted such that a contact point between the third swing arm 39 and the third control arm 40 interposed between the intake camshaft 8 and the third swing arm 39 is continuously varied, thereby continuously changing the state of a driving force from the intake camshaft 8 being transmitted from the third swing arm 39 to the third rocker arm 41.
A cam surface 38c of the stationary cam 38 includes a base circle portion 38a and a lift portion 38b. The base circle portion 38a is formed in an arcuate shape of a radius R3 about the center of a support pin 39c of the third swing arm 39. The valve 3 is thus not lifted with an increase of the rotation angle of the intake camshaft 8. On the other hand, the lift portion 38b is designed to have a radius of curvature which is gradually reduced as it goes. The lift of the valve 3 is thus increased with an increase of the rotation angle of the intake camshaft 8.
The third rocker arm 41 includes a pair of left and right rocker arm portions 41a, 41a (see, in particular,
In the illustrated embodiment, the proximal end of the third control arm 40 is formed integrally with a bearing portion 40a that is bifurcated along the direction of holding the rocker shaft 14. The bearing portion 40a is swingably or pivotally supported with the eccentric pin 14b, which is formed on the rocker shaft 14 and between the left and right rocker arm portions 41a, 41a. A come-off prevention pin 40b prevents the bearing portion and the eccentric pin from coming off.
The distal end of the third control arm 40 can be formed integrally with a support portion 40f that is bifurcated along the axial direction of the rocker shaft 14. A roller 40c is located between the forks of the support portion 40f and supported with a support pin 40d. A portion of the outer peripheral face of the support portion 40f, on the third swing arm 39 side is formed with a control-side depressing surface 40e. The control-side depressing surface 40e is in sliding contact with a third depressed surface 39f of the third swing arm 39.
A portion of the third control arm 40 on its proximal end side is preferably accommodated in the space defined by the coupling portion 41b and the left and right rocker arm portions 41a, 41a of the third rocker arm 41.
The third swing arm 39 includes left and right swing arm portions 39a, 39a, and proximal ends 39b thereof are coupled for free rotation to a midsection of the third rocker arm 41 with the support pin 39c. The roller 39d is located between the distal ends of the left and right swing arm portions 39a and supported with a support pin 39e for free rotation. The roller 39d is in rotational contact with the cam surface 38c of the stationary cam 38 described above.
In a high-speed and high-load operation range, the angular position of the rocker shaft 14 is controlled to move the third control arm 40 to the advanced end as shown by solid lines in
On the other hand, in a low-speed and low-load operation range, the angular position of the rocker shaft 14 is controlled to position the third control arm 40 at the retracted end, on the contrary to the above. Thus, the roller 39d of the third swing arm 39 comes into contact with a portion of the base circle portion 38a of the stationary cam surface 38c which is farthest from the lift portion 38b. This results in minimizing both the opening duration of the intake valve 3 and the amount of valve lift.
In the third embodiment, when the third control arm 40 and the third swing arm 39 are added to the third rocker arm 41, since the third control arm 40 is located such that its portion on its proximal end side is accommodated in the space defined by the left and right rocker arm portions 41a, 41a of the third rocker arm 41, and the coupling portion 41b coupling the bottom portions of the rocker arm portions 41a, 41a, an increase in size of the overall device can be restricted, providing a compact arrangement, while the rigidly securing the third rocker arm 41.
In the fourth embodiment, the transmitting portion of the driving force transmission mechanism includes a fourth rocker arm 51 having a fourth depressed surface 51d, swingably supported with the rocker shaft 14, and driven to swing or pivot by the camshaft 8 through a fourth control arm 50.
The variable portion of the driving force transmission mechanism is constituted such that a contact point between the fourth depressed surface 51d and the fourth control arm 50 interposed between the camshaft 8 and the fourth rocker arm 51 is continuously varied, thereby continuously changing the state of a driving force being transmitted from the intake camshaft 8 to the fourth rocker arm 51.
The fourth rocker arm 51 includes a pair of left and right rocker arm portions 51a supported with the rocker shaft 14, and a coupling portion 51b coupling the bottom portions of the rocker arm portions 51a. The proximal end of the fourth rocker arm 51 is formed integrally with ring-shaped bearing portions 51c. The bearing portions 51c are swingably or pivotally supported with the left and right large-diameter portions of the rocker shaft 14.
The proximal end of the fourth control arm 50 is formed integrally with a bearing portion 50a bifurcated along the direction to hold the rocker shaft 14. The bearing portion 50a is swingably or pivotally supported with the eccentric pin (eccentric shaft) 14b, which is formed on the rocker shaft 14 and between the left and right rocker arm portions 51a, 51a. A come-off prevention pin 50b prevents the bearing portion and the eccentric pin from coming off.
The distal end of the fourth control arm 50 is formed integrally with a support portion 50f bifurcated along the axial direction of the rocker shaft 14. A roller 50c is located between the forks of the support portion 50f and supported with a support pin 50d. The outer peripheral surface of the support portion 50f is formed with a control-side depressing surface 50e. The depressing surface 50e is in sliding contact with the fourth depressed surface 51d of the fourth rocker arm 51.
A portion of the fourth control arm 50 on its proximal end side is accommodated in the space defined by the coupling portion 51b and the left and right rocker arm portions 51a, 51a of the fourth rocker arm 51.
In the fourth embodiment, in a low-speed and low-load operation range, the angular position of the rocker shaft 14 is controlled to position the fourth control arm 50 at the advanced end as shown by solid lines in
In the fourth embodiment, when the fourth control arm 50 is added to the fourth rocker arm 51, since the fourth control arm 50 is located such that its large part is accommodated in the space defined by the left and right rocker arm portions 51a, 51a of the fourth rocker arm 51, and the coupling portion 51b coupling the bottom portions of the rocker arm portions 51a, 51a, an increase in size of the overall device can be restricted, providing a compact arrangement, while the rigidly securing the fourth rocker arm 51.
In the fifth embodiment, the transmitting portion of the driving force transmission mechanism includes a fifth rocker arm 61 having a fifth depressed surface 61d, swingably or pivotally supported with the rocker shaft 14, and driven to swing by the camshaft 8 through a fifth control arm 60.
The variable portion of the driving force transmission mechanism is constituted such that a contact point between the fifth depressed surface 61d and the fifth control arm 60 interposed between the camshaft 8 and the fifth rocker arm 61 is continuously varied, thereby continuously changing the state of a driving force being transmitted from the camshaft 8 to the fifth rocker arm 61.
In this embodiment, the fifth rocker arm 61 includes a pair of left and right rocker arm portions 61a supported with the rocker shaft 14, and a coupling portion 61b coupling the bottom portions of the rocker arm portions 61a. The proximal ends of the left and right rocker arm portions 61a, 61a can be formed integrally with ring-shaped bearing portions 61c. The bearing portions 61c are swingably or pivotally supported with the left and right large-diameter portions of the rocker shaft 14.
The fifth rocker arm 61 is formed with a valve lifter depressing surface including a base circle portion 61g and a lift portion 61f. The base circle portion 61g is a concentric circle about the center of swing (b) and does not lift the valve 3 with an increase of the swing angle of the fifth rocker arm 61. The lift portion 61f lifts the valve 3 with an increase of the counterclockwise-swing angle of the fifth rocker arm 61 shown in the drawing. The valve lifter depressing surface depresses and drives the valve 3 through a valve lifter 4a, which is disposed at the top end of the valve 3.
In the illustrated embodiment, the proximal end of the fifth control arm 60 is formed integrally with a bifurcated bearing portion 60a. The bearing portion 60a is swingably supported with the eccentric pin (eccentric shaft) 14b, which is formed between the left and right large-diameter portions of the rocker shaft 14. A come-off prevention pin 60b prevents the bearing portion and the eccentric pin from coming off.
The distal end of the fifth control arm 60 can be formed integrally with a support portion 60f bifurcated along the axial direction of the rocker shaft 14. A roller 60c is located between the forks of the support portion 60f and supported with a support pin 60d. Left and right ends of the support pin 60d are in sliding contact with the fifth depressed surfaces 61d of the fifth rocker arm 61.
A portion of the fifth control arm 60 on its proximal end side is accommodated in the space defined by the coupling portion 61b and the left and right rocker arm portions 61a, 61a of the fifth rocker arm 61.
In the fifth embodiment, in a low-speed and low-load operation range, the angular position of the rocker shaft 14 is controlled to position the fifth control arm 60 at the advanced end as shown in
According the embodiments described herein, the driving force transmission mechanism includes a transmitting portion and a variable portion. At least part of the variable portion is accommodated within the transmitting portion in accordance with the configurations shown and described above. This decreases the overall size of the valve train device by the volume of portion positioned within the transmitting portion.
According to the embodiment of
In this embodiment, at least part of the first control arm is preferably accommodated in the first rocker arm such that an increase in size of the overall device can be restricted in that the control arm is positioned within the rocker arm.
In the embodiment of
According to the embodiment of
In embodiment of
According to the embodiment of
According to the embodiment of
According to certain embodiments described above, the control arm is interposed between the rocker arm and the driving member, and the contact point between the control arm and the rocker arm is allowed to continuously vary. Also, at least part of the control arm is accommodated in the rocker arm. Thus, the opening duration of the valve and the amount of valve lift are continuously changed, and also an increase in size of the overall device can be restricted.
According to certain embodiments described above, the rocker arm includes the pair of left and right rocker arm portions, and the coupling portion coupling the bottom portions of the rocker arm portions, and the proximal end of the control arm is accommodated in the space defined by the left and right rocker arm portions and the coupling portion. Thus, an increase in size of the overall device can be restricted.
Also, the rigidity of the rocker arm to a bending moment applied thereto can be significantly increased by the left and right rocker arm portions. Further, the proximal end of the control arm is accommodated in the space defined by the left and right rocker arm portions and the coupling portion. Thus, the left and right rocker arm portions provided to secure the rigidity of the rocker arm are effectively used to accommodate the proximal end of the control arm, thereby restricting an increase in size of the overall device in the case of adding the control arm to the rocker arm.
In the embodiment of
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2003-304932 | Aug 2003 | JP | national |
2003-126257 | May 2003 | JP | national |
This application is continuation of PCT Application No. PCT/JP2004/006426, filed on May 6, 2004, which claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2003-304932, filed on Aug. 28, 2003 and Japanese Patent Application No. 2003-126257, filed on May 1, 2003, the entire contents of these applications are expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP04/06426 | May 2004 | US |
Child | 11263573 | Oct 2005 | US |