Valves are used to regulate the flow of a fluid through a passageway. Varying fluidic flows may be created by selective actuation of the valve, In some instances, relatively higher or relatively tower fluidic pressures may be achieved through the value based on how open the valve is.
The accompanying drawings illustrate various examples of the principles described herein and are part of the specification. The illustrated examples are givers merely for illustration, and do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. The figures are not necessary to scale, end the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover, the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
As mentioned above, valves allow a user to cause a fluid to pass or not pass through a fluidic channel. In some instances, the valves may vary the flow of fluid that passes the valve based on how far the valve is opened. Many different valves may be used, but generally these valves may be difficult for a user to open or close. Additionally, some parts of the valves, especially with ball valves, may break. In the example of a ball valve, a stem and handle used to turn the ball may be particularly vulnerable to breakage and an often-used ball valve may often require repairs to the control valve or other parts.
A ball valve may be used to allow fluid flow on a device that is to be held by a user. As an example, a ball valve may be used on a high-pressure hose. In attempting to actuate the handle in order to turn the ball within the ball valve, a user must release at least one hand from the high-pressure hose. In this scenario, a user may find it difficult to control the high pressures of the hose with a single hand.
The present specification, therefore, describes a ball valve that is not opened by use of a lever coupled to the stem of the ball valve, instead, the present specification describes a valve that includes a housing, a ball having a channel passing therethrough, the ball housed within, the housing, a stem extending out from a surface of the ball perpendicular to the channel, a gear coupled to the stem, the gear comprising a number of tests, and a sleeve having a racked channel defined on an interior surface of the sleeve that interfaces with the teeth of the gear. This valve allows a user to maintain a two-hand grip on the sleeve of the valve while also actuating the valve in order to open or close the valve. Additionally, since the valve described in the present specification does not implement those parts of the ball valve that may break due to user interaction.
The present specification further describes a ball valve assembly that includes a ball valve housing to house a ball, the ball comprising a channel defined along a first axis of the ball, a stem coupled to the ball at a second axis perpendicular to the channel, a gear coupled to the stem, the gear having a number of teeth, and a sleeve coaxially covering the housing, the sleeve comprising a rack to interface with the teeth of the gear.
The present specification also describes a fluid channel that includes a ball valve, the ball valve including a ball valve housing to house a ball, the ball comprising a channel defined along a first axis of the ball, a stem coupled to the ball at a second axis perpendicular to the channel, a gear coupled to the stem, the gear having a number of teeth, and a sleeve coaxially covering the housing, the sleeve comprising a rack to interface with the teeth of the gear.
As used in the present specification and in the appended claims, the term “fluid” is meant to be understood as any substance that deforms under an applied shear stress. Examples of fluids include liquids, gases, plasmas, and plastic solids, among other substances.
Additionally, as used in the present specification and in the appended claims, the term “a number of” or similar language is meant to be understood broadly as any positive number comprising 1 to infinity; zero not being a number, but the absence of a number,
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present apparatus, systems, and methods may be practiced without these specific details. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection With that example is included as described, but may or may not be included in other examples.
Turning now to the figures,
The housing (105) may be made of any resilient material that allows a fluid to flow therethrough as well as counteract pressures caused a fluid source when the flow of fluid is stopped by the valve (100) and, specifically, the ball (110). In some examples and in the example shown in
The ball (110) may also be made of a resilient material that counteract pressures caused by a fluid source when the flow of fluid is stopped by the ball (110). As described herein, the ball (110) has a channel (115) defined therein. The channel (115) may share a common axis as that of the fluid channel (140) when the valve (100) and aell (110), specifically, are placed in an open state to allow fluid to flow through the valve (100). In an example, the diameter of the channel (115) may be larger than the diameter of the fluid channel (140). In an example, the diameter of the channel (115) may be smaller than the diameter of the fluid channel (140). In an example, the diameter of the channel (115) may be equal to the diameter of the fluid channel (140). In each of these examples, the total diameter of the ball (110) may exceed the diameter of the fluid channel (140).
In an example, the ball (110) may have a port or some other interface to which the stem (120) may be coupled to the ball (110). In the example shown in
The stem (120) may also be made of a resilient material that can resist any torque forces applied to the stem (120) when the ball (110) is turned within the housing (105). As depicted in
In an example, the stem (120) may be made of a number of pieces. In the example shown in
In the example shown in
The stem (120) may then be mechanically or adhesively coupled to a gear (125). In the example shown in
The sleeve (130) may also be made of a resilient material used to interface with the gear (125) via a racked channel (135). The racked channel (135) may be defined into the interior surface of the sleeve (130) such that the teeth defining the racked channel (135) interface mechanically with the teeth of the gear (125). In the examples show in
The sleeve (130) may be assembled to the valve (100) in any number of pieces. In the example shown in
During operation of the valve (100), a user may turn the sleeve (130) coaxially about the housing (105). By doing so, the racked channel (135) interfaces with the gear (125) mounted to the stem (120). The interfacing changes coaxial rotation of the sleeve (130) into axial rotation of the ball (110). Because the ball (110) has a channel (115) defined therethrough, this allows a user to selectively open and close the valve (100) based on the degree to which the user coaxially rotates the sleeve (130). As described above, this allows a user to maintain both hands on the valve (100) thereby allowing for better control of the system. Additionally, because the user is gripping the valve (100) coaxially with the flow of fluid through the fluid channel (140), a user may be better able to control the ejection of the fluid out of the end of the valve (100) such as when a nozzle is coupled to an end of the valve (100).
The sleeve (130) may include a layer of heat resistant material in this example, an cuter surface of the sleeve (130) may be layered with silicone or another heat resistant material. In this example, any heat from the fluid flowing through the fluid channel (140) may be dispersed and the user holding the valve (100) will not be discomforted. The fluids may be heated before passing through the valve (100) by, for example, a heating unit. Despite any specific examples presented herein, the sleeve (130) may by any type of material that may suit any particular needs of a user. Some example materials include brass, aluminum, silicone, or plastic, among others.
In an example, the sleeve (130) may include a surface texture that increases the surface friction against a user's hands. This surface texturing may include knurling or other types of surface treatments that increase such motion.
In the example shown in
In another example, a number of raised dimples placed where the registration dimples (188) are shown in
The ball valve assembly (200) may further include a gear (225) coupled to the stem (220) that is made to rotate as the ball (210) rotates. The gear (225) may include a number of teeth (240) that interface with a rack (235) of the sleeve (230) as described herein. During operation of the ball valve assembly (200), a user may rotate the sleeve (230) coaxially about the ball valve housing (205). As the sleeve (230) is rotated, the rack (235) causes the gear (225) to rotate. In an example, the rack (235) and the gear (225) may interact with each other similar to a rack and pinion system.
The rotation of the gear (225) causes the ball (205) to also rotate within the ball valve housing (205) such that the channel (215) may be selectively aligned with the flow of fluid through the ball valve assembly (200).
Additionally, in the examples presented herein, the fluid channel (300) may be fluidically coupled to a nozzle, a fluid pump, a gas torch, a bonnet, or any other device used downstream to further manipulate the flow of fluid provided by the fluid channel (300) and specifically the valve described herein.
The housing (805) may include a number of interconnecting parts that provide a fluidic seal from an inside channel formed within the housing (305). Some of these portions of the housing (805) may include end screws (830) used to mate with the housing (805) so as to keep a fluidic seal within the housing (805). Additionally, the end screws (830) may be selectively removable so that the housing (805) may provide access to a ball (810) housed therein. Additionally, the housing (805) and its end screws (830) may include any number of gaskets (835-1, 635-2, 835-3) to-complete a fluidic seal between themselves as well as between the housing (805)/end screws (830) and a stem orifice (840).
The ball (810) may be formed to fit within the housing (805) so as to create a sealed fit between the ball (810) and an inner surface of the housing (805) and/or the ball and the gaskets (835-1, 835-2, 835-3) and the inner surface of the housing (805). In any example presented herein, the ball (810) may include a ball channel (845). When rotated in a first position, the ball channel (345) of the ball (810) prevents fluid from passing through the valve (800). When rotated into a second position, the ball channel (845) may line up with the channel formed in the housing (805) allowing fluid to pass through the valve (800). The cross-cut. area size of the ball channel (845) may be equal, larger, or smaller than the cross-cut area size of the channel formed through the housing (805).
The stem (815) may be coupled to the ball (810) and may be passed through the stem orifice (840) formed in the housing (805). As described herein, a gasket and specifically a stem gasket (835-3) may be used to fluidically seal the interfaces between the stem (815) and the stem orifice (840) so that fluid may not escape from the housing (805) and into the sleeve (825) and/or out of the valve (800). The stem (815) may be coupled to the ball (810) via any means including welding, gluing, interference fit, screwing, among others. In an example, the stem (815) may include threads formed therein that interface with threads formed in a hole formed on the ball (810). In this example, the threads may be either left-handed thread or right-handed thread. In any example presented herein, the stem (815) and stem orifice (840) may be orthogonal to a direction of flow of fluid through the housing (805).
In any example presented herein, the stem (815) may be coupled to a friction wheel (820). The friction wheel (820) may be coupled to the stem (815) via, for example, a friction wheel screw (850). The friction wheel screw (850) may include a left-handed thread or right-handed thread that couples the motion wheel (820) to the stem (815). in any example, the rotation of the friction wheel (820) is caused by the rotation of the stem (815) such that when the stem (815)/ball (810) rotate, the friction wheel (820) rotates as well. The friction wheel (820) may be made of any compliant material, in m example, the friction wheel (820) may be made of a urethane, DuA 50-60. In any example presented herein, the friction wheel (820) may have an outer surface to contact a friction surface (855).
Thus, the friction wheel (820) may interface with a friction surface (855) formed on an inner surface of the sleeve (325) during operation of the valve (800). The friction surface (855) may be any surface that causes sufficient friction between Use friction surface (855) and the friction wheel (820) so as to cause rotation oi the stem (815)/ball (810) when the sleeve (825) is rotated coaxially about the housing (805). In the example shown in
As described herein, the sleeve (825) may comprise any number of parts that surround, coaxially the housing (805). In an example, the sleeve (325) may be a single piece that is placed around the housing (805) about and over the stem (815), ball (810), stem orifice (840), and friction wheel screw (850) so as to cover those parts of the valve (800). In another example, the sleeve (825) is made of a plurality of parts that are fitted together over the stem (815), ball (810), stem orifice (840), and friction wheel screw (850). In this example, the plurality of sleeve (825) parts may be coupled together using a coupling method including ultrasonic welding, gluing, or via coupling devices such as screws, nails, and or pegs, among other types of coupling means.
In an example, the sleeve (825) may include an outer friction surface that imparts to a user's hand an amount of friction The friction surface of the sleeve (825) may include, in an example, a knurling. The knurled surface in this example, may allow a user to grasp the sleeve (825) and rotate the sleeve (825) about the housing (805), Other examples include, as shown in
The sleeve (825) may be made of any material. In an example, the sleeve (825) is made of a thermoresistant material that protects a user's hands from burns should heated fluids pass through the valve (800). In an example, the sleeve (825) may be made of plastic. In an example, the sleeve (825) may be made of plastic with a neat resistant layer placed over the plastic.
The valve (800) may include a number of indicators (858). The indicators (858) may be coupled to the housing (805) or integrated with the sleeve (825). In any of these examples, the indicators (858) may provide a visual indication to a user as to the position of the ball channel (845) of the ball (810), i.e., the orientation of the ball channel (845) relative to the fluid channel formed in the housing (805). The indicator (858) may provide indications as to whether the valve is open (the ball channel (845) is aligned with the fluid channel of the housing (805) or is open (the ball channel (845) is perpendicular to the fluid channel of the housing (805). Any number or type of visual indicators may be used to inform the user as to the current state of the valve (800) and the present specification contemplates those visual indicators. The indicators (858) are prevented from rotating about the housing (805) with the sleeve (825). In an example, the indicators may be situated such that with every 45 degree turn of the sleeve (825) about the housing (805) results in a complete closure or complete opening of the valve.
In addition to the features described in connection with
In an example where the valve (800) includes end screws (830), the end screws (830) may become part of the housing (805). Consequently, where the specification describes a housing (805), it is appreciated that the end screws (830) may form part of the housing (805) and may also include a valve threads (905). The end screws (830) may help to secure the ball (810) within the housing so that the ball is not allowed to move within the housing (805) except to be rotated about via the actuation of the sleeve (825) as described herein.
In an example, the sleeve (825) may include any type of haptic feedback device that haptically inform the user about the orientation of the sleeve (825) relative to the housing (805). In an example, a number of dimples may be formed in either the housing (805) or the sleeve (825) with a number of corresponding bulges formed in an interfacing surface of the sleeve (825) or housing (805), respectively. In this example, when the sleeve (825) is turned about the housing (805), the bulges may fit into the dimples creating a haptic feedback to the user. This, thereby, informs the user of the orientation of the sleeve (825) relative to the housing (805) without visually confirming the orientation using the indicators (858).
The specification and figures describe a valve the includes a sleeve that actuates the movement of a ball within the valve. This valve allows a user to hold onto the fluid channel at least partially defined by the valve thereby allowing better control by the user of the flow of fluid. During use, there is no control valve to break or bend during use thereby reducing the manpower and cost to operate the valve. Further, with the inclusion of a heat resistant layer on the sleeve, a relatively hot fluid may be passed through the valve without burning a user's hands. The valve further allows for ambidextrous use by any user. Additionally, where the presently described valve is placed on a fluid channel that runs along a wall the placement of the stem and ball can be any radial location, even perpendicular to or against the wall. This is because the sleeve may be accessed at any location outside of the sleeve and the exact placement of the stem is not a deciding factor in the placement of the valve. This also prevents a plumber or other installer from over torqueing the fitting between the valve and the piping in order to gain access to a ball actuator. Because there is no lever or other external actuator extending from the sleeve of the present valve, the valve may be properly fitted with the proper torque resulting in a relatively better installed valve. The valve also allows for 360 degrees tuning of the sleeve with, In some examples, indicators on the sleeve and housing of the valve indicating the position of the ball in the housing; open close, and/or partially open. Haptic feedback is provided to the user in order to allow the user to feel when the ball within the housing has reached a certain position.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Number | Date | Country | |
---|---|---|---|
Parent | 15700894 | Sep 2017 | US |
Child | 16108969 | US |