Valved catheter with power injection bypass

Information

  • Patent Grant
  • 8585660
  • Patent Number
    8,585,660
  • Date Filed
    Wednesday, January 25, 2006
    18 years ago
  • Date Issued
    Tuesday, November 19, 2013
    10 years ago
Abstract
A valve assembly for a catheter comprising a housing having a lumen extending therethrough a first port opening to a proximal end of the lumen via a first port passage and a valve disposed in the first port passage, the valve being biased toward a closed configuration to prevent fluid flow therethrough when the first port passage is not in use in combination with a second port opening of the housing in fluid connection with a proximal end of the lumen via a second port passage.
Description
BACKGROUND OF THE INVENTION

The treatment of chronic disease often requires repeated and prolonged access to the vascular system. As it is impractical and dangerous to insert and remove a catheter at every session, patients are often fitted with a semi-permanent catheter which is left in place for months or years.


A valve may be used to seal the proximal end of such a semi-permanently implanted device when the device is not in use. One common type of valve is the Pressure Actuated Safety Valve (PASV), which open when a fluid pressure in the catheter exceeds a preselected threshold level. These PASV's often include a slitted membrane designed to remain closed when subject to pressures applied by the vascular system or through normal movement of the patient and to open when fluid pressure applied thereto to introduce fluids to or remove fluids from the vascular system.


SUMMARY OF THE INVENTION

In one aspect, the present invention is directed to a valve assembly for a catheter comprising a housing having a lumen extending therethrough a first port opening to a proximal end of the lumen via a first port passage and a valve disposed in the first port passage, the valve being biased toward a closed configuration to prevent fluid flow therethrough when the first port passage is not in use in combination with a second port opening of the housing in fluid connection with a proximal end of the lumen via a second port passage, the second port passage opening to the lumen distally of the safety valve.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross sectional diagram showing an embodiment of the valve housing with a power injection bypass according to the present invention;



FIG. 2 is a cross sectional diagram of another embodiment of the valve housing having a lumen selector according to the present invention; and



FIG. 3 is a side view of the embodiment shown in FIG. 2, having a manual lumen selector actuator.





DETAILED DESCRIPTION

The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The invention relates to devices for connecting a source of pressurized fluid to a valved catheter, without damaging the valve of the catheter. More specifically, the invention relates to a valve housing and connector for a semi-permanently implanted catheter bypassing the catheter's safety valve to avoid damage which might otherwise occur through the introduction of fluid at a high flow rate and/or pressure.


The proximal ends of semi-permanently implanted catheters generally extend out of the body and often include provisions for connection to external medical devices. For example, a semi-permanently implanted catheter may include a connector including a flow control valve which, as described above, seals the catheter when not in use and permits fluid flow therethrough when fluid transfer to and/or from the vascular system is desired. The flow control valve housing and/or the connector may be formed as a single component or may be separate from one another with either or both components coupled to the catheter or unitarily formed therewith.


Therapeutic procedures infusing fluids such as chemotherapy agents, drugs and blood products often use slower flow rates and lower injection pressures. Typically, a 10 cc syringe is the smallest that should be used and injection pressure is generally maintained less than 1 psi although pressures up to 40 psi are recommended for certain infusion pumps. However, in certain procedures fluids are administered at higher pressures and/or flow rates. For example, contrast media used in the visualization of blood vessels and structures within the body may require power injections at higher pressures and flow rates. For this reason, more robust catheters are often used for such power injection procedures—e.g., up to and over 5 cc/min.


The exemplary embodiments of the present invention allow catheters suitable for long term implantation to be used for low pressure applications as well as higher pressure applications obviating the need to insert a separate catheter for higher pressure applications. In particular, a valve housing and connector portion of a valved catheter according to the invention are designed for low pressure infusion of fluids to and withdrawal of fluids from the vascular system as well as for the power injection of fluids. The exemplary device is designed prevents damage to the safety valve that might otherwise result from a power injection through the catheter.



FIG. 1 shows an exemplary embodiment of a valve assembly 100 according to the invention. Those skilled in the art will understand that the valve assembly 100 may be permanently bonded to a catheter 104 which may, for example, be a PICC type catheter, or formed as a separate component which may be coupled thereto. The exemplary valve assembly 100 is mounted on a proximal end 108 of the catheter 104, either as a separate component or as an integral part of the catheter body 104. A distal end 106 of the catheter 104 is insertable in a conventional manner, for example to form fluid connection with the vascular system. The proximal end of the valve assembly 100 comprises an infusion port 110 through which fluids may be introduced to or removed from the body at relatively low pressures and/or flow rates. For example, as described above, the infusion of blood products chemotherapy compounds, antibiotics, drugs and other fluids provided at low pressure and flow rate can be accomplished through the infusion port 110.


The infusion port 110 of the exemplary embodiment is fluidly connected to a lumen 124 of the catheter 104 via a first passage 114 with a valve 120 controlling the flow of fluid though the first passage 114. The valve 120 prevents the leakage of fluids from the catheter 104 and the introduction of contaminants into the body via the catheter 104 and also minimizes incidences of catheter occlusion while eliminating the need for a catheter clamp or cap. For example, the valve 120 may be a pressure actuated safety valve (PASV) that comprises a slitted membrane 122 sealing the first passage 114 when the valve assembly 100 is not in use.


The slitted membrane 122 is biased to the closed configuration by, for example, tension of the elastic material from which it is manufactured. When a fluid flowing through the first passage 114 applies to the valve 120 a pressure above a predetermined threshold level, the bias of the slitted membrane 122 is overcome and the slit opens allowing fluids to pass through the valve 120. As described above, the valve 120 is preferably designed so that this threshold pressure exceeds pressures which will be applied to the valve 120 by normal anatomical activity and motions of the patient.


The valve assembly 100 also comprises a power injection port 112 designed to connect with a medical device for supplying fluid at pressures and/or flow rates exceeding levels safe for the valve 120. The power injection port 112 is in fluid communication with the lumen 124 of the catheter 104 via a second flow passage 116. In the exemplary embodiment, the second flow passage 116 and the first flow passage 114 of the infusion port 110 merge into the lumen 124 at a location downstream from the valve 120. In this manner, fluids introduced into the power injection port 112 through the flow passage 116 bypass the valve 120. Thus fluids power injected into the catheter 104 do not pass through and damage the valve 120 and the valve 120 does not limit the pressure and/or flow rates at which fluids may be injected through the valve assembly 100 and the catheter 104.


According to the exemplary embodiment shown in FIG. 1, it is not necessary to limit the pressure of the power injected fluid being injected through the catheter body 104 to prevent damage to the valve 120. This feature is especially useful when a PASV with a slitted membrane 122 is used, since the membrane 122 can easily be damaged by excessive pressure, and as a result may no longer close fully when the fluid's pressure falls below the reference pressure. According to one exemplary embodiment of the invention, the power injection fluid bypasses the portion of the catheter valve body containing the valve, so that the slitted membrane of the valve is not subjected to excessive pressures and is not damaged. Furthermore, the benefits of a valved flow path in the catheter 104 are retained simplifying the use of the catheter 104 and preventing leaks and contamination of the lumen 124.


As shown in FIGS. 2 and 3, a valve assembly 202 according to an exemplary embodiment of the present invention includes a lumen selector selectively connecting to the catheter lumen either the power injection flow path or the infusion port flow path to prevent back flow from the power injection flow path into the infusion port flow path. This selector may be operated manually by a user of the catheter or may automatically move to a configuration corresponding to the connection of a device to one or the other of the power injection and infusion ports. That is, the valve assembly 202 may include a mechanism which, whenever a device is coupled to the power injection port, moves the selector to a position permitting flow from the power injector to the catheter and preventing back flow to the infusion port.


As shown in FIGS. 2 and 3, the valve and connector component 200 comprises an infusion access site 210 with a flow passage 214 in fluid connection with the lumen 218 of the catheter 104 and a power injection access site 212 opening to a flow passage 216 also in fluid connection with the lumen 218. A PASV 220 is located in the flow passage 214, upstream from the junction with the flow passage 216. The valve housing 202 thus comprises two flow passages that merge into one lumen of the catheter 104. The two separate flow passages have corresponding access sites 210, 212 adapted for connection with external medical devices that provide low pressure or high pressure fluids, as needed.


As described above, a lumen selector 250 of the valve assembly 202 prevents high pressure fluids introduced through the power injection access site 212 from applying excessive back pressure to the distal face 223 of the slitted membrane 222. For example, the lumen selector 250 may comprise a partition 252 movable about a pivot point 254 through an angle α between positions A and B of FIG. 2. In position A, the partition 252 closes off from the lumen of the catheter 104 the flow passage 216 of the power injection access site 212 and, in position B, the partition 252 closes off from the lumen of the catheter 104 the infusion access site 210 and the associated flow passage 214. Thus, when performing a power injection, the partition 252 is placed in position B, preventing fluid from backing up against the distal side of the slitted membrane 222.


As shown in FIG. 3, the valve body 202 according to this embodiment comprises an external selector 300 that rotates on a pivot 302 to operate the partition 252. The selector 300 may be hand operated by the user to selectively close the power injection lumen 216 or the infusion lumen 214, as desired. Markings may be provided on the valve housing 202 to illustrate the orientation of the partition 252 relative to the position of the external selector 300 as would be understood by those skilled in the art. In the exemplary embodiment, the external selector 300 rotates on a pivot 302 that is the same or is mechanically linked to the pivot 254 of the partition 252. However, different methods of moving the partition 252 may be used, such as for example mechanical linkages, spring loaded mechanisms, pressure actuated mechanisms and powered components.


Those skilled in the art will understand that, instead of the lumen selector, a check valve may be installed in the infusion passage permitting flow distally therethrough while preventing backflow at all times. The power injection port may then be sealed by a simple cap.


The present invention has been described with reference to specific embodiments, and more specifically to a connector used alternatively for power injecting a fluid and to infuse a fluid into a valved PICC. However, other embodiments may be devised that are applicable to other medical devices, without departing from the scope of the invention. Accordingly, various modifications and changes may be made to the embodiments, without departing from the broadest spirit and scope of the present invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.

Claims
  • 1. A valve assembly for a catheter comprising: a housing having a lumen extending at least partially therethrough, the lumen having a proximal end and a distal end;a first port opening in fluid communication with the proximal end of the lumen via a first port passage, the first port passage having a first longitudinal axis;a valve disposed in the first port passage, the valve being biased toward a closed configuration to prevent fluid flow therethrough when the first port passage is not in use;a second port opening in fluid communication with the proximal end of the lumen via a second port passage, the second port passage having a second longitudinal axis;a passage selector located distally of the valve; andan external actuator for manual operation of the passage selector, the external actuator configured to switch the passage selector between a first and second position;wherein the first and second port passages merge distally of a vertical plane containing the valve,wherein the first position prevents fluid communication between the distal end of the lumen and the valve,wherein the second position prevents fluid communication between the distal end of the lumen and the second port, andwherein the first longitudinal axis assumes an acute angle with the second longitudinal axis proximal of the merge.
  • 2. The valve assembly according to claim 1, wherein the valve is a pressure actuated safety valve (PASV).
  • 3. The valve assembly according to claim 2, wherein the PASV comprises a slitted membrane extending across the first port passage.
  • 4. The valve assembly according to claim 1, wherein the passage selector automatically closes the first port passage during use of the second port passage.
  • 5. The valve assembly according to claim 1, further comprising a connector for coupling to a catheter.
  • 6. The valve assembly according to claim 1, wherein the valve assembly is permanently coupled to a catheter.
  • 7. A method of using a catheter comprising: providing a catheter having a valve assembly, the valve assembly comprising: a housing having a lumen extending at least partially therethrough, the lumen having a proximal end and a distal end,a first port opening in Mild communication with the proximal end of the lumen via a first port passage, the first port passage having a first longitudinal axis,a valve disposed in the first port passage, the valve being biased toward a closed configuration to prevent fluid flow therethrough when the first port passage is not in use,a second port opening in fluid communication with the proximal end of the lumen via a second port passage, the second port passage having a second longitudinal axis,a passage selector located distally of the valve, configured to switch between a first and second position,wherein the first and second port passages merge distally of a vertical plane containing the valve,wherein the first position prevents fluid communication between the distal end of the lumen and the valve,wherein the second position prevents fluid communication between the distal end of the lumen and the second port, andwherein the first longitudinal axis assumes an acute angle with the second longitudinal axis proximal of the merge:the catheter comprising: a conduit in fluid communication with the distal end of the lumen;inserting a distal end of the catheter to a target site within a human body;manually moving the external actuator to select the first position;connecting a power injection system to the second port;power injecting a fluid through the second port and to the target site via the conduit.
US Referenced Citations (164)
Number Name Date Kind
2446571 Browne Mar 1944 A
2720881 Weaver et al. Oct 1955 A
2755060 Twyman Jul 1956 A
3113586 Edmark, Jr. Dec 1963 A
3159175 MacMillan Dec 1964 A
3159176 Russell et al. Dec 1964 A
3477438 Allen et al. Nov 1969 A
3514438 Nelsen et al. May 1970 A
3525357 Koreski Aug 1970 A
3621557 Cushman et al. Nov 1971 A
3669323 Harker et al. Jun 1972 A
3673612 Merrill et al. Jul 1972 A
3674183 Venable et al. Jul 1972 A
3710942 Rosenberg Jan 1973 A
3788327 Donowitz et al. Jan 1974 A
3811466 Ohringer May 1974 A
3955594 Snow May 1976 A
4072146 Howes Feb 1978 A
4142525 Binard et al. Mar 1979 A
4143853 Abramson Mar 1979 A
4244379 Smith Jan 1981 A
4387879 Tauschinski Jun 1983 A
4405316 Mittleman Sep 1983 A
4434810 Atkinson Mar 1984 A
4447237 Frisch et al. May 1984 A
4468224 Enzmann et al. Aug 1984 A
4502502 Krug Mar 1985 A
4524805 Hoffman Jun 1985 A
4543087 Sommercorn et al. Sep 1985 A
4552553 Schulte et al. Nov 1985 A
4610665 Matsumoto et al. Sep 1986 A
4616768 Flier Oct 1986 A
4673393 Suzuki et al. Jun 1987 A
4681572 Tokarz et al. Jul 1987 A
4692146 Hilger Sep 1987 A
4722725 Sawyer et al. Feb 1988 A
4790832 Lopez Dec 1988 A
4798594 Hillstead Jan 1989 A
4801297 Mueller Jan 1989 A
4908028 Colon et al. Mar 1990 A
4944726 Hilal et al. Jul 1990 A
4946448 Richmond Aug 1990 A
5000745 Guest et al. Mar 1991 A
5009391 Steigerwald Apr 1991 A
5030210 Alchas et al. Jul 1991 A
5084015 Moriuchi Jan 1992 A
5098405 Peterson et al. Mar 1992 A
5125893 Dryden Jun 1992 A
5147332 Moorehead Sep 1992 A
5149327 Oshiyama Sep 1992 A
5167638 Felix et al. Dec 1992 A
5169393 Moorehead et al. Dec 1992 A
5176652 Littrell Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5201722 Moorehead et al. Apr 1993 A
5205834 Moorehead et al. Apr 1993 A
5249598 Schmidt Oct 1993 A
5254086 Palmer et al. Oct 1993 A
5324274 Martin Jun 1994 A
5330424 Palmer et al. Jul 1994 A
5336203 Goldhardt et al. Aug 1994 A
5360407 Leonard et al. Nov 1994 A
5370624 Edwards et al. Dec 1994 A
5395352 Penny Mar 1995 A
5396925 Poli et al. Mar 1995 A
5399168 Wadsworth et al. Mar 1995 A
5401255 Sutherland et al. Mar 1995 A
D357735 McPhee Apr 1995 S
5405340 Fageol et al. Apr 1995 A
5411491 Goldhardt et al. May 1995 A
5453097 Paradis Sep 1995 A
5454784 Atkinson et al. Oct 1995 A
5469805 Gibbs et al. Nov 1995 A
5470305 Arnett et al. Nov 1995 A
5484420 Russo Jan 1996 A
5542923 Ensminger et al. Aug 1996 A
5554136 Luther Sep 1996 A
5562618 Cai et al. Oct 1996 A
5571093 Cruz et al. Nov 1996 A
5575769 Vaillancourt et al. Nov 1996 A
5624395 Mikhail et al. Apr 1997 A
5637099 Durdin et al. Jun 1997 A
5667500 Palmer et al. Sep 1997 A
5707357 Mikhail et al. Jan 1998 A
5743873 Cai et al. Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5743894 Swisher Apr 1998 A
5752938 Flatland et al. May 1998 A
5803078 Brauner Sep 1998 A
5807349 Person et al. Sep 1998 A
5810789 Powers et al. Sep 1998 A
5843044 Moorehead Dec 1998 A
5853397 Shemesh et al. Dec 1998 A
5865308 Qin et al. Feb 1999 A
5944698 Fischer et al. Aug 1999 A
5984902 Moorehead Nov 1999 A
6033393 Balbierz et al. Mar 2000 A
6045734 Luther et al. Apr 2000 A
6050934 Mikhail et al. Apr 2000 A
6056717 Finch et al. May 2000 A
6062244 Arkans May 2000 A
6092551 Bennett Jul 2000 A
6099505 Ryan et al. Aug 2000 A
6120483 Davey et al. Sep 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6210366 Sanfilippo Apr 2001 B1
6227200 Crump et al. May 2001 B1
6270489 Wise et al. Aug 2001 B1
6306124 Jones et al. Oct 2001 B1
6364861 Feith et al. Apr 2002 B1
6364867 Wise et al. Apr 2002 B2
6375637 Campbell et al. Apr 2002 B1
6436077 Davey et al. Aug 2002 B1
6442415 Bis et al. Aug 2002 B1
6446671 Armenia et al. Sep 2002 B2
6508791 Guerrero Jan 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6610031 Chin Aug 2003 B1
6726063 Stull et al. Apr 2004 B2
6786884 DeCant et al. Sep 2004 B1
6874999 Dai et al. Apr 2005 B2
6953450 Baldwin et al. Oct 2005 B2
6994314 Garnier et al. Feb 2006 B2
7081106 Guo et al. Jul 2006 B1
7252652 Moorehead et al. Aug 2007 B2
7291133 Kindler et al. Nov 2007 B1
7316655 Garibotto et al. Jan 2008 B2
7435236 Weaver et al. Oct 2008 B2
7601141 Dikeman et al. Oct 2009 B2
7637893 Christensen et al. Dec 2009 B2
7758541 Wallace et al. Jul 2010 B2
20010023333 Wisse et al. Sep 2001 A1
20010037079 Burbank et al. Nov 2001 A1
20020010425 Guo et al. Jan 2002 A1
20020016584 Wise et al. Feb 2002 A1
20020121530 Socier Sep 2002 A1
20020156430 Haarala et al. Oct 2002 A1
20020165492 Davey et al. Nov 2002 A1
20020193752 Lynn Dec 2002 A1
20030122095 Wilson et al. Jul 2003 A1
20040034324 Seese et al. Feb 2004 A1
20040064128 Raijman et al. Apr 2004 A1
20040102738 Dikeman May 2004 A1
20040108479 Garnier et al. Jun 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040193119 Canaud et al. Sep 2004 A1
20040210194 Bonnette et al. Oct 2004 A1
20040267185 Weaver et al. Dec 2004 A1
20050010176 Dikeman et al. Jan 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050043703 Nordgren Feb 2005 A1
20050049555 Moorehead et al. Mar 2005 A1
20050149116 Edwards et al. Jul 2005 A1
20050171490 Weaver et al. Aug 2005 A1
20050171510 DiCarlo et al. Aug 2005 A1
20050283122 Nordgren Dec 2005 A1
20060129092 Hanlon et al. Jun 2006 A1
20060135949 Rome et al. Jun 2006 A1
20060149211 Simpson et al. Jul 2006 A1
20070161940 Blanchard et al. Jul 2007 A1
20070161970 Spohn et al. Jul 2007 A1
20070276313 Moorehead et al. Nov 2007 A1
20080108956 Lynn et al. May 2008 A1
20090292252 Lareau et al. Nov 2009 A1
Foreign Referenced Citations (31)
Number Date Country
20208420 Oct 2002 DE
0128625 Dec 1984 EP
0337617 Oct 1989 EP
0864336 Sep 1998 EP
0930082 Jul 1999 EP
1016431 Jul 2000 EP
2508008 Dec 1982 FR
2718969 Oct 1995 FR
966137 Aug 1964 GB
2102398 Feb 1983 GB
59133877 Aug 1984 JP
63255057 Oct 1988 JP
9038197 Feb 1997 JP
WO-8902764 Apr 1989 WO
WO-9112838 Sep 1991 WO
WO-9206732 Apr 1992 WO
WO-9516480 Jun 1995 WO
WO-9617190 Jun 1996 WO
WO-9623158 Aug 1996 WO
96 40359 Dec 1996 WO
WO-9641649 Dec 1996 WO
WO-9723255 Jul 1997 WO
WO-9726931 Jul 1997 WO
WO-9822178 May 1998 WO
WO-9942166 Aug 1999 WO
WO-0006230 Feb 2000 WO
WO-0044419 Aug 2000 WO
WO-0174434 Oct 2001 WO
WO-03084832 Oct 2003 WO
WO-2005023355 Mar 2005 WO
WO-2008089985 Jul 2008 WO
Non-Patent Literature Citations (14)
Entry
Asch, “Venous access: options, approaches and issues,” Can Assoc. Radiol J., vol. 52, No. 3 pp. 153-164 (2001).
Herts et al., “Power injection of contrast media using central venous catheters: feasibility, safety, and efficacy,” AJR Am. J. Roentgenol., vol. 176, No. 2, pp. 447-453 (2001).
Roth et al., “Influence of radiographic contrast media viscosity to flow through coronary angiographic catheters,” Cathet. Cardiovasc. Diagn., vol. 22, No. 4, pp. 290-294 (1991).
Carlson et al., “Safety considerations in the power injection of contrast media via central venous catheters during computered tomogrphic examinations,” Invest. Radiol., vol. 27, No. 5, p. 337-340 (1992).
Kaste et al., “Safe use of powr injectors with central and peripheral venous access devices for pediatrict CT,” Pediatr. Radiol., vol. 26, No. 8, pp. 449-501 (1996).
Herts et al., “Power injection of intravenous contrast material through central venous catheters for CT: in vitro evaluation,” Radiology, vol. 200, No. 3, pp. 731-735 (1996).
Rivitz et al., “Power injection of peripherally inserted central catheters,” J. Vasc. Interv. Radiol., vol. 8, No. 5, pp. 857-863 (1997).
Rogalla et al., Safe and easy power injection of contrast material through a central line, Eur. Radiol., vol. 8, No. 1, pp. 148-149 (1998).
Williamson et al., “Assessing the adequacy of peripherally inserted central catheters for power injection of intravenous contrast agents for CT,” J. Comput. Assist. Tomogr., vol. 25, No. 6, pp. 932-937 (2001).
Chahous et al., “Randomized comparison of coronary angiography using 4F catheters: 4F manual versus ‘Acisted’ power injection technique,” Catheter Cardiovasc. Interv., vol. 53, No. 2, pp. 221-224 (2001).
Walsh et al., “Effect of contrast agent viscosity and injection flow velocity on bolus injection pressures for peripheral venous injection in first-pass myocardial perfusion studies,” Technol. Health Care, vol. 10, No. 1, pp. 57-63 (2002).
Saito et al., “Diagnostic brachial coronary arteriography using a power-assisted injector and 4 French catheters with new shamps,” J. Invasive Cardiol., vol. 9, No. 7, pp. 461-468 (1997).
International Search Report and Written Opinion mailed Mar. 13, 2007 for International Application No. PCT/US2006/045018 (9 pages).
International Preliminary Report on Patentability mailed Jul. 29, 2008 for International Application No. PCT/US2006/045018 (7 pages).
Related Publications (1)
Number Date Country
20070173777 A1 Jul 2007 US