Valveless rotating cylinder internal combustion engine

Information

  • Patent Grant
  • 6240884
  • Patent Number
    6,240,884
  • Date Filed
    Monday, September 28, 1998
    26 years ago
  • Date Issued
    Tuesday, June 5, 2001
    23 years ago
Abstract
An efficient and powerful engine is obtained by incorporating within an engine housing at least one cylinder which is rotatable along the inner circumferential surface of the housing. The cylinder is mounted to a crank case. A piston rod extends from the piston and is moveable longitudinally within the cylinder. The piston rod in turn is connected to a crankshaft. Thus, when the engine is powered, both the cylinder and the crankshaft can rotate, either in the same direction or in opposite directions. An exhaust opening is provided at a location substantially at the top portion of the cylinder. A corresponding exhaust port is provided in the housing, so that when the cylinder is rotated to the particular location along the housing, its exhaust opening comes into alignment with the exhaust port of the housing so that the exhaust gases resulting from the combustion in the cylinder are evacuated directly outside of the housing. A gear mechanism converts the rotational movement of either the cylinder, the crankshaft, or a combination of both, to drive the vehicle, or power generating device, to which the engine is adapted.
Description




FIELD OF THE INVENTION




The present invention relates to internal combustion engines and more particularly to a valveless engine that is efficient to operate and adaptable to be used with all types of vehicles.




BACKGROUND OF THE INVENTION




A conventional internal combustion engine in most instances does not operate efficiently, as a large portion of fuel is not burnt during combustion. This is particularly true with two cycle engines, which tend to get hot and operate inefficiently due to the exhaust gases not being able to be sufficiently evacuated from the chamber of the cylinders. Furthermore, the inputting of gas into the conventional engines is inefficient inasmuch as the conventional gas cylinders tend to have a gas intake valve at approximately the same line of reference as the exhaust valve. Consequently, after combustion, the exhaust gases at the top of the cylinder are not fully evacuated, thus leading to inefficiency.




Attempts have been made by engine manufacturers in their quest to come up with a more efficient engine. One such engine is the Wankel engine in which a triangular shaped rotor rotates within the engine chamber. But because of its shape, and the way in which the rotor rotates within the chamber, such Wankel engine tends to get very hot and the engine has a tendency to warp.




A need therefore exists for an internal combustion engine that can evacuate efficiently the exhaust gases resulting from combustion therein.




Further, in a conventional two stroke engine, one work cycle is produced when the crankshaft is rotated 360°. This is inefficient for those vehicles that are best adapted to use such two stroke engines.




A further need therefore arises for an engine that has a higher efficiency in terms of the RPM that it can generate, as compared to prior art engines. Putting it differently, there is a need for an engine that can operate at a higher efficiency and increased power due to an increased number of work cycles without increasing the RPM of the engine




SUMMARY OF INVENTION




In a conventional internal combustion engine, the cylinders are fixed and only the crankshaft moves. The present invention differs from the conventional internal combustion engines in that its cylinders are movable relative to the crankshaft. Moreover, the instant invention engine requires no valves, as compared to a conventional internal combustion engine which requires both a cam shaft and various valves for controlling the input of fuel and the output of exhaust gases. For the instant invention, exhaust gases are evacuated from the cylinder only when the exhaust opening of the cylinder is positioned in alignment with the exhaust port of the housing. Thus, no valves are required to open or close the exhaust opening of the cylinder or the exhaust port of the housing.




In particular, the instant invention engine has a housing which may have an inner circumferential surface. Within the housing is a crank case having coupled thereto at least one cylinder. A piston is movably fitted in the cylinder, with a piston rod extending therefrom. The piston rod in turn is coupled to a crankshaft, so as to be rotatable with the reciprocal movement of the piston within the cylinder.




In one aspect of the instant invention, the head of the cylinder is configured so as to be rotatable along the inner circumferential surface of the housing so that as it rotates relative to the crankshaft, it moves along the path defined by the inner circumferential surface of the housing. An exhaust opening is provided at an upper portion of the cylinder while an exhaust port is provided at a given location of the housing so that when the cylinder is rotated to that particular location, its exhaust opening mates with the exhaust port of the housing, to thereby evacuate the exhaust gases resulting from the combustion of fuel/air mixture within the cylinder. To control the amount of exhaust gases being evacuated, and therefore controlling the power output from the engine, a closure mechanism is used to control the size of the exhaust port of the housing. To prevent backdraft, another closure mechanism is provided to the cylinder for closing its exhaust opening when it no longer mates with the exhaust port of the housing.




In a second aspect of the instant invention engine, instead of rotating along a predefined path as defined by the inner circumferential surface of the housing, the crankshaft of the instant invention engine is fixedly mounted to the housing. Accordingly, the cylinder rotates about the crankshaft as a result of the reciprocating movement of the piston. Thus, the rotation of the cylinder is defined, even without being guided by the inner circumferential surface of the housing.




To enhance the evacuation of the exhaust gases from the cylinder, unlike conventional internal combustion engines, the instant invention engine, at least with respect to its two cycle version, has its gas inlet port located at the lower portion of the cylinder while its exhaust port located at its upper portion. As a result, as evacuation of exhaust gases goes on, the fuel/air mixture being fed into the cylinder helps to push the exhaust gases out of the cylinder. With less exhaust gases in the chamber of the cylinder and the chamber being filled with more fuel, a more powerful combustion process takes place.




Inasmuch as the cylinder and the crankshaft of the instant invention engine are both rotatable, by rotating the crankshaft in an opposite direction to the rotation of the cylinder, the instant invention engine is able to increase the number of work cycles for a given number of revolutions, thereby increasing its power output. To further increase the power output, additional cylinders may be provided within the same housing. Alternatively, a number of housings each of which contains at least one cylinder may be workingly cascaded together to the same crankshaft.




It is therefore an objective of the present invention to provide an engine that does not require any valves for controlling the evacuation of exhaust gases.




It is another objective of the present invention to provide an internal combustion engine that does not require any valves for the input of fuel thereinto.




It is yet another objective of the present invention to provide an engine that has a higher performance efficiency than a similarly sized conventional engine.




It is still another objective of the present invention to provide an engine with increased work cycles but rotates at the same number of revolutions per period of time as a similarly sized conventional internal combustion engine.











BRIEF DESCRIPTION OF THE DRAWINGS




The above-mentioned objectives and advantages of the present invention will become apparent and the invention itself will be best understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:





FIG. 1

is a semi-exposed perspective view of the engine of the instant invention;





FIG. 2

is an exposed view of the housing of the instant invention engine;





FIG. 3

is a perspective view of the present invention viewed from the bottom of the engine;





FIG. 4

is a perspective view of a portion of the crank case and one cylinder of the instant invention engine;





FIG. 5

is a perspective view of the instant invention engine viewed from the top;





FIG. 6

is a cross-sectional view of the instant invention engine showing in particular the gear mechanism thereof;





FIG. 7

is yet another exposed perspective view of the instant invention engine;





FIG. 8

is a cross-sectional view showing the relationship between the opening of the cylinder and the exhaust port of the housing, and further shows the mechanism for adjusting the dimension of the exhaust port of the housing;





FIG. 9

is a cross-sectional view of an exemplar mechanism for closing the exhaust opening of the cylinder to prevent backdraft when the opening is not aligned with the exhaust port of the housing;





FIG. 10

is a cross-sectional view illustrating another embodiment of the mating of the exhaust opening of the cylinder with an exhaust port of the housing;





FIG. 11

illustrates yet another exemplar embodiment of exhaust gases being evacuated from the cylinder to the outside environment via an exhaust port of the housing;





FIG. 12



a


is a side view of an exemplar cylinder;





FIG. 12



b


is a cross-sectional view of the

FIG. 12



a


cylinder;





FIG. 12



c


is a cross-sectional bottom view of the

FIG. 12



a


cylinder showing in particular the various channels whereby fuel is supplied internally to the cylinder for combustion;





FIG. 13

is a perspective view of an exemplar crankshaft of the instant invention and a piston rod attached thereto;





FIG. 14

is an illustration of the stacking of two similar housings to form another embodiment of the engine of the instant invention;





FIG. 15

is a diagram for illustrating a work cycle of a cylinder of the instant invention engine;





FIG. 16

is an illustration of a four cycle engine of the instant invention having only 1 spark plug and a ratio of 1 to 1; and





FIG. 17

is an illustration of yet another four cycle engine of the instant invention that operates with more than one spark plugs for effecting multiple work cycles.











DETAILED DESCRIPTION OF THE INVENTION




With reference to

FIG. 1

, a semi-exposed perspective view of the engine of the instant invention is shown. As illustrated, the engine has a housing


2


that has a substantially inner circumferential surface


4


. Within housing


2


there is a crank case


6


which has mounted thereto two cylinders


8


and


10


. In place of two cylinders, it should be appreciated that the instant invention engine is operable with only one cylinder, so long as it is balanced when it moves about the inside of housing


2


. So, too, more than two cylinders could be mounted within housing


2


.




Coupled to crank case


6


is a frame or frame support


12


which has coupled thereto a gear box or gear housing


14


. As shown by the dotted line, there is extending from cylinder


8


a piston rod


16


, which, although not shown with particularity in this figure, has connected thereto a crankshaft


18


. Fixedly coupled to crankshaft


18


is a first driving wheel


20


that is supported by a bearing, not shown, in bearing housing


23


. Bearing housing


23


in turn has coupled thereto a second driving wheel


22


by means of a number of bolts


24


. Bearing housing


23


in fact can be integrated to support


12


or can be bolted thereto. Support


12


is fixedly mounted to crank case housing


6


which, as mentioned previously, has fitted thereto cylinders


8


and


10


.




Cylinder


8


(and also cylinder


10


) has a head or top portion


8


T that is configured to moveably fit along the inner circumferential surface


4


of housing


2


, so that it can rotate thereabout. Since cylinder


8


, as well as cylinder


10


, is coupled to crank case


6


, which in turn is coupled to support


12


, with bearing housing


23


and gear


22


connected thereto, driving wheel


22


rotates independently of driving wheel


20


, which rotates when crankshaft


18


rotates. Simply put, crankshaft


18


rotates independently of the rotation of cylinder


8


about inner circumference surface


4


of housing


2


. Thus, depending on the configuration of the crank shaft shown in

FIG. 13

, cylinder


8


may in fact rotate in a direction opposite to that of crankshaft


18


. For example, cylinder


8


may rotate in the clockwise direction as indicated by directional arrow


26


while crankshaft


18


may rotate in the opposite direction as indicated by directional arrow


28


.




Further shown in the engine of

FIG. 1

is an opening


30


which, to be discussed later, is an exhaust port. Cylinder


8


likewise has an opening


32


that comes into alignment with exhaust port


30


when cylinder


8


is rotated to the appropriate location along inner circumferential surface


4


.




Further shown in gear box


14


of

FIG. 1

is a wheel


34


that meshes with both driving wheels


20


and


22


. Wheel


34


is a synchronizing wheel in that it provides synchronization for both driving wheels


20


and


22


. The operation and interrelationship between the wheels in gear box


14


will be discussed further, infra. Suffice it to say for the time being that a drive shaft


36


is fixedly coupled to wheel


34


and is driven thereby. It is by means of this drive shaft


36


that power is provided to the vehicle to which the engine of

FIG. 1

is installed. A housing


38


extends from gear housing


14


to protect drive shaft


36


.





FIG. 2

is an exposed view of the different pieces that make up the housing of the instant invention engine. As shown, a cover plate


40


(which may be an extension of support


12


of FIG.


1


), to which gear housing


14


is mounted, is positioned and removably coupled to housing


2


. On the opposed side of housing


2


there is a second cover plate


42


coupled to housing


2


. An opening is defined in plate


42


by a circumferential lip


44


.




The reason for the opening defined by lip


44


is better illustrated with respect to FIG.


3


. There, a perspective view of the engine, with plates


40


and


42


removed, is shown. Looking at the underside of crank case


6


, it can be seen that there is coupled thereto an extension plate


46


. Bolted to extension plate


46


is a circular plate


48


having a center hole


50


where one end of crankshaft


18


is mounted. There is also an opening


52


provided in plate


48


through which fuel which may be in the form of an air/fuel mixture is input to crank case


6


. The dimension of opening


52


can be configured to accept any fuel delivery devices such as for example a carburetor or a fuel injection device, coupled to plate


48


.




Per the perspective view of

FIG. 3

, a better view of cylinders


8


and


10


are shown. For ease of illustration, cylinders


8


and


10


are each shown in only an outline format so that the respective pistons


54


and


56


within the cylinders can be seen. There is moreover shown a channel, or grooves


8




c


and


10




c


, in cylinders


8


and


10


, respectively. Channels


8




c


and


10




c


, as will be discussed in more detail with respect to

FIGS. 12



a


and


12




c


, provide a passageway for the fuel input through opening


52


to crank case


6


to be routed to the interior of the cylinders past pistons


54


and


56


, respectively. This is provided that the position of the piston, with respect to the cylinder, is such that the top portion of the channel is above the piston. In other words, once a piston, such as for example 56, is moved or positioned past the top edge of channel


10




c


, the fuel mixture in crank case


6


no longer is fed to the interior of cylinder


10


. There is moreover shown a spark plug


58


mounted to the top portion of cylinder


10


. The location of spark plug


58


can vary, depending on the exhaust opening, such as


32


shown in

FIG. 1

, of the cylinder.




As best shown in

FIG. 3

, note that cylinders


8


and


10


are in contact with inner circumferential surface


4


of housing


2


so that those cylinders are rotatable along surface


4


. Further note that even though the heads of cylinders


8


and


10


each appear to be flat so as to mate with the inner circumferential surface of the “ring” shaped housing, in practice, the shape of the heads of the cylinders, as well as the inner circumferential surface of the housing, can be spherical (or any other matching shapes) so that good sealing between the cylinders and the inner surface of the housing is achieved.





FIG. 4

shows a portion of crank case


6


and a cylinder (assume it is cylinder


8


) mounted thereto. Further shown mounted to crank case


6


is support


12


to which is mounted bearing housing


23


. Bolted to bearing housing


23


is driving wheel


22


. As best shown in

FIG. 4

, at the top of cylinder


8


is opening


32


through which exhaust gases resulting from combustion having taken place in the interior of cylinder


8


are evacuated. Although not shown in

FIG. 4

, it should be appreciated that a closure mechanism, such as for example that shown in

FIG. 9

, would close opening


32


when it is not desirable to evacuate the exhaust gases so that there is no backdraft for cylinder


8


. Further, note that even though exhaust opening


32


is shown to be located at the top of cylinder


8


, in actuality, such exhaust opening can be located anywhere along the upper portion of cylinder


8


. More elaboration of that later with respect to

FIGS. 10 and 11

.




The last thing to note with respect to the

FIG. 4

illustration is that wheel


22


is fixedly bolted to bearing housing


23


, which in turn is bolted by means of support


12


to crank case


6


. And insofar as cylinder


8


is fixedly coupled to crank case


6


, when cylinder


8


rotates relative to crankshaft


18


, shown as for example in

FIG. 1

, wheel


22


will rotate in the same direction as cylinder


8


. Thus, in a two cycle engine with crankshaft


18


fixedly coupled to a frame, the only thing that rotates is the cylinder, for example cylinder


8


in the exemplar embodiment of FIG.


4


. Thus, wheel


22


becomes the driving wheel for providing the power to drive the vehicle, or other power driven device such as for example a generator, to which the engine of

FIG. 4

is mounted.





FIG. 5

is a perspective view of the engine of the instant invention as viewed from the top. As shown, synchronizing wheel


34


meshes with each of wheels


22


and


20


and is driven thereby for driving drive shaft


36


. Crankshaft


18


, to which wheel


20


is fixedly coupled, extends through wheel


22


into crank case


6


and is coupled to a cam shaft


60


, a portion of which is shown to be coupled to piston rod


62


, which in turn extends from piston


56


.




A more detailed illustration of the interaction between crankshaft


18


, wheels


22


and


20


, and synchronizing wheel


34


is shown in the cross-sectional view of FIG.


6


. There, crankshaft


18


is shown to extend from crank case


6


through bearing housing


23


and wheel


22


, so as to be rotatably mounted to a frame of the engine, in this case gear housing


14


. As shown, wheel


20


is fixedly coupled to crankshaft


18


by means of an insert


64


. Wheel


22


in turn is bolted to bearing housing


23


by means of a number of bolts represented for example by bolt


24


. Inside bearing housing there is a roller bearing


66


for supporting crankshaft


18


. Bearing housing


23


in turn is supported by a bearing


68


, so that it can rotate relative to support


12


. Thus, when crankshaft


18


rotates, only wheel


20


is rotated therewith.




On the other hand, when cylinders


8


and


10


rotate about inner circumferential surface


4


of housing


2


, crank case


6


is rotated therewith. This means bearing housing


23


, which is coupled to crank case


6


, is likewise rotated. And when bearing housing


23


rotates, wheel


22


likewise rotates in the same direction. As a consequence, for the instant invention engine, given the fact that the piston rods from the cylinders are mounted to crankshaft


18


, depending on which direction crankshaft


18


is driven and the rotation of the cylinders relative to the rotation of crankshaft


18


, the cylinders and crankshaft


18


can either rotate in the same direction or rotate in opposite directions. This ability of the cylinders to rotate in the direction opposite to that of the crankshaft provides the engine of the instant invention the capability of increasing the speed, and therefore the power of the engine, without having to increase the RPM, or the operational load, of the engine. This is done by interposing synchronizing wheel


34


between driving wheels


22


and


20


.




Specifically, synchronizing wheel


34


can be considered as an RPM control wheel that rotates at a speed that is a combination of the rotational speeds of wheels


22


and


20


. The important aspect of synchronizing wheel


34


, as its name implies, is that it can provide synchronization for both wheels


22


and


20


. Moreover, given that the cylinders


8


and


10


can rotate in a direction opposite to that of crankshaft


18


and that wheel


20


is driven by crankshaft


18


while wheel


22


is driven by the rotation of cylinders


8


and


10


, the fact that synchronizing wheel


34


meshes with both wheels


22


and


20


means that synchronizing wheel


34


is driven in a speed that is greater than the speed of either one of wheels


22


or


20


. In fact, the size of wheel


34


can be dimensioned such that it rotates twice (or more) for every rotation of either one of wheels


22


and


20


, which for the embodiment shown in

FIG. 6

is configured to have the same size. Thus, drive shaft


36


, which is fixedly coupled to wheel


34


and is therefore driven thereby, rotates at the speed of wheel


34


.




For the embodiment shown in

FIG. 6

, it is assumed that the vehicle to which the engine of the instant invention is mounted is driven by drive shaft


36


. Yet with the instant invention engine, the engine can be mounted in such a way that the vehicle could be driven by crankshaft


18


, if crankshaft


18


is extended beyond gear housing


14


. This secondary power source of the instant invention is useful insofar as it enables the instant invention engine to be adaptable to be used for things other than vehicles, such as for example power generators or other devices that are to be power driven, or devices that require more than one source of rotational power.




Note that wheels


22


and


20


are of the same size. Accordingly, they have a 1 to 1 ratio. Thus, for every revolution of the cylinders


8


and


10


, there are two work cycles. The ratio of wheels


22


and


20


can be changed by providing additional spark plugs and exhaust ports to housing


2


. For example, wheel


22


can be turned at a greater rate than the rotation of crankshaft


18


, so that a different ratio can be created between wheels


22


and


20


. If there is indeed a different gear ratio between wheels


22


and


24


, then a different gear system is required. In addition to increasing the number of firing mechanisms such as for example spark plugs and exhaust ports, additional cylinders may be provided within housing


2


.




One more thing to take note of in

FIG. 6

is the respective inlet ports


70


and


72


for providing the fuel input to crank case


6


to cylinders


8


and


10


, respectively. A more detailed discussion with respect to how the fuel is; provided to the interior of cylinders


8


and


10


will be given with respect to the configuration of the cylinders as shown in

FIGS. 12



a


-


12




c.







FIG. 7

is an exposed perspective view of the engine of the instant invention which shows a firing device such as for example a spark plug


58


fitted to housing


2


. For the sake of simplicity and understanding, the housing of the cylinder has been removed from the

FIG. 7

view so that only piston


56


is shown. Further shown is exhaust port


30


in housing


2


through which combustion gases in this cylinder can escape when the cylinder is rotated to the appropriate place along the circumferential side surface


4


of housing


2


. The last thing that should be taken notice of in

FIG. 7

is the protective cap


74


mounted over extension plate


48


for protecting the carburetor or fuel injection device mounted thereto.





FIG. 8

illustrates how to increase/decrease the power of the engine by retarding or advancing the timing of the engine. Specifically, by providing two components, namely an exhaust leading edge adjustment component


76


and an exhaust trailing edge adjustment component


78


, to exhaust port


30


of housing


2


, the size of the exhaust port opening can be varied for controlling the timing and the amount of exhaust gases to be evacuated from chamber


80


of cylinder


8


, when piston


54


is moving in the direction as shown by the arrow. By constricting the evacuation of the exhaust gases in chamber


80


, the gases in the chamber will be burned more completely before being evacuated. Accordingly, more power is generated and a cleaner engine results.




Assume cylinder


8


is rotating in the direction indicated by arrow


82


. For the

FIG. 8

exemplar embodiment, leading edge component, which is a closure flap, can be adjusted either independently under the control of a processor, or manually by the operator on the fly, as the engine is being used. By first decreasing the size of opening


30


, a back pressure is built up in chamber


80


so that exhaust gases are burnt more efficiently. And as the RPM goes up in the engine, in the case where the operator is manually adjusting components


76


and


78


, upon the increase in the size of exhaust port


30


, more exhaust gases are evacuated.




To prevent backdraft when opening


32


is not aligned with exhaust port


30


, another enclosure piece


84


is used. Component


84


may have a slight nob


86


at the end portion thereof so that it can be pushed into recess


88


when it becomes aligned with exhaust port


30


by means of an appropriately located extension that coacts therewith. Conversely, a corresponding groove may be provided in the inner circumferential surface of the housing, except at or near exhaust port


30


, so that when encountered with the non-grooved surface, closure piece


84


is again pushed into recess


88


, so as to allow exhaust gases to be evacuated from chamber


80


.





FIG. 10

illustrates another way by which exhaust gases are evacuated from chamber


80


of cylinder


8


. For this embodiment, note that instead of providing the exhaust opening at the top of cylinder


8


, an exhaust opening


90


is provided to the side of substantially the top portion of cylinder


8


. An extension


92


is mounted to opening


90


for providing a path through which exhaust gases can be evacuated from chamber


80


through opening


30


out to the environment.




Yet another alternative whereby exhaust gases could be evacuated from the cylinder to the environment is through the housing such as for example by way of cover plate


42


shown in FIG.


2


. In particular, an opening


94


is provided to the side of cylinder


8


at a portion thereof that is substantially near the top of chamber


80


. A corresponding exhaust port


96


is provided at plate


42


so that once cylinder


8


is rotated and opening


94


becomes aligned with exhaust port


96


, exhaust gases resulting from combustion in chamber


80


are evacuated through opening


94


and exhaust port


96


to the environment.




Note further that instead of a single exhaust opening


94


, there could in fact be a number of exhaust openings provided in cylinder


8


, provided that those openings are closed when not aligned with exhaust ports, for enhancing the evacuation of the exhaust gases.





FIGS. 12



a


-


12




c


are illustrations of the cylinder housing of the instant invention. Assume the cylinder being discussed is


8


. As shown in

FIG. 12



a


, cylinder


8


is made of a housing having a number of fins


98


for enhancing the cooling of the cylinder, in the event that the engine of the instant invention is an air cooled engine. As best shown in the cross-sectional view of cylinder


8


in

FIG. 12



b


and the bottom view of

FIG. 12



c


, a number of channels


100


are provided along the inner circumference of the cylinder housing so that the fuel input to crank case


6


(see

FIGS. 3 and 6

) is fed to chamber


80


of the cylinder.




Given that the channels


100


are located at the lower portion of the cylinder while the exhaust opening


32


is located at the top of the cylinder, at the cycle of the operation of the cylinder when exhaust gases are first evacuated from opening


32


and before piston


54


has traveled above the top of channels


100


, the fuel from crank case


6


is fed via channels


100


into chamber


80


, and in the process, helps to push the exhaust gases out through opening


32


. Of course, once piston


54


has been moved within chamber


80


to be above the top of channels


100


, no more fuel is provided into chamber


80


. At that time, the exhaust gases are assumed to have been evacuated from chamber


80


, as cylinder


8


has rotated beyond the particular location where opening


32


is in alignment with exhaust port


30


of housing


2


. So, too, at that time, opening


32


is closed by means of component


84


such as shown in

FIG. 9

, as the compression cycle proceeds in cylinder


8


.





FIG. 13

is a perspective view of the crankshaft


102


inside crank case


6


of the engine of the instant invention. As shown, piston rod


16


is coupled to two of the cranks of crank shaft


102


, which has coupled to its end driving wheel


20


. Plate


104


, attached to the other end of crankshaft


102


, is configured to match the configuration of opening


52


of extension plate


48


(

FIG. 3

) so that fuel input to opening


52


is more readily provided into crank case


6


and then by means of channels


100


provided to cylinders


8


and


10


.




As was mentioned previously, to increase the power of the engine, a number of cylinders may be provided within housing


2


. An alternative to increasing the power of the engine of the instant invention is shown in FIG.


14


. There, a housing such as


2


having therein cylinders


8


and


10


is cascadedly positioned relative to a similar housing


106


with similar cylinders


108


and


110


therein. Such stacking of housings in effect increases the power of the engine insofar as the single cam shaft


18


is mounted through the stacked housings and is being driven by the reciprocal motions of the respective pistons, such as for example 54, 56 and 112, 114 of the different cylinders. For this embodiment, a corresponding number of exhaust ports and spark plugs are provided in each of the housings so that multiple work cycles may be effected by the various cylinders in each of the housings.





FIG. 15

shows the dynamics of a cylinder, and the piston therein, as it rotates about the crankshaft to which it is mounted per a crank


116


. For the embodiment shown in

FIG. 15

, it is assumed that the crankshaft is fixedly mounted to the frame of the engine. This is feasible in the case of a two cycle engine where, but for the fixedly mounting of the crankshaft, every components of the engine works as before. In other words, the fuel is still being provided by either a carburetor or a fuel injection device into crank case


6


, and then provided to the cylinders per the channels integrated to the cylinder housing. Exhaust gases resulting from the combustion within the chamber of the cylinders are still being evacuated through some kind of exhaust opening in the cylinder and corresponding exhaust ports provided in the housing of the engine. As before, the exhaust opening for the cylinder may be provided at either the top of the cylinder or at a location substantially near the top so that exhaust gases are evacuated more efficiently due to the input of the fuel from the lower portion of the cylinder as the compression of the piston takes place.




But with the fixed shaft, there is only one work cycle for a 360° rotation of each cylinder. This is illustrated in

FIG. 15

per the four positions of the cylinder


8


, and the position of piston


54


in relation therewith. For example, at position


118


, piston


54


is in the upmost position. As cylinder


8


rotates to position


120


, piston


54


moves lower. At position


122


, piston


54


has moved even further down relative to the top portion of cylinder


8


. Finally, at position


124


, piston


54


has fully moved to its lowest position in cylinder


8


. Thus, at position


118


, the exhaust gases are evacuated from cylinder


8


. And at position


124


, fuel is provided to the interior of cylinder


8


. A compression cycle then ensues so that only after a 360° rotation has been effected, would cylinder


8


as shown in the embodiment of

FIG. 15

effect a single work cycle for a two cycle engine.





FIG. 16

shows a four cycle engine with only one spark plug SP, and therefore a gear ratio of 1 to 1. As shown, at position A, cylinder


126


is located relatively close to spark plug SP. When the fuel compressed within the chamber of cylinder


126


is ignited, work results due to the expansion of the gases and the movement of the piston in a downward position relative to the top of cylinder


126


. This work cycle is designated W and goes from location A to location B. At location B, the piston of cylinder


126


has been pushed all the way down and the chamber of the cylinder is filled with exhaust gases resulting from the combustion process. Thus, from location B to location C, an exhaust process takes place. Indeed, because exhaust port


128


is located at locations C, the exhaust gases are evacuated from exhaust opening


130


of cylinder


126


through exhaust port


128


of the housing at location C. With the evacuation of the exhaust gases also comes the fueling of the chamber of the cylinder. Such input of fuel takes place between location C and D. For the sake of simplicity, for the

FIG. 16

embodiment, assume that cylinder


126


does not have any channels so that no fuel is provided to the chamber as the exhaust gases are being evacuated therefrom. At location D, upon being filled with fuel in the chamber of cylinder


126


, the compression process begins as the piston is pushed toward the top of the cylinder so as to compress the fuel inside the chamber of the cylinder. By the time the cylinder reaches location A, the compression process is finished, and the whole process begins anew. Thus, insofar as there is only work cycle for the

FIG. 16

illustration, there is a gear ratio of 1 to 1.




With respect to the above discussed

FIG. 16

illustration, shaft


132


to which the piston rod of the cylinder is mounted is assumed to rotate in the opposite direction as the rotation of the cylinder about the inner circumferential surface of the housing of the engine.




Consider again the illustration of FIG.


16


. For this reconsideration, assume that shaft


132


rotates in the same direction as cylinder


126


. The mechanism for effecting a shaft to rotate in the same direction as a cylinder is well known and is taught for example in Cantoni U.S. Pat. No. 2,242,231, the disclosure of which being incorporated by reference herein. Given that the rotational directions of both the shaft and the cylinder are the same, for a 360° revolution of the cylinder, shaft


132


in effect rotates three times as much as cylinder


126


. For example, at position A, point a of shaft


132


is located at position


1


. Yet when cylinder


126


is rotated to location B, point a of shaft


132


has in fact rotated to position


2


. In essence, shaft


132


has rotated three times as much as cylinder


126


. Therefore, there is a 3 to 1 ratio if both shaft


132


and cylinder


126


rotate in the same direction. A significant aspect of the instant invention is therefore that both the crankshaft and the cylinder can rotate, either along the same direction or in opposite directions.




As shown in

FIG. 16

, one work cycle is effected by one cylinder in the engine of the instant invention. For such single cylinder engine, chances are a counter weight is needed 180° from the cylinder. Yet if a second cylinder is provided in the engine opposite to the first cylinder, not only would the number of work cycles increase, the counter weight is also eliminated.




Also to be of note for the four cycle engine embodiment of

FIG. 16

is that there is a difference between the four and two cycle engines. For a two cycle engine, the fuel and the exhaust gases both can go out along the same direction so that fuel can be fed through the lower portion of the cylinders to force the exhaust gases out. However, in the case of a four cycle engine, both the fuel and exhaust gases can use the same openings, but at opposite directions. In other words, for a first time period, exhaust gases are being evacuated. For the next time period, fuel is being input. But in either case, for the instant invention engine, be it a two cycle or four cycle engine, the one thing that remains constant is that no valves are needed, as exhaust gases are evacuated due to the alignment of the exhaust opening in the cylinder with the exhaust port in the housing, as the cylinder is rotated about the crankshaft.





FIG. 17

shows a four cycle engine that has two spark plugs. Thus, for every cylinder provided in the

FIG. 17

engine, there will be two work cycles for every 360° rotation. Such is indicated by the eight different locations of cylinder


134


as it rotates in a direction counter to that of crankshaft


136


. The interesting thing to note for the

FIG. 17

embodiment is that the exhaust port, if fitted with the appropriate closure component, begins to open at approximately point


138


and opens completely at point


140


. Similarly, the input of the fuel begins at approximately point


142


and ends at point


144


, before the compression cycle begins. Thus, for the exemplar four cycle engine of

FIG. 17

, each cylinder provided within the engine housing performs two work cycles per 360° revolution. Thus, if there are two cylinders provided within the engine housing of

FIG. 17

, four work cycles would result. Continuing, if four cylinders are provided in the engine housing, then there would be eight work cycles for every 360° revolution. Thus, if a sufficiently large engine housing is provided with the appropriate number of spark plugs and exhaust ports, a multiple cylinder engine that operates efficiently with ample power output can be obtained. Furthermore, the instant invention not only is adapted to work as a two cycle engine, it can also work as a four cycle engine.




Inasmuch as the present invention is subject to many variations, modifications and changes in detail, it is intended that all matter described throughout this specification and shown in the accompanying drawings be interpreted as illustrative only and not in a limiting sense. Accordingly, it is intended that the invention be limited only the spirit and scope of the hereto appended claims.



Claims
  • 1. An internal combustion engine, comprising:a crankshaft mounted to a frame; at least one cylinder having a piston and a piston rod extending therefrom movably coupled to said crankshaft, the movement of said piston rod effecting relative rotation between said cylinder and said crankshaft, said cylinder rotatable about said crankshaft, said cylinder having at least one opening with at least a portion thereof located above the uppermost position where said piston is movable longitudinally within said cylinder; a housing having an inner circumferential surface whereon said cylinder is movable about when said cylinder is rotated relative to said crankshaft; at least one exhaust port positioned relative to said cylinder; and closure means adaptable for adjusting the size of the opening of said exhaust port to control the amount of exhaust gases that could be evacuated from said cylinder via said exhaust port during the operation of said engine; wherein said opening becomes aligned with said exhaust port so that exhaust gases resulting from combustion within said cylinder are evacuated through said exhaust port when said cylinder is rotated to at least one particular position relative to said crankshaft.
  • 2. The engine of claim 1 wherein said closure means is movably mounted to said housing relative to said exhaust port and adaptable to be controlled manually or automatically.
  • 3. The engine of claim 1, further comprising:at least two cylinders positioned opposed to each other, each of said cylinders having a piston movable lengthwise therein and a piston rod extending therefrom movably coupled to said crankshaft so that said cylinders are rotatable at 180 degrees apart about said crankshaft.
  • 4. The engine of claim 1, wherein said crankshaft is designed to work cooperatively with said cylinder so that as said cylinder is rotated in a first direction relative to said crankshaft, said crankshaft is driven by said cylinder to rotate in a direction opposite to said first direction.
  • 5. The engine of claim 1, wherein said crankshaft is rotatably connected to said cylinder so as to rotate in response to the movement of said cylinder; andwherein the number of rotation of said crankshaft per unit of time is greater than the number of revolution of said cylinder about said crankshaft.
  • 6. The engine of claim 1, further comprising:at least an other cylinder having a piston and a piston rod extending therefrom coupled to said crankshaft, said other cylinder positioned relative to said cylinder and is also rotatable about said crankshaft, said cylinder having at least one other opening with at least a portion located above the uppermost position where said piston is movable longitudinally within said other cylinder; at least an other exhaust port positioned relative to said other cylinder; wherein when said other cylinder is rotated relative to an other particular position about said crankshaft, said other opening becomes aligned with said other exhaust port so that exhaust gases resulting from combustion within said other cylinder are evacuated from said other opening and said other exhaust port; and wherein said other cylinder works cooperatively with said cylinder to provide additional output power from said engine.
  • 7. The engine of claim 1, further comprising:a plurality of cylinders spaced at predetermined angles from each other each movably coupled to said crankshaft.
  • 8. The engine of claim 1, further comprising:a plurality of exhaust ports formed at said housing positioned relative to said cylinder; and at least one channel formed at said cylinder wherethrough the fuel is input to said cylinder while exhaust gases resulting from combustion of said fuel in said cylinder are evacuated from each of said exhaust ports as said cylinder rotates about said crankshaft to effect a plurality of work cycles per each full revolution it makes about said crankshaft.
  • 9. The engine of claim 1, wherein said cylinder is configured to have at least one channel provided substantially at the lower portion thereof so that, as said piston is moved to said lower portion, fuel is fed through said channel to the interior of said cylinder for combustion therein.
  • 10. The engine of claim 1, further comprising:a gear mechanism having a first gear cooperatively rotatable with the rotation of said cylinder about said crankshaft; a second gear cooperatively rotatable with the rotation of said crankshaft; a synchronizing gear movably coupling said first gear to said second gear; and a drive shaft fixedly coupled to said synchronizing gear so as to be rotatable with the rotation of said synchronizing gear.
  • 11. The engine of claim 10, wherein said first and second gears rotate in opposite directions.
  • 12. The engine of claim 1, wherein said crankshaft has mounted thereto a counterweight for said cylinder to reduce imbalance caused when said cylinder rotates about said crankshaft.
  • 13. The engine of claim 1, further comprising:closure means adaptable for closing said opening of said cylinder when said opening is not aligned with said exhaust port.
  • 14. An internal combustion engine, comprising:at least one housing having an inner circumferential surface; a crankshaft; at least one cylinder positioned in said housing having its top portion rotatable substantially along said circumferential surface, said cylinder having a chamber and a piston movable longitudinally therein, a piston rod connecting said piston and extending from said cylinder to movably mount to said crankshaft so that said cylinder is rotatable about said crankshaft; at least one exhaust port formed in said housing to effect a passageway from the inside to the outside of said housing; at least one opening formed in said cylinder to enable gases in the chamber of said cylinder to be evacuated therefrom; and closure means adaptable for adjusting the size of said exhaust port to thereby control the amount of exhaust gases that could be evacuated from said chamber of said cylinder at any given time; wherein when said cylinder is rotated to a particular portion along said circumferential surface, exhaust gases resulting from combustion in said chamber of said cylinder are evacuated through said one opening of said cylinder and said exhaust port of said housing to the outside of said housing.
  • 15. A valveless engine, comprising:a crankshaft; at least one cylinder rotatably coupled to said crankshaft, relative rotation being effected between said cylinder and said crankshaft; at least one opening in said cylinder wherefrom exhaust gases resulting from combustion in said cylinder can escape; a housing having an inner circumferential surface whereon said cylinder is movable about includes at least one exhaust port to mate with said opening of said cylinder at least once for every revolution of said cylinder about said inner circumferential surface of said housing; and closure means adaptable for adjusting the size of the opening of said exhaust port to regulate the amount of exhaust gases to be evacuated from said cylinder via said exhaust port during the operation of said engine.
  • 16. A valveless engine comprising:a crankshaft; a plurality of cylinders each movably coupled and rotatable relative to said crankshaft; at least one opening in each of said cylinders wherefrom exhaust gases resulting from combustion in said each cylinder can escape; at least one housing having an inner circumferential surface whereon said cylinders are movable, said housing further including a plurality of exhaust ports each positioned relative to a corresponding one of said cylinders so that said each exhaust port is aligned with said one opening of said one cylinder at least once for every revolution of said one cylinder about said crankshaft to enable the exhaust gases in said one cylinder to be evacuated therefrom; and a plurality of closure means each adaptable for adjusting the size of the exhaust port of a corresponding one of said plurality of cylinders to regulate the amount of exhaust gases that could be evacuated from said corresponding cylinder.
  • 17. A method of increasing the efficiency of an internal combustion engine, comprising the steps of:a) coupling a crankshaft to a frame of said engine; b) movably mounting at least one cylinder via its piston rod about said crankshaft in a housing; c) effecting at least one opening to said cylinder to allow exhaust gases resulting from combustion therein to escape; d) forming at least one exhaust port in said housing in proximate relationship to said cylinder; e) effecting a relative rotational movement between said cylinder and said crankshaft to align said exhaust port with said opening to thereby evacuate the exhaust gases from said cylinder; and f) adjusting the size of said exhaust port to regulate the amount of exhaust gases to be evacuated from said cylinder.
  • 18. An internal combustion engine, comprising:at least one housing having an inner circumferential surface; a crankshaft; at least one cylinder positioned in said housing having its top portion rotatable substantially alone said circumferential surface, said cylinder having a chamber and a piston movable longitudinally therein, a piston rod connecting said piston and extending from said cylinder to movably mount to said crankshaft so that said cylinder is rotatable about said crankshaft; at least one exhaust port formed in said housing to effect a passageway from the inside to the outside of said housing; at least one opening formed in said cylinder to enable gases in the chamber of said cylinder to be evacuated therefrom; wherein when said cylinder is rotated to a particular portion along said circumferential surface, exhaust gases resulting from combustion in said chamber of said cylinder are evacuated through said one opening of said cylinder and said exhaust port of said housing to the outside of said housing; closure means adaptable for closing said one opening when said cylinder is not positioned at said particular portion.
  • 19. A valveless engine, comprising:a crankshaft; at least one cylinder rotatably coupled to said crankshaft, relative rotation being effected between said cylinder and said crankshaft; at least one opening in said cylinder wherefrom exhaust gases resulting from combustion in said cylinder can escape; a housing having an inner circumferential surface whereon said cylinder is movable about includes at least one exhaust port to mate with said opening of said cylinder at least once for every revolution of said cylinder about said inner circumferential surface of said housing to effect a passageway for the exhaust gases in said cylinder to be evacuated therefrom; and closure means adaptable for closing said one opening when said cylinder is not mated to said one exhaust port.
  • 20. A valveless engine comprising:a crankshaft; a plurality of cylinders each movably coupled and rotatable relative to said crankshaft; at least one opening in each of said cylinders wherefrom exhaust gases resulting from combustion in said each cylinder can escape; a housing having an inner circumferential surface whereon said cylinders are movable, said housing further having a plurality of exhaust ports each positioned relative to a corresponding one of said cylinders so that said each exhaust port is aligned with said one opening of said one cylinder at least once for every revolution of said one cylinder about said crankshaft to enable the exhaust gases in said one cylinder to be evacuated therefrom; and at least one closure means operatively coupled to each of said cylinders and adaptable for closing said one opening of said each cylinder when said one opening of said each cylinder is not mated to a corresponding one of said exhaust ports.
US Referenced Citations (6)
Number Name Date Kind
1208401 Tesse Dec 1916
1282429 Jones Oct 1918
1331749 Freer Feb 1920
1598518 Braley Aug 1926
2242231 Cantoni May 1941
5524577 Clifford Jun 1996
Foreign Referenced Citations (7)
Number Date Country
WO 8703042 May 1987 EP
WO 8808483 Nov 1988 EP
1353731 Jun 1964 FR
17117 Jul 1912 GB
1508 Nov 1912 GB
537496 Jun 1941 GB
1113185 May 1968 GB