Claims
- 1. A valve comprising:
- a first valve body including a first contacting surface, a pressurized fuel supply path opening to the first contacting surface and a pressure-controlled chamber opening to the first contacting surface,
- a second valve body including a second contacting surface contacting with the first contacting surface and a valve path whose ends open to the second contacting surface and which connects fluidly the pressurized fuel supply path to the pressure-controlled chamber,
- valve means arranged in the second valve body and moved between an opening position at which the valve means does not cut off fluid connection between the pressurized fuel supply path and the pressure-controlled chamber, and a shutting position at which the valve means cuts off fluid connection between the pressurized fluid supply path and the pressure-controlled chamber,
- an actuator arranged on the second valve body and moving the valve means between the opening position and the shutting position, and
- a connection means including a cylindrical member surrounding the second valve body said cylindrical member having a) a first drawing means which engages with the first valve body to prevent a movement of the first valve body relative to the connecting means, and which further engages with the second valve body to prevent a movement of the second valve body relative to the connection means so that the first contacting surface and the second contacting surface are pressed against each other, and
- b) a second drawing means which sets the actuator on the second valve body.
- 2. A valve according to claim 1, wherein the connection means includes the cylindrical member engaging with the first body and said connection means further includes a collar which detachably engages with the second valve body and through which the cylindrical member engages with the second valve body to press the first contacting surface and the second contacting surface against each other.
- 3. A valve according to claim 1, wherein the valve further comprises a nozzle needle, slideably provided in the first valve body and which is pressed by the pressure of the pressure-controlled chamber to prevent the flow of fuel through the nozzle needle.
- 4. A valve according to claim 3, wherein high-pressure fuel is supplied to the pressurized fuel supply path.
- 5. A valve according to claim 1, wherein the valve further comprises a nozzle needle, slideably provided in the first valve body and which is pressed by the pressure of the pressurized fluid supply path to allow the flow of the fuel through the nozzle needle.
- 6. A valve according to claim 1, wherein the second valve body includes a low pressure discharge path, the valve means at the opening position thereof opens the fluid connection between the pressurized fuel supply path and the pressure-controlled chamber, and the valve means at the shutting position thereof opens a fluid connection between the low pressure discharge path and the pressure-controlled chamber, so that the pressue in the pressure-controlled chamber is changed between a low pressure and a high pressure.
- 7. A valve according to claim 1, wherein the actuator is an electro-magnetic actuator.
- 8. A valve according to claim 7, wherein the actuator includes an electromagnet and a movable armature driven by the electromagnet to move the valve means, and a predetermined gap exists between the electromagnet and the armature.
- 9. A valve according to claim 8, wherein a force created by the first drawing means to press the first contacting surface and the second contacting surface against each other is not passed through the actuator so a movable range of the gap is maintained at a predetermined degree.
- 10. A fuel injector comprising:
- a high-pressure fuel supply conduit,
- a first valve body including a first contacting surface, a pressurized fuel path which opens to the first contacting surface and to which the high-pressure fuel is supplied from the high-pressure fuel supply conduit, and a pressure-controlled fuel chamber opening to the first contacting surface,
- a second valve body including a second contacting surface contacting with the first contacting surface and a valve path whose ends open to the second contacting surface and which connects fluidly the pressurized fuel path to the pressure-controlled chamber,
- valve means arranged in the second valve body and moved between an opening position at which the valve means allows a fluid connection between the pressurized fuel path and the pressure-controlled chamber, and a shutting position at which the valve means cuts off the fluid connection between the pressurized fuel path and the pressure-controlled chamber,
- a nozzle needle, slideably provided in the first valve body, and pressed by the pressure of the pressure-controlled chamber to prevent fuel flow there through, and pressed by the pressure of the pressurized fuel supply path to allow fuel to flow through the nozzle needle,
- an actuator arranged on the second valve body for moving the valve means between the opening position and the shutting position, and
- a connection means including a cylindrical member surrounding the second valve body, said cylindrical member having a) a first drawing means which engages with the first valve body to prevent a movement of the first valve body relative to the connection means, and which further engages with the second valve body to prevent a movement of the second valve body relative to the connection means so that the first contacting surface and the second contacting surface are pressed against each other, and b) a second drawing means which sets the actuator on the second valve body.
- 11. A fuel injector according to claim 10, wherein the connection means includes the cylindrical member engaging with the first body and said connection means further includes a collar which detachably engages with the second valve body and through which the cylindrical member engages with the second valve body to press the first contacting surface and the second contacting surface against each other.
- 12. A fuel injector according to claim 10, wherein the second valve body includes a low pressure discharge path, wherein the valve means at the shutting position thereof opens a fluidal connection between the low pressure discharge path and the pressure-controlled chamber, so that the pressure in the pressure-controlled chamber is changed between a low pressure and a high pressure.
- 13. A fuel injector according to claim 10, wherein the actuator is an electro-magnetic actuator.
- 14. A fuel injector according to claim 13, wherein the actuator includes an electromagnet and a movable armature driven by the electromagnet to move the valve means, and a predetermined gap exists between the electromagnet and the armature.
- 15. A fuel injector according to claim 14, wherein a force created by the first drawing means to press the first contacting surface and the second contacting surface against each other is not passed through the actuator so a movable range of the gap is maintained at a predetermined degree.
- 16. A fuel injector comprising:
- a high-pressure fuel supply conduit,
- a first valve body including a first contacting surface, a pressurized fuel path which opens to the first contacting surface and to which the high-pressure fuel is supplied from the high-pressure fuel supply conduit and a pressure-controlled fuel chamber opening to the first contacting surface,
- a second valve body including a low pressure discharge path, a second contacting surface contacting with the first contacting surface and a valve path whose ends open to the second contacting surface and which connects fluidly the pressurized fuel path to the pressure-controlled chamber,
- valve means arranged in the second valve body and moved between an opening position at which the valve means opens the fluidal connection between the pressurized fluid supply path and the pressure-controlled chamber, and a shutting position at which the valve means opens a fluidal connection between the low pressure discharge path and the pressure-controlled chamber, so that the pressure in the pressure-controlled chamber is changed between a low pressure and a high pressure,
- a nozzle needle, slideably provided in the first valve body, and pressed by the pressure of the pressure-controlled chamber to prevent fuel flow there through, and pressed by the pressure of the pressurized fuel supply path to allow fuel to flow through the nozzle needle,
- an actuator arranged on the second valve body for moving the valve means between the opening position and the shutting position,
- the second valve body includes, the valve means at the opening position thereof opens the fluidal connection between the pressurized fuel supply path and the pressure-controlled chamber, the vale means at the shutting position thereof opens a fluid connection between the flow pressure discharge path and the pressure-controlled chamber, so that the pressure in the pressure-controlled chamber is changed between a low pressure and a high pressure, and
- a connection means including a cylindrical member surrounding the second valve body, said cylindrical member having a) a first drawing means which engages with the first valve body to prevent a movement of the first valve body relative to the connection means, and which further engages with the second valve body to prevent a movement of the second valve body to prevent a movement of the second valve body relative to the connection means so that the first contacting surface and the second contacting surface against each other, and b) a second drawing means which sets the actuator on the second valve body.
- 17. A fuel injector according to claim 16, wherein the connection means includes the cylindrical member engaging with the first body and said connection means further includes a collar which detachably engages with the second valve body and through which the cylindrical member engages with the second valve body to press the first contacting surface and the second contacting surface against each other.
- 18. A fuel injector according to claim 16, wherein the actuator is an electro-magnetic actuator.
- 19. A fuel injector according to claim 18, wherein the actuator includes an electromagnet and a movable armature driven by the electromagnet to move the valve means, and a predetermined gap exists between the electromagnet and the armature.
- 20. A valve according to claim 19, wherein a force created by the first drawing means to press the first contacting surface and the second contacting surface against each other is not passed through the actuator so a movable range of the gap is maintained at a predetermined degree.
Priority Claims (1)
Number |
Date |
Country |
Kind |
1-115542 |
May 1989 |
JPX |
|
Parent Case Info
This is a continuation of application Ser. No. 07/519,235, filed on May 7, 1990, which was abandoned upon the filing thereof.
US Referenced Citations (13)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0304745 |
Mar 1989 |
EPX |
0304747 |
Mar 1989 |
EPX |
0304749 |
Mar 1989 |
EPX |
59-165858 |
Sep 1984 |
JPX |
1491957 |
Nov 1977 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
519235 |
May 1990 |
|