Valve with delayed leaflet deployment

Information

  • Patent Grant
  • 8137394
  • Patent Number
    8,137,394
  • Date Filed
    Friday, January 14, 2011
    13 years ago
  • Date Issued
    Tuesday, March 20, 2012
    12 years ago
Abstract
A valve for use in a body lumen, where the valve includes a valve leaflet with delayed leaflet deployment relative an in vivo implant time. The valve includes a valve frame, a valve leaflet coupled to the valve frame. The valve leaflet includes a commissure that can reversibly seal for unidirectional flow of a liquid through the valve, and a biodegradable adhesive between the valve leaflet and the valve frame to hold at least the commissure of the valve leaflet in a static relationship relative the valve frame for a predetermined time once implanted in vivo.
Description
TECHNICAL FIELD

The present disclosure relates generally to a valve for use in a body lumen, and more particularly to a valve having a valve leaflet with delayed leaflet deployment relative an in vivo implant time.


BACKGROUND

Heart failure is rapidly becoming one of the most common cardiovascular disorders. Unfortunately, an optimal treatment for heart failure has not yet been determined.


Generally, heart failure is classified as a syndrome which develops as a consequence of cardiac disease, and is recognized clinically by different signs and symptoms that are produced by complex circulatory and neuro-hormonal responses to cardiac dysfunction.


Dysfunction in one or both of the systolic function and/or the diastolic function of the heart can lead to heart failure. For example, left ventricular diastolic dysfunction is recognized as a condition leading to morbidity, hospitalizations and death. Left ventricular diastolic dysfunction is a condition in which the left ventricle of the heart exhibits a decreased functionality. This decreased function could lead to congestive heart failure or myocardial infarction, among other cardiovascular diseases.


Treatment of left ventricular diastolic dysfunction can include the use of pharmaceuticals. Despite these treatments, improving the approach to treating diastolic dysfunction continues to be a goal of the medical community.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a valve of the present disclosure.



FIG. 2A illustrates an embodiment of a system having a valve of the present disclosure.



FIG. 2B illustrates an embodiment of a system having a valve of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure are directed to a valve having a valve leaflet, a system that includes the valve, and a method of making and/or using the valve. For the embodiments, the valve leaflet has a delayed deployment relative an in vivo implant time of the valve. For the embodiments, the delayed deployment can be accomplished through the use of a biodegradable adhesive (e.g., a biodegradable material) that holds the valve leaflet in a static relationship relative the valve frame for a predetermined time. Once implanted in vivo, the biodegradable adhesive degrades and/or erodes over the predetermined time to at least the point where the valve leaflet is released from its static relationship relative the valve frame. Once released, the valve leaflet can then operate to control the flow of a fluid through the valve in an essentially unidirectional manner.


As used herein, the terms “a,” “an,” “the,” “one or more,” and “at least one” are used interchangeably and include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all scientific and technical terms are understood to have the same meaning as commonly used in the art to which they pertain. For the purpose of the present disclosure, additional specific terms are defined throughout.


As used herein, the “valve” can be formed from a number of metals, metal alloys, biological materials and/or synthetic materials. For example, the valve leaflet can be formed from one or more of a biological material (e.g., a non-autologous material) and/or a synthetic material (e.g., a synthetic polymer) having suitable mechanical and material properties. In addition, the valve frame can be formed from a synthetic material, a metal and/or a metal alloy having suitable mechanical and material properties. Other materials are also possible. The materials used in forming the valve will be discussed more fully herein.


The valve of the present disclosure can be implanted in one or more vessels of a mammal (e.g., a human) body where it would be desirable to allow the valve frame to first seat (e.g., anchor) and be at least be partially in-grown at the implant site before exposing the valve to forces imparted through the opening and closing of the valve leaflet. For the various embodiments, the valve leaflets maintain their “open” configuration (i.e., their static relationship relative the valve frame) through the use of the biodegradable adhesive, as discussed herein. In this “open” configuration longitudinal shear stresses through the valve can be minimized, allowing the valve frame to seat and be in-grown at the implant site over the predetermined time.


As used herein, the one or more “vessels” can include vessels of the cardiovascular system (e.g., arteries and veins), which can include both the coronary and/or the peripheral vasculature, vessels of the lymphatic system, vessels and/or ducts of the urinary system, and/or vessels and/or ducts of the kidney system. Other vessel locations within the mammal body for implanting the valve of the present disclosure are also possible.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 110 may reference element “10” in FIG. 1, and a similar element may be referenced as 210 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide any number of additional embodiments of valve and/or system. In addition, as will be appreciated the proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.


Various non-limiting embodiments of the present disclosure are illustrated in the figures. Generally, the valve can be implanted within a vessel to regulate the flow of a bodily fluid through the body lumen in a single direction.



FIG. 1 provides an embodiment of a valve 100 that includes a valve frame 102 and a valve leaflet 104 coupled to the valve frame 102. As illustrated, the valve 100 can be formed with a valve leaflet 104 having a commissure 106 that can reversibly seal for unidirectional flow of a liquid through the valve 100. As discussed herein, embodiments of the valve 100 having one leaflet 104 or more than two leaflets 104 are possible.


The valve frame 102 also includes frame members 108 that help to define a lumen 110. For the various embodiments, the valve frame 102 can have an elongate tubular structure with a proximal end 112 and a distal end 114. For the various embodiments, portions of the frame members 108 define the proximal and distal ends 112, 114 of the valve frame 102.


The valve leaflet 104 also has a proximal end 116 and a distal end 118. As illustrated, the proximal end 116 of the leaflet 104 can be coupled to the valve frame 102 through a number of different techniques. For example, the material 120 forming the leaflet 104 can be stitched, bonded, glued or otherwise secured to the valve frame 102 so as to form the proximal end 116 of the valve leaflet 104. In one embodiment, the material 120 can be secured to the valve frame 102 at a position that is at or adjacent the proximal end 112. Alternatively, the material 120 can be secured to the valve frame 102 at a position that is between the proximal and distal ends 112, 114 of the valve frame 102. For the various embodiments, the material 120 forming the valve leaflet 104 can define at least a part of the lumen 110 of the valve 100.


As illustrated, the distal end 118 of the valve leaflet 104 includes the commissure 106 that can reversibly form to control fluid flow through the valve 100. As used herein, the commissure 106 is the location of the valve leaflet 104 that releasably join and seal to allow for unidirectional flow through the valve 100. As illustrated, the commissure 106 is approximately adjacent the distal end 118 of the valve leaflet 104.


As illustrated, the valve leaflet 104 is in an open position. For the various embodiments, the valve leaflet 104 can releasably joined to be held in this open position with a biodegradable adhesive 122 so that the commissure 106 does not help to prevent retrograde flow for at least a predetermined time after the valve has been implanted in a vessel of a body. As used herein, a “biodegradable adhesive” includes those materials that when exposed to a biological environment (e.g., in vivo) is chemically and/or physically degraded via one or more mechanisms. These mechanisms can include, but are not limited to, hydrolysis and/or enzymatic cleavage of the biodegradable material (e.g., scission of the polymer backbone).


With respect to valve 100, the biodegradable adhesive 122 can be positioned between the valve leaflet 104 and the valve frame 102 to hold at least the commissure 106 of the valve leaflet 104 in a static relationship relative the valve frame 102. For the various embodiments, the biodegradable adhesive 122 can originally be in the form of a liquid and/or a solid (including a gel) that can be used to join valve leaflet 104 to the valve frame 102. For example, the biodegradable adhesive 122 can be applied to one or both adjacent surfaces of the valve leaflet 104 and the valve frame 102, where the surfaces are brought together to join them with the biodegradable adhesive 122. Other forms for the biodegradable adhesive 122 are also possible.


For the various embodiments, the location(s) of and/or the surface area used with the biodegradable adhesive 122 to hold the valve leaflet 104 in the open position can vary from the proximal end 116 to the distal end 118 (or visa versa) and/or radially around the valve 100. For example, the biodegradable adhesive 122 can be positioned so as to hold the valve leaflet 104 at one or more discrete attachment points between the leaflet 104 and the frame 102. In an additional example, the biodegradable adhesive 122 can be positioned so as to hold at least the valve leaflet 104 completely along the distal end 114 of the valve frame 102. In other words, the biodegradable adhesive 122 can releasably join at least a portion of the valve leaflet 104 to the valve frame 102 along a peripheral edge of the valve leaflet 104 to the valve frame 102. For the various embodiments, releasably joining the portion of the peripheral edge of the valve leaflet 104 to the valve frame 102 includes releasably joining the peripheral edge in its entirety to the valve frame 102. Alternatively, releasably joining the portion of the peripheral edge of the valve leaflet 104 to the valve frame 102 can be at attachment points spaced equidistant from a longitudinally axis of the valve frame 102. For these embodiments, the biodegradable adhesive 122 can hold at least the commissure 106 of the valve leaflet 104 in the static relationship relative the valve frame 102 for the predetermined time after implantation into a lumen of a body.


For the various embodiments, the biodegradable adhesive 122 can be positioned between an outer surface (opposite the luminal surface) of the valve leaflet 104 and the frame member 108. In addition, the biodegradable adhesive 122 can be located over essentially the entire outer surface of the valve leaflet 104 so as to allow the biodegradable adhesive 122 to span the openings defined by the frame member 108.


For the various embodiments, the concentration(s), type, and/or mixture (e.g., two or more different biodegradable adhesives along with other optional substances) of the biodegradable adhesive 122 being used to hold the valve leaflet 104 in the open position can be varied as well. As use herein, the term “concentration” includes the amount of each of the biodegradable adhesives (e.g., by weight) in the mixture and/or solution forming the adhesive.


For the various embodiments, the selection of one or more biodegradable adhesives, their concentration and/or their location used in holding the valve leaflet 104 static relative the valve frame 102 can allow the valve leaflet 104 to release from the valve frame in a number of ways. For example, the biodegradable adhesives 122 can be used in such a way as to allow for a progressive release of the valve leaflet 104 from one of the proximal end 112 and/or the distal end 114 of the valve frame 102. In one approach, this might be accomplished by changing the concentration and/or having a gradient of the biodegradable adhesive(s) 122 that extends from the one or both of either the proximal end 112 and/or the distal end 114 of the valve frame 102.


Alternatively, the selection of one or more biodegradable adhesives 122, their concentration and/or their location can be used in such a way as to allow for each of the valve leaflets 104 to be release from their static relationship in essentially their entirety at essentially the same time. For example, different types of the biodegradable adhesives 122 can be used in different regions (e.g., discrete regions) so as to allow for the progressive release of the valve leaflet 104.


For the various embodiments, the type of biodegradable adhesives can include, but are not limited to those compounds that erode (e.g., bioerodible or biodegradable) so as to be absorbed by the body. As used herein, “erode” or “erosion” includes processes by which a material that is insoluble in water is converted into one that is water-soluble. Other types of biodegradable adhesives can include a variety of natural, synthetic, and biosynthetic polymers that are biodegradable, such as those having at least a heteroatom-containing polymer backbone. Such biodegradable adhesives can include those having chemical linkages such as anhydride, ester, or amide bonds, among others. These chemical linkages can then undergo degradation through one or both of hydrolysis and/or enzymatic cleavage resulting in a scission of the polymer backbone.


Examples of biodegradable adhesives 122 are those that include poly(esters) based on polylactide (PLA), polyglycolide (PGA), polycaprolactone (PCL), and copolymers thereof. Other biodegradable adhesives 122 can include those that having poly(hydroxyalkanoate)s of the PHB-PHV class, additional poly(ester)s, and natural polymers, such as modified poly(saccharide)s, e.g., starch, cellulose, and chitosan, which upon further hydrolysis can yield low molecular weight oligosaccharides. Poly(ethylene oxide), PEO, and/or poly(ethylene glycol), PEG, can also be used as the biodegradable adhesive. Multiblock copolymers of poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) are also possible for use in the biodegradable adhesives of the present disclosure, where the degradation rate can be influenced by PEO molecular weight and content.


For the various embodiments, the biodegradable adhesive 122 can hold at least the commissure 106 of the valve leaflet 104 in the static relationship relative the valve frame 102 for a predetermined time after implantation into a lumen of a body. For the various embodiments, the predetermined time after implantation can be a range of approximate time, as the degradation of the biodegradable adhesive 122 will most likely proceed at a different rate for each individual patient. As such, the type(s), concentration(s), and/or location(s) of the biodegradable adhesive 122 used in any particular valve 100 may be patient specific and/or implant location specific.


For example, the biodegradable adhesive 122 can hold at least a portion of the valve leaflet 104 static relative the valve frame 102 for no less than one week (i.e., 7 days). After this predetermined time the biodegradable adhesive 122 can have degraded and/or eroded to a point that the biodegradable adhesive 122 no longer can hold the at least a portion of the valve leaflet 104 static relative the valve frame 102. The valve leaflet 104 can then be released from the portions of the valve frame 102 with the biodegradable adhesive 122. After being released, the valve leaflet 104 can then operate to control the flow of a fluid (e.g., blood) through the valve in an essentially unidirectional manner.


For the various embodiments, the predetermined time also allows the valve frame 102 to be at least be partially in-grown at the implant site (e.g., anchor) before exposing the valve 100 to forces imparted through the opening and closing of the valve leaflet 104. In one embodiment, the valve frame 102 can have one or more of a surface treatment and/or a coating that promotes and/or discourages in-growth and/or overgrowth of the surrounding tissues. For example, the valve frame 102 can have one or more of the surface treatment and/or the coating that promotes tissue in-growth in regions of the valve 100 where the valve leaflet 104 was not attached to the valve frame 102 with the biodegradable adhesive 122. Similarly, the regions where the biodegradable adhesive 122 joints the valve leaflet 104 and the valve frame 102 can include one or more of the surface treatment and/or the coating that discourages in-growth and/or overgrowth of the surrounding tissues at least for the time it takes for the biodegradable adhesive 122 to degrade and/or erode.


For the various embodiments, the biodegradable adhesive 122 and/or the valve frame 102 can also have a predetermined structure and/or shape that allows for tissue in-growth of the valve 100, while preventing in-growth around the valve leaflet 104 while it is in its static relationship to the valve frame 102. For example, the biodegradable adhesive 122 positioned between the valve leaflet 104 and the valve frame 102 can have a portion or a layer with a porosity that promotes and/or allows for tissue in-growth, while an adjacent portion of the biodegradable adhesive 122 may not be designed to promote such in-growth. In other words, the biodegradable adhesive 122 can have a layered structure in which the different layers and/or regions can potentially promote different in-growth responses from the body due the physical structure and/or morphology of the biodegradable adhesive 122. Alternatively, different types of biodegradable adhesives 122 can be used in either layers and/or patterns having the same and/or different morphology (e.g., structure such as porous) in trying to elicit the in-growth response discussed herein.


In some embodiments, the frame members 108 of the valve frame 102 can be formed of a variety of materials. Such materials include, but are not limited to, metals, metal alloys, and/or polymers. The design and configuration of the valve frame 102 can be such that it is balloon expandable, either fully or at least partially, and/or self expanding shape-memory materials. Examples of shape-memory materials include shape memory plastics, polymers, thermoplastic materials, and metal-alloys which are inert in the body. Some shape-memory materials, (e.g., nickel-titanium alloys) can be temperature-sensitive and change shape at a designated temperature or temperature range. In one embodiment, the shape memory metal-alloy includes those made from nickel and titanium in specific ratios, commonly known as Nitinol. Other materials are also possible.


For the various embodiments, the frame members 102 can have similar and/or different cross-sectional geometries along their length. The similarity and/or the differences in the cross-sectional geometries can be selected based on one or more desired functions to be elicited from each portion of the valve frame 102. Examples of cross-sectional geometries include rectangular, non-planar configuration (e.g., bent), round (e.g., circular, oval, and/or elliptical), polygonal, arced, and tubular. Other cross-sectional geometries are possible.


The valve 100 can further include one or more radiopaque markers (e.g., tabs, sleeves, welds). For example, one or more portions of the valve frame 102 can be formed from a radiopaque material. Radiopaque markers can be attached to and/or coated onto one or more locations along the valve frame 102. Examples of radiopaque material include, but are not limited to, gold, tantalum, and platinum. The position of the one or more radiopaque markers can be selected so as to provide information on the position, location, and orientation of the valve 100 during its implantation.


The valve 100 further includes the valve leaflets 104 having surfaces defining a reversibly sealable opening (e.g., the commissure 106) for unidirectional flow of a liquid through the valve 100. Each of the valve leaflets 104 are coupled to the valve frame 102, where the leaflets 104 can repeatedly move between an open state and a closed state for unidirectional flow of a liquid through a lumen of the valve 100 after the biodegradable adhesive 122 has degraded and/or eroded to the point where the valve leaflets 104 are released from their static relationship with the valve frame 102. In the present example, the valve 100 includes two of the valve leaflets 104 for a bi-leaflet configuration. As appreciated, mono-leaflet, tri-leaflet and/or other multi-leaflet configurations are also possible.


In some embodiments, the leaflets 104 can be derived from autologous, allogeneic or xenograft material. As will be appreciated, sources for xenograft material (e.g., cardiac valves) include, but are not limited to, mammalian sources such as porcine, equine, and sheep. Additional biologic materials from which to form the valve leaflets 104 include, but are not limited to, explanted veins, pericardium, facia lata, harvested cardiac valves, bladder, vein wall, various collagen types, elastin, intestinal submucosa, and decellularized basement membrane materials, such as small intestine submucosa (SIS), amniotic tissue, or umbilical vein.


Alternatively, the leaflets 104 can be formed from a synthetic material. Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-polyisobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), polyester, polyethylene (PE), polyethylene terephthalate (PET), silk, urethane, Rayon, Silicone, or the like. In an additional embodiment, the synthetic material can also include metals, such as stainless steel (e.g., 316L) and Nitinol. These synthetic materials can be in a woven, a knit, a cast or other known physical fluid-impermeable or permeable configurations. In addition, gold plated metals can be embedded in the leaflet 104 material (e.g., a sandwich configuration) to allow for visualization of the leaflets 104 post placement.


As will be appreciated, the valve 100 (e.g., valve frame 102 and/or valve leaflets 104) can be treated and/or coated with any number of surface or material treatments. Examples of such treatments include, but are not limited to, bioactive agents, including those that modulate thrombosis, those that encourage cellular in-growth, through-growth, and endothelialization, those that resist infection, anti-thromobogenic coatings, and those that reduce calcification. One example of a suitable coating for at least the valve frame 102 is a stent frame coating provided under the trade designator Taxus® from Boston Scientific.


Referring now to FIGS. 2A-2B, there is illustrated different embodiments of a system 230 according to the present disclosure. For each system 230, there is at least a valve 200, as described herein, positioned at least partially over an elongate delivery catheter 232. As illustrated, the elongate delivery catheter 232 can include a guide wire lumen 234 for receiving and passing a guide wire 236.


The embodiment of the system 230 illustrated in FIG. 2A further includes an expandable balloon 238 positioned around at least a portion of the elongate delivery catheter 232, and where the valve 200 is positioned at least partially over the expandable balloon 238. For this embodiment, the elongate delivery catheter 232 further includes an inflation lumen 240 that extends through the elongate delivery catheter 232 from an inflation port 242 to an expandable volume defined at least in part by the expandable balloon 238 and the elongate delivery catheter 232. Fluid delivered under pressure through the inflation port 242 can then be used to inflate the expandable balloon 238 thereby at least partially, or completely, delivering the valve 200 to the desired location.


In some embodiments, the expandable balloon 238 can be a perfusion balloon. A perfusion balloon can be used to radially expand the valve frame of the valve 200 while allowing fluid, for example, blood, to pass through the delivery catheter 232 and valve 200 while the valve 200 is being positioned in the vasculature.


In an alternative embodiment, FIG. 2B provides an illustration of a system 230 that includes a retractable sheath 250 positioned around at least a portion of the elongate delivery catheter 232. In addition, at least a portion of the valve 200 can be positioned between the elongate delivery catheter 232 and the retractable sheath 250 to hold the valve 200 in a delivery state. For example, FIG. 2B illustrates an embodiment in which the retractable sheath 250 is positioned around at least a portion of the delivery catheter 232 to releasably hold the valve 200 in its compressed delivery (i.e., undelivered) state. The retractable sheath 250 can be retracted to allow the valve 200 to radially expand from the elongate delivery catheter 232, where the valve frame 202 is formed at least partially from a shape memory material such as Nitinol.


Alternatively, the valve frame 202 can be formed of a material with a spring bias, where the valve 200 can expand when the sheath 250 has been removed. Examples of materials with a spring bias can include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate, or combinations thereof.


In one embodiment, the retractable sheath 250 can extend co-axially with the elongate delivery catheter 232, where the sheath 250 can be moved longitudinally (e.g., slide) relative the elongate delivery catheter 232 to allow the valve 200 to radially expand from its delivery state to its deployed state. In some embodiments, moving the retractable sheath 250 relative the delivery catheter 232 can be accomplished by pulling a proximal end 256 of the sheath 250 relative a proximal end 258 of the delivery catheter 232.


As illustrated in FIGS. 2A and 2B, the valve 200 also illustrated an embodiment of the present disclosure in which the biodegradable adhesive can be used to hold the valve leaflet 204 at one or more discrete attachment points 254 to the valve frame 202. As illustrated, the portions of the peripheral edge of the valve leaflet can be releasably joined to the valve frame at attachment points spaced equidistant from a longitudinally axis 260 of the valve frame.


In the compressed state, as illustrated in FIGS. 2A and 2B, attaching the valve leaflet 204 at the one or more discrete attachment points 254 to the valve frame 202 allows at least a portion of the commissure 206 of the valve leaflet 204 to gather toward the longitudinal axis 260 when the valve frame 202 is in a radially compressed state around either the expandable balloon 238 or compressed between the retractable sheath 250 and the elongate catheter 232.


In additional embodiment, the system can include both an expandable balloon positioned around at least a portion of the elongate delivery catheter and a retractable sheath. The valve frame can be at least partially self-expanding (or completely self-expanding), where retracting the sheath allows the valve to expand from its delivery state towards its deployed state. The expandable balloon can then be used to fully deploy, secure, and/or more fully seat the valve frame at the desired implant location.


Each of the delivery catheter 232 and/or the retractable sheath 250 can be formed of a number of materials. Materials include polymers, such as PVC, PE, POC, PET, polyamide, mixtures, and block co-polymers thereof. In addition, each of the delivery catheter 232 and/or the retractable sheath 250 can have a wall thickness and an inner diameter sufficient to allow the structures to slide longitudinally relative each other, as described herein, and to maintain the valve 200 in a delivery state, as discussed herein.


In an additional embodiment, the valve 200 of the present disclosure can include anchoring members attached to the valve frame or frame members. Anchoring members can include barbs, hooks, etc.


For the various embodiments, the valve of the present disclosure may be used with a patient that has been diagnosed with certain forms of heart failure, such as those having an essentially normal ejection fraction, but displaying signs and symptoms of heart failure. For example, in dealing with left ventricular (LV) diastolic dysfunction, improving left atrial (LA) systole can aid in the filling of a stiff LV (although not completely due to retrograde blood flow back into the pulmonary venous circulation). The valve of the present disclosure may help to improve the LA systolic contribution to LV diastolic filling when implanted at the junction where the pulmonary veins and the LA meet. Potentially, these valves will help improve the work done by the LA systole in moving a much greater percentage of blood forward into the LV during diastole.


In addition, positioning the system having the valve as discussed herein includes introducing the system into the cardiovascular system of the patient using minimally invasive percutaneous, transluminal techniques. For example, a guidewire can be positioned within the cardiovascular system of a patient that includes the predetermined location. The system of the present disclosure, including the valve as described herein, can be positioned over the guidewire and the system advanced so as to position the valve at or adjacent the predetermined location. In one embodiment, radiopaque markers on the catheter and/or the valve, as described herein, can be used to help locate and position the valve.


The valve can be deployed from the system at the predetermined location in any number of ways, as described herein. In one embodiment, valve of the present disclosure can be deployed and placed in any number of cardiovascular locations. For example, valve can be deployed and placed within an artery and/or vein (e.g., a pulmonary vein) of a patient. In one embodiment, arteries and/or veins of a patient include those of the peripheral vasculature and/or the cardiac vasculature. For example, delivery of one or more of the valves of the present disclosure to the pulmonary veins can be accomplished through transseptal puncture from the right atria into the left atria. In addition, embodiments of the valve have the potential to be used in a number of different vessels (e.g., urinary and/or lymph) where more stringent control over fluid movement is desired. Other locations are also possible.


Delivery of the valve can be accomplished through a number of different implant techniques. For example, the valve of the present disclosure can be implanted through the use of percutaneous delivery techniques, where the valve can be positioned at a predetermined location with the delivery catheter, as discussed herein. The valve can then be deployed from the delivery catheter at the predetermined location. The catheter can then be removed from the predetermined location.


The valve, once implanted, maintains its open luminal configuration in which the proximal end portion and the distal end portion of the valve leaflet are retained in a static relationship relative the valve frame after removal of the delivery catheter. In other words, the valve leaflet(s) are held in their “open” position through the use of the biodegradable adhesive, as discussed herein. Once implanted, the biodegradable adhesive is exposed to body fluids (e.g., blood) that cause its degradation and/or erosion to the point after the predetermined time where the valve leaflet(s) is released from its static relationship relative the valve frame.


During the predetermined time, however, the open luminal configuration allows for uncontrolled blood flow through the valve. Retaining the valve leaflets to create this open luminal configuration allows longitudinal shear stresses on the valve frame to be minimized during the predetermined time, as the valve leaflets are not opening and closing to provide for unidirectional flow through the valve. During this predetermined time, tissue in-growth can occur around the valve frame. This tissue in-growth can be promoted during the predetermined time through the use of coatings and/or surface treatments, such as those discussed herein.


While the present disclosure has been shown and described in detail above, it will be clear to the person skilled in the art that changes and modifications may be made without departing from the spirit and scope of the disclosure. As such, that which is set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the disclosure is intended to be defined by the following claims, along with the full range of equivalents to which such claims are entitled. In addition, one of ordinary skill in the art will appreciate upon reading and understanding this disclosure that other variations for the disclosure described herein can be included within the scope of the present disclosure.


In the foregoing Detailed Description, various features are grouped together in several embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A valve, comprising: a valve frame;a valve leaflet coupled to the valve frame and configured for delayed deployment after a predetermined time, the valve leaflet having an open state and a closed state for unidirectional flow of a liquid through the valve after the predetermined time; andone or more biodegradable adhesives holding the valve leaflet in a static relationship relative the valve frame for uncontrolled flow of the liquid through the valve for the predetermined time, the one or more biodegradable adhesives configured to degrade over the predetermined time to deploy the valve leaflet from the static relationship with the valve frame after the predetermined time,wherein the one or more biodegradable adhesives are located at different discrete regions along the valve frame extending from a distal end of the valve frame to a proximal end of the valve frame, andwherein a concentration of the one or more biodegradable adhesives at each of the discrete regions changes from the distal end to the proximal end of the valve frame to progressively release the valve leaflet.
  • 2. The valve of claim 1, wherein the concentration of one or more biodegradable adhesives at the distal end of the valve frame is different than the concentration of the one or more biodegradable adhesives at the proximal end of the valve frame.
  • 3. The valve of claim 1, wherein a proximal end of the valve leaflet is coupled to the valve frame.
  • 4. The valve of claim 3, wherein the proximal end of the valve leaflet is secured to the valve frame by at least one of stitching, bonding, and gluing.
  • 5. The valve of claim 1, wherein the valve includes at least two valve leaflets.
  • 6. The valve of claim 1, wherein the valve includes one or more radiopaque markers.
  • 7. The valve of claim 1 wherein the valve is at least partially balloon expandable, self expandable, or a combination thereof.
  • 8. The valve of claim 1, wherein the valve leaflet is formed of either a biologic material or a synthetic material.
  • 9. The valve of claim 1, wherein the valve is formed of a material with a spring bias.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/004,561, filed Dec. 21, 2007, which is herein incorporated by reference.

US Referenced Citations (619)
Number Name Date Kind
3671979 Moulopoulos Jun 1972 A
4291420 Reul Sep 1981 A
4787901 Baykut Nov 1988 A
4872874 Taheri Oct 1989 A
4935030 Alonso Jun 1990 A
4994077 Dobben Feb 1991 A
5002567 Bona et al. Mar 1991 A
5141491 Bowald Aug 1992 A
5163953 Vince Nov 1992 A
5219355 Parodi et al. Jun 1993 A
5254127 Wholey et al. Oct 1993 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Andersen et al. May 1995 A
5469868 Reger Nov 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5643208 Parodi Jul 1997 A
5693087 Parodi Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5735859 Fischell et al. Apr 1998 A
5741326 Solovay Apr 1998 A
5741333 Frid Apr 1998 A
5800506 Perouse Sep 1998 A
5824061 Quijano et al. Oct 1998 A
5879320 Cazenave Mar 1999 A
5895419 Tweden et al. Apr 1999 A
5910170 Reimink et al. Jun 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6139575 Shu et al. Oct 2000 A
6287334 Moll et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6461366 Seguin Oct 2002 B1
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6564805 Garrison et al. May 2003 B2
6569196 Vesely May 2003 B1
6602286 Strecker Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6635085 Caffey et al. Oct 2003 B1
6666885 Moe Dec 2003 B2
6666886 Tranquillo et al. Dec 2003 B1
6669725 Scott Dec 2003 B2
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6676702 Mathis Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6692512 Jang Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6695878 McGuckin, Jr. et al. Feb 2004 B2
6709456 Langberg et al. Mar 2004 B2
6709457 Otte et al. Mar 2004 B1
6716241 Wilder et al. Apr 2004 B2
6716244 Klaco Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6719784 Henderson Apr 2004 B2
6719786 Ryan et al. Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6719790 Brendzel et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6723122 Yang et al. Apr 2004 B2
6723123 Kazatchkov et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6730122 Pan et al. May 2004 B1
6736845 Marquez et al. May 2004 B2
6736846 Cox May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6752828 Thornton Jun 2004 B2
6755857 Peterson et al. Jun 2004 B2
6761734 Suhr Jul 2004 B2
6761735 Eberhardt et al. Jul 2004 B2
6764494 Menz et al. Jul 2004 B2
6764508 Roehe et al. Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6770083 Seguin Aug 2004 B2
6780200 Jansen Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793673 Kowalsky et al. Sep 2004 B2
6797000 Simpson et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824562 Mathis et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof et al. Dec 2004 B1
6837902 Nguyen et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6846324 Stobie Jan 2005 B2
6846325 Liddicoat Jan 2005 B2
6858039 McCarthy Feb 2005 B2
6869444 Gabbay Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875224 Grimes Apr 2005 B2
6875230 Morita et al. Apr 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6881199 Wilk et al. Apr 2005 B2
6881224 Kruse et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6890352 Lentell May 2005 B1
6890353 Cohn et al. May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896700 Lu et al. May 2005 B2
6902576 Drasler et al. Jun 2005 B2
6908478 Alferness et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6916338 Speziali Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6921811 Zamora et al. Jul 2005 B2
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6929653 Strecter Aug 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939359 Tu et al. Sep 2005 B2
6942694 Liddicoat et al. Sep 2005 B2
6945957 Freyman Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945996 Sedransk Sep 2005 B2
6945997 Huynh et al. Sep 2005 B2
6949122 Adams et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6951573 Dilling Oct 2005 B1
6955689 Ryan et al. Oct 2005 B2
6958076 Acosta et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6964682 Nguyen-Thien-Nhon et al. Nov 2005 B2
6964683 Kowalsky et al. Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6966925 Stobie Nov 2005 B2
6966926 Mathis Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976995 Mathis et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007396 Rudko et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lahsinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018407 Wright et al. Mar 2006 B1
7018408 Bailey et al. Mar 2006 B2
7022134 Quijano et al. Apr 2006 B1
7025780 Gabbay Apr 2006 B2
7033390 Johnson et al. Apr 2006 B2
7037333 Myers et al. May 2006 B2
7037334 Hlavka et al. May 2006 B1
7041128 McGuckin, Jr. et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7044967 Solem et al. May 2006 B1
7048754 Martin et al. May 2006 B2
7048757 Shaknovich May 2006 B2
7052487 Cohn et al. May 2006 B2
7052507 Wakuda et al. May 2006 B2
7063722 Marquez Jun 2006 B2
7066954 Ryan et al. Jun 2006 B2
7070616 Majercak et al. Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7081131 Thornton Jul 2006 B2
7087064 Hyde Aug 2006 B1
7089051 Jäverud et al. Aug 2006 B2
7090695 Solem et al. Aug 2006 B2
20020013571 Goldfarb et al. Jan 2002 A1
20020026216 Grimes Feb 2002 A1
20020082630 Menz et al. Jun 2002 A1
20020123802 Snyders Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030050694 Yang et al. Mar 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030163194 Quijano et al. Aug 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171806 Mathis et al. Sep 2003 A1
20030199975 Gabbay Oct 2003 A1
20030229394 Ogle et al. Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20030236569 Mathis et al. Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040010305 Alferness et al. Jan 2004 A1
20040015230 Moll et al. Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040015233 Jansen Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024447 Haverich Feb 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040024452 Kruse et al. Feb 2004 A1
20040030321 Fangrow, Jr. Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040030405 Carpentier et al. Feb 2004 A1
20040034380 Woolfson et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040044403 Bischoff et al. Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040059411 Strecker Mar 2004 A1
20040059412 Lytle, IV et al. Mar 2004 A1
20040060161 Leal et al. Apr 2004 A1
20040073301 Donlon et al. Apr 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078072 Tu et al. Apr 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040082923 Field Apr 2004 A1
20040082991 Nguyen et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088045 Cox May 2004 A1
20040088046 Speziali May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040093070 Hojeibane et al. May 2004 A1
20040093080 Helmus et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040098098 McGuckin, Jr. et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040102839 Cohn et al. May 2004 A1
20040102840 Solem et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040106991 Hopkins et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040122512 Navia et al. Jun 2004 A1
20040122513 Navia et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122515 Chu Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127980 Kowalsky et al. Jul 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040153052 Mathis Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040153147 Mathis Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167539 Keuhn et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186561 McGuckin, Jr. et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193253 Thorpe et al. Sep 2004 A1
20040193260 Alferness et al. Sep 2004 A1
20040199155 Mollenauer Oct 2004 A1
20040199183 Oz et al. Oct 2004 A1
20040199191 Schwartz Oct 2004 A1
20040204758 Eberhardt et al. Oct 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210240 Saint Oct 2004 A1
20040210301 Obermiller Oct 2004 A1
20040210303 Sedransk Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220654 Mathis et al. Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225322 Garrison et al. Nov 2004 A1
20040225344 Hoffa et al. Nov 2004 A1
20040225348 Case et al. Nov 2004 A1
20040225352 Osborne et al. Nov 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040225356 Frater Nov 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230297 Thornton Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040236418 Stevens Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243153 Liddicoat et al. Dec 2004 A1
20040243219 Fischer et al. Dec 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040243228 Kowalsky et al. Dec 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040254600 Zarbatany et al. Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260276 Rudko et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004667 Swinford et al. Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050027351 Reuter et al. Feb 2005 A1
20050027353 Alferness et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050033419 Alferness et al. Feb 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038506 Webler et al. Feb 2005 A1
20050038507 Alferness et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050043792 Solem et al. Feb 2005 A1
20050049679 Taylor et al. Mar 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050049697 Sievers Mar 2005 A1
20050054977 Laird et al. Mar 2005 A1
20050055079 Duran Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065460 Laird Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050065594 Dimatteo et al. Mar 2005 A1
20050065597 Lansac Mar 2005 A1
20050070998 Rourke et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050075726 Svanidze et al. Apr 2005 A1
20050075729 Nguyen et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080483 Solem et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050085904 Lemmon Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050096739 Cao May 2005 A1
20050096740 Langberg et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050102026 Turner et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137449 Nieminen et al. Jun 2005 A1
20050137450 Aronson et al. Jun 2005 A1
20050137451 Gordon et al. Jun 2005 A1
20050137676 Richardson et al. Jun 2005 A1
20050137681 Shoemaker et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137685 Nieminen et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050143810 Dauner et al. Jun 2005 A1
20050143811 Realyvasquez Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149179 Mathis et al. Jul 2005 A1
20050149180 Mathis et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165478 Song Jul 2005 A1
20050171472 Lutter Aug 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177227 Heim et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050187614 Agnew Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050187617 Navia Aug 2005 A1
20050192606 Paul, Jr. et al. Sep 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216077 Mathis et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050222675 Sauter Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228479 Pavcnik et al. Oct 2005 A1
20050228486 Case et al. Oct 2005 A1
20050228494 Marquez Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050228496 Mensah et al. Oct 2005 A1
20050234541 Hunt et al. Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050240255 Schaeffer Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050240262 White Oct 2005 A1
20050244460 Alferiev et al. Nov 2005 A1
20050246013 Gabbay Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050261704 Mathis Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050267560 Bates Dec 2005 A1
20050267565 Dave et al. Dec 2005 A1
20050267571 Spence et al. Dec 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20050267574 Cohn et al. Dec 2005 A1
20050272969 Alferness et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050278015 Dave et al. Dec 2005 A1
20050283178 Flagle et al. Dec 2005 A1
20050288779 Shaoulian et al. Dec 2005 A1
20060000715 Whitcher et al. Jan 2006 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060009841 McGuckin, Jr. et al. Jan 2006 A1
20060009842 Huynh et al. Jan 2006 A1
20060013805 Hebbel et al. Jan 2006 A1
20060013855 Carpenter et al. Jan 2006 A1
20060015136 Besselink Jan 2006 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020332 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060020335 Kowalsky et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025750 Startksen et al. Feb 2006 A1
20060025784 Startksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025854 Lashinski et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025856 Ryan et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030747 Kantrowitz et al. Feb 2006 A1
20060030866 Schreck Feb 2006 A1
20060030882 Adams et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041305 Lauterjung Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060047297 Case Mar 2006 A1
20060047338 Jenson Mar 2006 A1
20060047343 Oviatt et al. Mar 2006 A1
20060052804 Mialhe Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060058865 Case et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058889 Case et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060064174 Zadno Mar 2006 A1
20060069400 Burnett et al. Mar 2006 A1
20060069430 Rahdert et al. Mar 2006 A9
20060074483 Schrayer Apr 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060089708 Osse et al. Apr 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060095125 Chinn et al. May 2006 A1
20060099326 Keogh et al. May 2006 A1
20060100697 Casanova May 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106278 Machold et al. May 2006 A1
20060106279 Machold et al. May 2006 A1
20060106456 Machold et al. May 2006 A9
20060111660 Wolf et al. May 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060111774 Samkov et al. May 2006 A1
20060116572 Case Jun 2006 A1
20060116756 Solem et al. Jun 2006 A1
20060122686 Gilad et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060122693 Biadillah et al. Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060129236 McCarthy Jun 2006 A1
20060135476 Kutryk et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060135967 Realyvasquez Jun 2006 A1
20060136044 Osborne Jun 2006 A1
20060136045 Flagle et al. Jun 2006 A1
20060136052 Vesely Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060142846 Pavcnik et al. Jun 2006 A1
20060142847 Shaknovich Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060142854 Alferness et al. Jun 2006 A1
20060149358 Zilla et al. Jul 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060149367 Sieracki Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161133 Laird et al. Jul 2006 A1
20060161248 Case et al. Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060167468 Gabbay Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060167542 Quintessenza Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060190074 Hill et al. Aug 2006 A1
20060246584 Covelli Nov 2006 A1
Foreign Referenced Citations (166)
Number Date Country
0 380 666 Aug 1990 EP
0 466 518 Jan 1992 EP
2 728 457 Jun 1996 FR
WO 8800459 Jan 1988 WO
WO 9015582 Dec 1990 WO
WO 9501669 Jan 1995 WO
WO 9619159 Jun 1996 WO
WO 9803656 Jan 1998 WO
WO 9846115 Oct 1998 WO
WO 9904724 Feb 1999 WO
WO 0067679 Nov 2000 WO
WO 0115650 Mar 2001 WO
WO 0117462 Mar 2001 WO
WO 03047468 Jun 2003 WO
WO 03084443 Oct 2003 WO
WO 2004019825 Mar 2004 WO
WO 2004021893 Mar 2004 WO
WO 2004023980 Mar 2004 WO
WO 2004030568 Apr 2004 WO
WO 2004030569 Apr 2004 WO
WO 2004030570 Apr 2004 WO
WO 2004032724 Apr 2004 WO
WO 2004032796 Apr 2004 WO
WO 2004037128 May 2004 WO
WO 2004037317 May 2004 WO
WO 2004039432 May 2004 WO
WO 2004043265 May 2004 WO
WO 2004043273 May 2004 WO
WO 2004043293 May 2004 WO
WO 2004045370 Jun 2004 WO
WO 2004045378 Jun 2004 WO
WO 2004045463 Jun 2004 WO
WO 2004047677 Jun 2004 WO
WO 2004060217 Jul 2004 WO
WO 2004060470 Jul 2004 WO
WO 2004062725 Jul 2004 WO
WO 2004066803 Aug 2004 WO
WO 2004066826 Aug 2004 WO
WO 2004069287 Aug 2004 WO
WO 2004075789 Sep 2004 WO
WO 2004080352 Sep 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004082527 Sep 2004 WO
WO 2004082528 Sep 2004 WO
WO 2004082536 Sep 2004 WO
WO 2004082537 Sep 2004 WO
WO 2004082538 Sep 2004 WO
WO 2004082757 Sep 2004 WO
WO 2004084746 Oct 2004 WO
WO 2004084770 Oct 2004 WO
WO 2004089246 Oct 2004 WO
WO 2004089250 Oct 2004 WO
WO 2004089253 Oct 2004 WO
WO 2004091449 Oct 2004 WO
WO 2004091454 Oct 2004 WO
WO 2004093638 Nov 2004 WO
WO 2004093726 Nov 2004 WO
WO 2004093728 Nov 2004 WO
WO 2004093730 Nov 2004 WO
WO 2004093745 Nov 2004 WO
WO 2004093935 Nov 2004 WO
WO 2004096100 Nov 2004 WO
WO 2004103222 Dec 2004 WO
WO 2004103223 Dec 2004 WO
WO 2004105584 Dec 2004 WO
WO 2004105651 Dec 2004 WO
WO 2004112582 Dec 2004 WO
WO 2004112585 Dec 2004 WO
WO 2004112643 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2004112657 Dec 2004 WO
WO 2004112658 Dec 2004 WO
WO 2005000152 Jan 2005 WO
WO 2005002424 Jan 2005 WO
WO 2005002466 Jan 2005 WO
WO 2005004753 Jan 2005 WO
WO 2005007017 Jan 2005 WO
WO 2005007018 Jan 2005 WO
WO 2005007036 Jan 2005 WO
WO 2005007037 Jan 2005 WO
WO 2005009285 Feb 2005 WO
WO 2005009286 Feb 2005 WO
WO 2005009505 Feb 2005 WO
WO 2005009506 Feb 2005 WO
WO 2005011473 Feb 2005 WO
WO 2005011534 Feb 2005 WO
WO 2005011535 Feb 2005 WO
WO 2005013860 Feb 2005 WO
WO 2005018507 Mar 2005 WO
WO 2005021063 Mar 2005 WO
WO 2005023155 Mar 2005 WO
WO 2005025644 Mar 2005 WO
WO 2005027790 Mar 2005 WO
WO 2005027797 Mar 2005 WO
WO 2005034812 Apr 2005 WO
WO 2005039428 May 2005 WO
WO 2005039452 May 2005 WO
WO 2005046488 May 2005 WO
WO 2005046528 May 2005 WO
WO 2005046529 May 2005 WO
WO 2005046530 May 2005 WO
WO 2005046531 May 2005 WO
WO 2005048883 Jun 2005 WO
WO 2005049103 Jun 2005 WO
WO 2005051226 Jun 2005 WO
WO 2005055811 Jun 2005 WO
WO 2005055883 Jun 2005 WO
WO 2005058206 Jun 2005 WO
WO 2005065585 Jul 2005 WO
WO 2005065593 Jul 2005 WO
WO 2005065594 Jul 2005 WO
WO 2005070342 Aug 2005 WO
WO 2005070343 Aug 2005 WO
WO 2005072654 Aug 2005 WO
WO 2005072655 Aug 2005 WO
WO 2005079706 Sep 2005 WO
WO 2005082288 Sep 2005 WO
WO 2005082289 Sep 2005 WO
WO 2005084595 Sep 2005 WO
WO 2005087139 Sep 2005 WO
WO 2005087140 Sep 2005 WO
WO 2006000763 Jan 2006 WO
WO 2006000776 Jan 2006 WO
WO 2006002492 Jan 2006 WO
WO 2006004679 Jan 2006 WO
WO 2006005015 Jan 2006 WO
WO 2006009690 Jan 2006 WO
WO 2006011127 Feb 2006 WO
WO 2006012011 Feb 2006 WO
WO 2006012013 Feb 2006 WO
WO 2006012038 Feb 2006 WO
WO 2006012068 Feb 2006 WO
WO 2006012322 Feb 2006 WO
WO 2006019498 Feb 2006 WO
WO 2006026371 Mar 2006 WO
WO 2006026377 Mar 2006 WO
WO 2006026912 Mar 2006 WO
WO 2006027499 Mar 2006 WO
WO 2006028821 Mar 2006 WO
WO 2006029062 Mar 2006 WO
WO 2006031436 Mar 2006 WO
WO 2006031469 Mar 2006 WO
WO 2006032051 Mar 2006 WO
WO 2006034245 Mar 2006 WO
WO 2006035415 Apr 2006 WO
WO 2006041505 Apr 2006 WO
WO 2006044679 Apr 2006 WO
WO 2006048664 May 2006 WO
WO 2006050459 May 2006 WO
WO 2006050460 May 2006 WO
WO 2006054107 May 2006 WO
WO 2006054930 May 2006 WO
WO 2006055982 May 2006 WO
WO 2006060546 Jun 2006 WO
WO 2006063108 Jun 2006 WO
WO 2006063181 Jun 2006 WO
WO 2006063199 Jun 2006 WO
WO 2006064490 Jun 2006 WO
WO 2006065212 Jun 2006 WO
WO 2006065930 Jun 2006 WO
WO 2006066148 Jun 2006 WO
WO 2006066150 Jun 2006 WO
WO 2006069094 Jun 2006 WO
WO 2006070372 Jul 2006 WO
WO 2006073628 Jul 2006 WO
WO 2006076890 Jul 2006 WO
Related Publications (1)
Number Date Country
20110118831 A1 May 2011 US
Continuations (1)
Number Date Country
Parent 12004561 Dec 2007 US
Child 13006578 US